Skip to main content

Platforms for Functionalization of Cellulose

  • Chapter
  • First Online:
Novel Functional Materials Based on Cellulose

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The shaping, chemical modification, and functionalization of cellulose are largely depended on the process of dissolution in an efficient solvent. Viscose process as the most important method for production of cellulose-regenerated materials was introduced. The dissolution of cellulose in several other most frequently used eco-friendly solvents was also discussed, including cellulose carbamate, N-methylmorpholine-N-oxide, aqueous alkali system, and ionic liquids. These processes provide efficient platforms for development of new regenerated materials and other products based on cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hermanutz F, Gähr F, Uerdingen E et al (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27

    Article  Google Scholar 

  2. Klemm D, Heublein B, Fink H-P et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  3. Cross CF, Bevan EJ, Beadle C (1894) US Patent 520770

    Google Scholar 

  4. Hill JW, Jacobson RA (1938) Method for manufacturing cellulose carbamate. US Patent 2134825

    Google Scholar 

  5. Fink H-P, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51

    Article  Google Scholar 

  6. Yin C, Shen X (2007) Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation: structure and rheological properties. Eur Polym J 43:2111–2116

    Article  Google Scholar 

  7. Guo Y, Zhou J, Song Y et al (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30:1504–1508

    Article  Google Scholar 

  8. Fu F, Zhou J, Zhou X et al (2014) Green method for the production of cellulose multifilament from cellulose carbamate on a pilot-scale. ACS Sustain Chem Eng 2:2363–2370

    Article  Google Scholar 

  9. Fu F, Guo Y, Wang Y et al (2014) Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose 212:819–830

    Google Scholar 

  10. Fu F, Yang Q, Zhou J et al (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate−NaOH/ZnO aqueous Solution. ACS Sustain Chem Eng 2:2604–2612

    Article  Google Scholar 

  11. Graenacher C, Sallmann R (1936) Assisting agents for the textile industry. US patent 2060568 A

    Google Scholar 

  12. Johnson DL (1969) Compounds dissolved in cyclic amine oxides. US patent 3447939 A

    Google Scholar 

  13. Fink H-P, Weigel P, Purz H et al (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  Google Scholar 

  14. Rosenau T, Potthast A, Sixta H et al (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837

    Article  Google Scholar 

  15. Maia E, Peguy A, Perez S (1981) Cellulose organic solvents. I. the structures of anhydrous N-methylmorpholine N-oxide and N-methylmorpholine N-oxide monohydrate. Acta Cryst B37:1858–1862

    Article  Google Scholar 

  16. Rosenau T, Potthast A, Adorjan I et al (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)—degradation processes and stabilizers. Cellulose 9:283–291

    Article  Google Scholar 

  17. Sobue H, Kiessig H, Hess K (1939) The system: cellulose-sodium hydroxide-water in relation to the temperature. Z Phys Chem B43:309–328

    Google Scholar 

  18. Kamide K, Okajima K, Matsui T et al (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polymer 16:857–866

    Article  Google Scholar 

  19. Yamane C, Saito M, Okajima K (1996) Manufacture of new cellulosic fibers from a spinning bath of an aqueous solution of alkali—soluble cellulose and caustic soda. Part 1. Development of a method for industrial preparation of an aqueous solution of highly soluble cellulose and caustic soda. Sen’i Gakkaish

    Google Scholar 

  20. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous solutions. Cellulose 5:309–319

    Article  Google Scholar 

  21. Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    Article  Google Scholar 

  22. Zhou J, Zhang L (2000) The solubility of cellulose in NaOH/ urea aqueous solution. Polym J 10:866–870

    Article  Google Scholar 

  23. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  Google Scholar 

  24. Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184

    Article  Google Scholar 

  25. Ruan D, Zhang L, Zhou J et al (2004) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4:1105–1112

    Article  Google Scholar 

  26. Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796

    Article  Google Scholar 

  27. Qi H, Yang Q, Zhang L et al (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18:237–245

    Article  Google Scholar 

  28. Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  Google Scholar 

  29. Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  Google Scholar 

  30. Zhu S, Wu Y, Chen Q et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  Google Scholar 

  31. Bentivoglio G, Röder T, Fasching M et al (2006) Cellulose processing with chloride-based ionic liquids. Lenzinger Ber 86:154–161

    Google Scholar 

  32. Swatloski RP, Spear SK, Holbrey JD et al (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  Google Scholar 

  33. Gericke M, Fardim P, Heinze T (2012) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  34. Pinkert A, Marsh KN, Pang S et al (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  Google Scholar 

  35. Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Article  Google Scholar 

  36. King AWT, Asikkala J, Mutikainen I et al (2011) Distillable acid–base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Ed 50:6301–6305

    Article  Google Scholar 

  37. Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48:1808–1810

    Article  Google Scholar 

  38. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  Google Scholar 

  39. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  Google Scholar 

  40. Sun N, Rahman M, Qin Y et al (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisong Qi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Qi, H. (2017). Platforms for Functionalization of Cellulose. In: Novel Functional Materials Based on Cellulose. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49592-7_2

Download citation

Publish with us

Policies and ethics