Skip to main content

Unsupervised Hypergraph Feature Selection with Low-Rank and Self-Representation Constraints

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10086))

Included in the following conference series:

  • 2675 Accesses

Abstract

Unsupervised feature selection is designed to select a subset of informative features from unlabeled data to avoid the issue of ‘curse of dimensionality’ and thus achieving efficient calculation and storage. In this paper, we integrate the feature-level self-representation property, a low-rank constraint, a hypergraph regularizer, and a sparsity inducing regularizer (i.e., an \(\ell _{2,1}\)-norm regularizer) in a unified framework to conduct unsupervised feature selection. Specifically, we represent each feature by other features to rank the importance of features via the feature-level self-representation property. We then embed a low-rank constraint to consider the relations among features and a hypergarph regularizer to consider both the high-order relations and the local structure of the samples. We finally use an \(\ell _{2,1}\)-norm regularizer to result in low-sparsity to output informative features which satisfy the above constraints. The resulting feature selection model thus takes into account both the global structure of the samples (via the low-rank constraint) and the local structure of the data (via the hypergraph regularizer), rather than only considering each of them used in the previous studies. This enables the proposed model more robust than the previous models due to achieving the stable feature selection model. Experimental results on benchmark datasets showed that the proposed method effectively selected the most informative features by removing the adverse effect of redundant/nosiy features, compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  2. 2.

    Available at http://see.xidian.edu.cn/vipsl/database_Face.html.

  3. 3.

    Available at http://archive.ics.uci.edu/ml/.

References

  1. Cai, X., Ding, C., Nie, F., Huang, H.: On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions. In: SIGKDD, pp. 1124–1132 (2013)

    Google Scholar 

  2. Cao, J., Wu, Z., Wu, J.: Scaling up cosine interesting pattern discovery: a depth-first method. Inf. Sci. 266(5), 31–46 (2014)

    Article  Google Scholar 

  3. Cheng, D., Zhang, S., Liu, X., Sun, K., Zong, M.: Feature selection by combining subspace learning with sparse representation. Multimedia Syst., 1–7 (2015)

    Google Scholar 

  4. Gao, L., Song, J., Nie, F., Yan, Y., Sebe, N., Tao Shen, H.: Optimal graph learning with partial tags and multiple features for image and video annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4371–4379 (2015)

    Google Scholar 

  5. Gao, L.L., Song, J., Shao, J., Zhu, X., Shen, H.T.: Zero-shot image categorization by image correlation exploration. In: ICMR, pp. 487–490 (2015)

    Google Scholar 

  6. Gheyas, I.A., Smith, L.S.: Feature subset selection in large dimensionality domains. Pattern Recogn. 43(1), 5–13 (2010)

    Article  MATH  Google Scholar 

  7. Gu, Q., Li, Z., Han, J.: Joint feature selection and subspace learning. IJCAI 22, 1294–1299 (2011)

    Google Scholar 

  8. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, pp. 507–514 (2005)

    Google Scholar 

  9. Hou, C., Nie, F., Li, X., Yi, D., Wu, Y.: Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans. Cybern. 44(6), 793–804 (2013)

    Google Scholar 

  10. Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., Zhang, S.: Graph self-representation method for unsupervised feature selection. Neurocomputing (2016)

    Google Scholar 

  11. Huang, Y., Liu, Q., Lv, F., Gong, Y., Metaxas, D.N.: Unsupervised image categorization by hypergraph partition. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1266–1273 (2011)

    Article  Google Scholar 

  12. Jie, C., Wu, Z., Wu, J., Hui, X.: Sail: summation-based incremental learning for information-theoretic text clustering. ieee trans. syst. man cybern. part b cybern. 43(2), 570–584 (2013). A Publication of the IEEE Systems Man & Cybernetics Society

    Google Scholar 

  13. Lewandowski, M., Makris, D., Velastin, S., Nebel, J.-C.: Structural Laplacian eigenmaps for modeling sets of multivariate sequences. IEEE Trans. Cybern. 44(6), 936–949 (2014)

    Article  Google Scholar 

  14. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Softw. Eng. 35 (2013)

    Google Scholar 

  15. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: CVPR, pp. 663–670 (2010)

    Google Scholar 

  16. Liu, R., Yang, N., Ding, X., Ma, L.: An unsupervised feature selection algorithm: Laplacian score combined with distance-based entropy measure. In: IITA, pp. 65–68 (2009)

    Google Scholar 

  17. Maugis, C., Celeux, G., Martin-Magniette, M.L.: Variable selection for clustering with gaussian mixture models. Biometrics 65(3), 701–709 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint \(\ell _{2,1}\)-norms minimization. In: NIPS, pp. 1813–1821 (2010)

    Google Scholar 

  19. Nie, F., Xiang, S., Jia, Y., Zhang, C., Yan, S.: Trace ratio criterion for feature selection. In: AAAI, pp. 671–676 (2008)

    Google Scholar 

  20. Peng, Y., Long, X., Lu, B.L.: Graph based semi-supervised learning via structure preserving low-rank representation. Neural Process. Lett. 41(3), 389–406 (2015)

    Article  Google Scholar 

  21. Qin, Y., Zhang, S., Zhu, X., Zhang, J., Zhang, C.: Semi-parametric optimization for missing data imputation. Appl. Intell. 27(1), 79–88 (2007)

    Article  MATH  Google Scholar 

  22. Shi, X., Guo, Z., Lai, Z., Yang, Y., Bao, Z., Zhang, D.: A framework of joint graph embedding and sparse regression for dimensionality reduction. IEEE Trans. Image Process. 24(4), 1341–1355 (2015). A Publication of the IEEE Signal Processing Society

    Article  MathSciNet  Google Scholar 

  23. Sunzhong, L.V., Jiang, H., Zhao, L., Wang, D., Fan, M.: Manifold based fisher method for semi-supervised feature selection. In: FSKD, pp. 664–668 (2013)

    Google Scholar 

  24. Tabakhi, S., Moradi, P., Akhlaghian, F.: An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32, 112–123 (2014)

    Article  Google Scholar 

  25. Unler, A., Murat, A., Chinnam, R.B.: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181(20), 4625–4641 (2011)

    Article  Google Scholar 

  26. Wang, D., Nie, F., Huang, H.: Unsupervised feature selection via unified trace ratio formulation and K-means clustering (TRACK). In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp. 306–321. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44845-8_20

    Google Scholar 

  27. Wang, J.Y., Yao, J., Sun, Y.: Semi-supervised local-learning-based feature selection. In: IJCNN, pp. 1942–1948 (2014)

    Google Scholar 

  28. Wen, J., Lai, Z., Wong, W.K., Cui, J., Wan, M.: Optimal feature selection for robust classification via \(\ell _{2,1}\)-norms regularization. In: ICPR, pp. 517–521 (2014)

    Google Scholar 

  29. Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 22(3), 381–405 (2004)

    Article  Google Scholar 

  30. Wu, X., Zhang, S.: Synthesizing high-frequency rules from different data sources. IEEE Trans. Knowl. Data Eng. 15(2), 353–367 (2003)

    Article  Google Scholar 

  31. Xu, Y., Song, F., Feng, G., Zhao, Y.: A novel local preserving projection scheme for use with face recognition. Expert Syst. Appl. 37(9), 6718–6721 (2010)

    Article  Google Scholar 

  32. Yu, J., Tao, D., Wang, M.: Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Process. 21(7), 3262–3272 (2012)

    Article  MathSciNet  Google Scholar 

  33. Zhang, C., Qin, Y., Zhu, X., Zhang, J., Zhang, S.: Clustering-based missing value imputation for data preprocessing. In: IEEE International Conference on Industrial Informatics, pp. 1081–1086 (2006)

    Google Scholar 

  34. Zhang, S., Cheng, D., Zong, M., Gao, L.: Self-representation nearest neighbor search for classification. Neurocomputing 195, 137–142 (2016)

    Article  Google Scholar 

  35. Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning k for KNN classification. ACM Transactions on Intelligent Systems and Technology (2016)

    Google Scholar 

  36. Zhang, S., Wu, X., Zhang, C.: Multi-database mining. 2, 5–13 (2003)

    Google Scholar 

  37. Zhao, Z., Wang, L., Liu, H., Ye, J.: On similarity preserving feature selection. IEEE Trans. Knowl. Data Eng. 25(3), 619–632 (2013)

    Article  Google Scholar 

  38. Zhu, P., Zuo, W., Zhang, L., Hu, Q., Shiu, S.C.: Unsupervised feature selection by regularized self-representation. Pattern Recogn. 48(2), 438–446 (2015)

    Article  Google Scholar 

  39. Zhu, X., Huang, Z., Shen, H.T., Cheng, J., Xu, C.: Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn. 45(8), 3003–3016 (2012)

    Article  MATH  Google Scholar 

  40. Zhu, X., Suk, H.-I., Shen, D.: Sparse discriminative feature selection for multi-class Alzheimer’s disease classification. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 157–164. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10581-9_20

    Google Scholar 

  41. Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z.: Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23(1), 110–121 (2011)

    Article  Google Scholar 

  42. Zhu, X., Zhang, S., Zhang, J., Zhang, C.: Cost-sensitive imputing missing values with ordering. In: AAAI Conference on Artificial Intelligence, 22–26 July 2007, Vancouver, British Columbia, Canada, pp. 1922–1923 (2007)

    Google Scholar 

  43. Zhu, Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 529–540 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the China “1000-Plan” National Distinguished Professorship; the Nation Natural Science Foundation of China (Grants No: 61263035, 61573270 and 61672177), the China 973 Program (Grant No: 2013CB329404); the China Key Research Program (Grant No: 2016YFB1000905); the Guangxi Natural Science Foundation (Grant No: 2015GXNSFCB139011); the China Postdoctoral Science Foundation (Grant No: 2015M570837); the Innovation Project of Guangxi Graduate Education under grant YCSZ2016046; the Guangxi High Institutions’ Program of Introducing 100 High-Level Overseas Talents; the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; and the Guangxi “Bagui” Teams for Innovation and Research, and the project “Application and Research of Big Data Fusion in Inter-City Traffic Integration of The Xijiang River - Pearl River Economic Belt(da shu jv rong he zai xijiang zhujiang jing ji dai cheng ji jiao tong yi ti hua zhong de ying yong yu yan jiu)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

He, W., Zhu, X., Li, Y., Hu, R., Zhu, Y., Zhang, S. (2016). Unsupervised Hypergraph Feature Selection with Low-Rank and Self-Representation Constraints. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49586-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49585-9

  • Online ISBN: 978-3-319-49586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics