Skip to main content

Outlier Detection on Mixed-Type Data: An Energy-Based Approach

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10086))

Included in the following conference series:

Abstract

Outlier detection amounts to finding data points that differ significantly from the norm. Classic outlier detection methods are largely designed for single data type such as continuous or discrete. However, real world data is increasingly heterogeneous, where a data point can have both discrete and continuous attributes. Handling mixed-type data in a disciplined way remains a great challenge. In this paper, we propose a new unsupervised outlier detection method for mixed-type data based on Mixed-variate Restricted Boltzmann Machine (Mv.RBM). The Mv.RBM is a principled probabilistic method that models data density. We propose to use free-energy derived from Mv.RBM as outlier score to detect outliers as those data points lying in low density regions. The method is fast to learn and compute, is scalable to massive datasets. At the same time, the outlier score is identical to data negative log-density up-to an additive constant. We evaluate the proposed method on synthetic and real-world datasets and demonstrate that (a) a proper handling mixed-types is necessary in outlier detection, and (b) free-energy of Mv.RBM is a powerful and efficient outlier scoring method, which is highly competitive against state-of-the-arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original Mv.RBM also covers rank, but we do not consider in this paper.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets.html.

References

  1. Aggarwal, C.C.: Outlier Analysis. Data Mining. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  2. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–27. Springer, Heidelberg (2002). doi:10.1007/3-540-45681-3_2

    Chapter  Google Scholar 

  3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  4. Bouguessa, M.: A practical outlier detection approach for mixed-attribute data. Expert Syst. Appl. 42(22), 8637–8649 (2015)

    Article  Google Scholar 

  5. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)

    Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  7. De Leon, A.R., Chough, K.C.: Analysis of Mixed Data: Methods & Applications. CRC Press (2013)

    Google Scholar 

  8. Diehl, C.P., Hampshire, J.B.: Real-time object classification and novelty detection for collaborative video surveillance. In: Proceedings of the 2002 International Joint Conference on Neural Networks, 2002. IJCNN 2002, vol. 3, pp. 2620–2625. IEEE (2002)

    Google Scholar 

  9. Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122, 13–23 (2013)

    Article  Google Scholar 

  10. Ghoting, A., Otey, M.E., Parthasarathy, S.: Loaded: Link-based outlier and anomaly detection in evolving data sets. In: ICDM, pp. 387–390 (2004)

    Google Scholar 

  11. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kingma, D., Ba, J., Adam: A method for stochastic optimization. arXiv preprint (2014). arXiv:1412.6980

  14. Konijn, R.M., Kowalczyk, W.: Finding fraud in health insurance data with two-layer outlier detection approach. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 394–405. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23544-3_30

    Chapter  Google Scholar 

  15. Koufakou, A., Georgiopoulos, M., Anagnostopoulos, G.C.: Detecting outliers in high-dimensional datasets with mixed attributes. In: DMIN, pp. 427–433. Citeseer (2008)

    Google Scholar 

  16. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp. 251–261. ACM (2003)

    Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  18. Yen-Cheng, L., Chen, F., Wang, Y., Chang-Tien, L.: Discovering anomalies on mixed-type data using a generalized student-t based approach. IEEE Trans. Knowl. Data Eng. 28, 858–872 (2016). doi:10.1109/TKDE.2016.2583429

    Article  Google Scholar 

  19. Lu, Y.-C., Chen, F., Wang, Y., Lu, C.-T.: Discovering anomalies on mixed-type data using a generalized student-t based approach (2016)

    Google Scholar 

  20. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach. Learn. Res. 2, 139–154 (2001)

    MATH  Google Scholar 

  21. McLachlan, G.J., Basford, K.E.: Mixture models. inference, applications to clustering. Statistics: Textbooks and Monographs, New York: Dekker, 1988, 1 (1988)

    Google Scholar 

  22. Nguyen, T.D., Tran, T., Phung, D., Venkatesh, S.: Latent patient profile modelling and applications with mixed-variate restricted boltzmann machine. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 123–135. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37453-1_11

    Chapter  Google Scholar 

  23. Nguyen, T.D., Tran, T., Phung, D., Venkatesh, S.: Learning sparse latent representation and distance metric for image retrieval. In: Proceedings of IEEE International Conference on Multimedia & Expo, California, USA, July 15–19 2013

    Google Scholar 

  24. Otey, M.E.: Srinivasan Parthasarathy, and Amol Ghoting. Fast lightweight outlier detection in mixed-attribute data. Techincal Report, OSU-CISRC-6/05-TR43 (2005)

    Google Scholar 

  25. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: Loci: Fast outlier detection using the local correlation integral. In: 19th International Conference on Data Engineering, Proceedings, pp. 315–326. IEEE (2003)

    Google Scholar 

  26. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using clustering. In: Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001. Citeseer (2001)

    Google Scholar 

  27. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009)

    Article  Google Scholar 

  28. Serfling, R., Wang, S.: General foundations for studying masking and swamping robustness of outlier identifiers. Stat. Methodol. 20, 79–90 (2014)

    Article  MathSciNet  Google Scholar 

  29. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Royal Stat. Soc. Ser. B 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tran, T., Phung, D., Venkatesh, S., Machines, T.B.: Learning from Multiple Inequalities. In: International Conference on Machine Learning (ICML), Atlanta, USA, June 16–21 2013

    Google Scholar 

  31. Tran, T., Phung, D.Q., Venkatesh, S.: Mixed-variate restricted Boltzmann machines. In: Proceedings of 3rd Asian Conference on Machine Learning (ACML), Taoyuan, Taiwan (2011)

    Google Scholar 

  32. Tran, T., Phung, D., Luo, W., Harvey, R., Berk, M., Venkatesh, S.: An integrated framework for suicide risk prediction. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1410–1418. ACM (2013)

    Google Scholar 

  33. Zhang, K., Jin, H.: An effective pattern based outlier detection approach for mixed attribute data. In: Li, J. (ed.) AI 2010. LNCS (LNAI), vol. 6464, pp. 122–131. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17432-2_13

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Telstra-Deakin Centre of Excellence in Big Data and Machine Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kien Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Do, K., Tran, T., Phung, D., Venkatesh, S. (2016). Outlier Detection on Mixed-Type Data: An Energy-Based Approach. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49586-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49585-9

  • Online ISBN: 978-3-319-49586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics