Skip to main content

Nonlocality in Multipartite Quantum States

  • Chapter
  • First Online:
  • 624 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Correlations that go beyond the paradigm of local realism (i.e., those that do not admit a Local Hidden Variable Model (LHVM)) are referred to as nonlocal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    These correlations are often referred to as classical, local or Einstein–Podolsky–Rosen (EPR) [EPR35]. Throughout this Thesis, we use these terms indistinctively to indicate that correlations can be explained via a LHVM.

  2. 2.

    The term nonlocal is often used in many-body systems to refer to, e.g., the range of interactions. In this Thesis, the term nonlocal will refer to Bell’s nonlocality, unless stated otherwise.

  3. 3.

    Or, at least, they should be independent from the state of the system, which we describe with a hidden variable \(\lambda \).

  4. 4.

    As we shall see in Sect. 6.3.2, free will (what we mathematically quantify as the degree of independence between measurement settings and the state of the system) can be amplified; i.e., one can increase the quality of the randomness used in a Bell experiment, provided that the initial randomness is good enough.

  5. 5.

    In that case, one can never escape the circular argument that, in order to obtain certified randomness by violating a Bell inequality, one would need certified randomness in the first place to run the Bell experiment and choose the measurements. This choice could be done via another Bell experiment, that would need certified randomness to choose its inputs, etc.

  6. 6.

    Take, for instance, lattice spin models that are described by local (here local stands for finite interaction range, or interactions that decay rapidly with the distance) Hamiltonians. In the ground states of such models (the states with the lowest energy), the following properties are true (see [Tur+15a, Tur+15b] and references therein, such as [ECP10]):

    1. 1.

      The reduced density matrix of two spins typically displays entanglement if the spins are close in distance, even at criticality. However, entanglement measures still show signatures of QPTs.

    2. 2.

      One can also try to perform optimized measurements on the rest of the system, in order to concentrate entanglement in two chosen spins. This is the idea behind the concept of localizable entanglement. At standard QPTs, the entanglement length diverges as the correlation length diverges. However, there exist critical systems for which the correlation length remains finite, whereas the entanglement localization length diverges to infinity.

    3. 3.

      For systems that are not at criticality, the low energy states -ground states- exhibit area laws: the entropy (von Neumann or, more generally, Rényi) of the reduced density matrix corresponding to a block scales as the length of the boundary of the block. At criticality, one often needs to apply a logarithmic correction to the growth. If the system is 1-dimensional, these are well studied results; however higher-dimensional cases are full of open questions.

    4. 4.

      Ground states and states that appear as low energy states of physical Hamiltonians can be efficiently described with Matrix Product States (MPS) and, more generally, tensor network techniques.

    5. 5.

      The spectrum of the logarithm of a reduced density matrix of a block is typically referred to as entanglement spectrum. Topological order is typically exhibited in its properties for gapped one- and two-dimensional systems; in 2D, the appearance of the so-called topological entropy gives a negative constant correction to the area laws.

    Most of these results also hold for lattice Bose and Fermi models; even for quantum field theories.

  7. 7.

    One can never violate a Bell inequality with one-body correlators only.

  8. 8.

    The reason is that if \(\vec {P} = \sum _{i}\lambda _i \vec {Q}_i\), where \(\lambda _i\) form a convex combination and \(\vec {Q}_i \in \mathbb {P}\), then \(\pi (\vec {P})=\sum _i{\lambda _i} \pi (\vec {Q}_i)\), where \(\pi (\vec {Q}_i)\in \pi (\mathbb {P})\).

  9. 9.

    Equation (4.5) follows from a counting argument. For a fixed correlator length k, there are \(\left( {\begin{array}{c}n\\ k\end{array}}\right) \) ways to choose the parties involved in the correlator; then, one has to choose k measurements to perform out of m, which can be repeated as they correspond to different parties, and k times \(d-1\) outcomes, because of the normalization condition that makes the last outcome redundant. When \(K=n\), one recovers the general bound \((m(d-1)+1)^n-1\).

  10. 10.

    This group can be seen as a subgroup of the symmetric group of n elements \({\mathfrak S}_n\), denoted \(G\le {\mathfrak S}_n\), as it applies a subset of all possible permutations to the parties.

  11. 11.

    By simple analogy to the cardinality of the set of functions from X to Y, since \(|Y^X|=|Y|^{|X|}\) in the finite case.

  12. 12.

    This is a well-defined quantity, as every permutation decomposes uniquely into a product of disjoint cycles (modulo a permutation of the cycles).

  13. 13.

    The signed Stirling number of the first kind has an additional factor \((-1)^{n-k}\) in front, and it corresponds to the coefficients of the falling factorial \(x(x-1)\ldots (x-n+1)\) [AS65].

  14. 14.

    In particular, those inequalities that correspond to facets.

  15. 15.

    The convex hull of a set S is the smallest convex set containing S. If the convex hull is a closed set, then it can be defined as the intersection of all closed half-spaces containing S. This happens when S is compact. In particular, in our case, when S is finite.

  16. 16.

    The sets \(\varphi (\partial {\mathbf T}_n)\) and \(\varphi ({\mathbf T}_n)\) are defined through polynomial equalities and inequalities. We say that they are semialgebraic. The characterization of convex hulls of semialgebraic sets is a well studied subject [GT]. Although its exact characterization is an NP-hard problem [BPT], there exist efficient approximations with semi-definite programming techniques in terms of the so-called theta bodies. As we shall discuss in Sect. 4.5, these techniques can be directly applied to any (nmd) scenario with K-body correlators when the symmetry group G is \({\mathfrak S}_n\).

    The Navascués-Pironio-Acín (NPA) hierarchy [NPA08] mentioned in Sect. 2.2.2 is also in the spirit of such approximations, although for the case of non-commutative variables. When the NPA hierarchy gives a certificate that a set of correlations is outside \({\mathbf Q}_k\) for some k, then such correlations cannot be realized with quantum resources. In our case, a characterization of \({\mathbf {P}_2^{{\mathfrak S}_n}}\) through theta bodies produces also a hierarchy of sets \({\mathbf {P}_2^{{\mathfrak S}_n}}\subseteq \cdots \subseteq \Theta _2 \subseteq \Theta _1\) that can certify if a set of correlations which is outside of \(\Theta _k\) for some k; in such case, the correlations under study cannot be simulated through shared randomness and they must be necessarily nonlocal. To our knowledge, this technique has never been used in order to decide between local and non-local correlations.

  17. 17.

    It states that, for a square matrix A, a linear system of equations \(A\vec {b}=\vec {c}\) has some solution(s) (is compatible) if, and only if, the rank of A is the same as the rank of the extended matrix \(A|\vec {c}\). This solution is unique, if and only if, \(\det {A}\ne 0\).

  18. 18.

    Take, for example, the Greenberger–Horne–Zeilinger (GHZ) state \(2^{-n/2}(| 0 \rangle ^{\otimes n}+| 1 \rangle ^{\otimes n})\), which is supported on the last block \(J=n/2\) of the decomposition (A.16). The density matrix of the state has only four terms; two of them in the diagonal, and the remaining ones are the coherences \(| D_n^n \rangle \langle D_n^0 |\) and \(| D_n^0 \rangle \langle D_n^n |\), which can be reached only a full-body correlator. Hence, to a not-full-body correlations symmetric Bell inequality, the GHZ state is indistinguishable from the separable mixture \(| 0 \rangle \!\langle 0 |^{\otimes n}/2+| 1 \rangle \!\langle 1 |^{\otimes n}/2\).

  19. 19.

    In other scenarios, such as (n, 3, 2), we have also found other classes of Bell inequalities maximally violated with states supported on the lowest J blocks.

  20. 20.

    Since numerically we could easily solve the polytope \(\mathbb {P}_2^{\mathfrak {S}_n}\) for \(n\le 33\), the best inequalities (in terms of the maximal quantum violation over the classical bound) were found to be those from Theorem 4.4.

  21. 21.

    One simply renames the outcomes of all the observables.

  22. 22.

    We have numerically checked that the inequalities presented are optimal (with respect to the quantum violation relative to the classical bound) for the Dicke states. But the Dicke states need not be the optimal states for such inequalities; in general, they are not.

  23. 23.

    Take, for instance, \(K=4\). There are two partitions of 4 with 2 elements: (2, 2) and (3, 1). For the (2, 2) partition, there are 3 permutations of 4 elements of the form \((\cdot \cdot )(\cdot \cdot )\) (recall that disjoint cycles commute) and, for the (3, 1) partition, one finds 8 permutations of the form \((\cdot \cdot \cdot )(\cdot )\). Hence, \(\left[ \begin{array}{c}4 \\ 2 \end{array}\right] =3+8=11\).

  24. 24.

    According to Eq. (4.122), for the (4, 2, 2) scenario we should have \(|Y^X/\mathbb {Z}_4|=(1\times 4^4+1\times 4^2+2\times 4)/4=70\) candidates to vertex. However, explicitly solving the polytope with, for example, the CDD algorithm [Fuk14], gives that \(|\mathrm {Ext}(\mathbb {P}_2^{{\mathbb {Z}}_4})|=68\). This is because the DLSs \(f: A\mapsto (+,+),\ B\mapsto (-,+),\ C \mapsto (+,-),\ D \mapsto (-,-)\) and \(\tilde{f}: A \mapsto (+,+),\ B\mapsto (-,-),\ C \mapsto (+,-),\ D \mapsto (-,+)\) give exactly the same values on the translationally invariant correlators (4.117, 4.118). The same happens for \(g: A\mapsto (+,+),\ B\mapsto (+,-),\ C \mapsto (-,+),\ D \mapsto (-,-)\) and \(\tilde{g}: A \mapsto (+,+),\ B\mapsto (-,-),\ C \mapsto (-,+),\ D \mapsto (+,-)\). Thus, f and \(\tilde{f}\) (as well as g and \(\tilde{g}\)) are projected to the same element in \(\mathrm {Ext}(\mathbb {P}_2^{{\mathbb {Z}}_4})\).

  25. 25.

    Let us recall that for n-partite states \(| \varphi \rangle \) in \(\mathcal{H}=({\mathbb {C}^d})^{\otimes n}\), the geometric measure of entanglement is defined as \(E_G(| \varphi \rangle )=1-\max _{| \phi _{\mathrm {prod}} \rangle }|\langle \phi _{\mathrm {prod}} | \varphi \rangle |^2\), where \(| \varphi _{\mathrm {prod}} \rangle =| e_1 \rangle \cdots | e_n \rangle \) [WG03].

  26. 26.

    Noticeably, such inequalities have some similarity with the Guess-Your-Neighbor-Input (GYNI) Bell inequalities [Alm+10]. Operationally, they can be regarded as distributed tasks for which the aid of quantum resources does not provide any advantage over classical ones. However, there exist no-signalling correlations which are beyond the quantum set of correlations \(\mathbf {Q}\) that perform better at such task. From the geometrical point of view, GYNI inequalities constitute facets of \(\mathbf {P}_L\); however only the 21st inequality has this property for \(\mathbb {P}_2^{{\mathbb {Z}}_4}\).

  27. 27.

    A translationally invariant n-qubit state \(| \psi \rangle \) is such that, for any k, \(\tau ^k(| \psi \rangle )=| \psi \rangle \), where \(\tau \in {\mathfrak S}_n\) is the permutation that shifts to the right.

  28. 28.

    We have used that \(\mathcal{S}_{xz}=2\{J_x,J_z\}\).

References

  1. M.L. Almeida, J.-D. Bancal, N. Brunner, A. Acín, N. Gisin, S. Pironio, Guess your neighbor’s input: a multipartite nonlocal game with no quantum advantage. Phys. Rev. Lett. 104(23), 230404 (2010). doi:10.1103/PhysRevLett.104.230404

  2. L. Aolita, R. Gallego, A. Cabello, A. Acín, Fully nonlocal, monogamous, and random genuinely multipartite quantum correlations. Phys. Rev. Lett. 108(10), 100401 (2012). doi:10.1103/PhysRevLett.108.100401

  3. F. Arnault, A complete set of multidimensional Bell inequalities. J. Phys. A: Math. Theor. 45(25), 255304 (2012) doi:10.1088/1751-8113/45/25/255304

  4. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Books on Mathematics. (Dover Publications, Mineola, 1965). ISBN: 0486612724

    Google Scholar 

  5. R. Augusiak, J. Tura, J. Samsonowicz, and M. Lewenstein Entangled symmetric states of N qubits with all positive partial transpositions. Phys. Rev. A 86(4), 042316 (2012). doi:10.1103/PhysRevA.86.042316

  6. J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, D. Roberts, Nonlocal correlations as an information-theoretic resource. Phys. Rev. A 71(2), 022101 (2005). doi:10.1103/PhysRevA.71.022101

  7. J. Barrett, Nonsequential positive - operator - valued measurements on entangled mixed states do not always violate a Bell inequality. Phys. Rev. A 65(4), 042302 (2002). doi:10.1103/PhysRevA.65.042302

  8. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Collected papers on quantum philosophy (Cambridge University Press, Cambridge, 2004) ISBN: 9780521523387

    Google Scholar 

  9. J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  10. L. Babai, L. Fortnow, C. Lund, Non-deterministic exponential time has two-prover interactive protocols. Comput. Complex. 1(1), 3–40 (1991). doi:10.1007/BF01200056 ISSN: 1016-3328

  11. J.-D. Bancal, N. Gisin, S. Pironio, Looking for symmetric Bell inequalities. J. Phys. A: Math. Theor. 43:38, 385303 (2010). doi:10.1088/1751-8113/43/38/385303

  12. G. Blekherman, P.A. Parrilo, R.R. Thomas, Semidefinite Optimization and Convex Algebraic Geometry, chap. 0, i-xix (2013). doi:10.1137/1.9781611972290

  13. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86(2), 419–478 (2014). doi:10.1103/RevModPhys.86.419

  14. D.E. Chang, J.I. Cirac, H.J. Kimble, Self-organization of atoms along a nanophotonic waveguide. Phys. Rev. Lett. 110(11), 113606 (2013). doi:10.1103/PhysRevLett.110.113606

  15. Y. Chang, Z.R. Gong, C.P. Sun, Multiatomic mirror for perfect reflection of single photons in a wide band of frequency. Phys. Rev. A 83(1), 013825 (2011). doi:10.1103/PhysRevA.83.013825

  16. D.E. Chang, L. Jiang, A.V. Gorshkov, H.J. Kimble, Cavity QED with atomic mirrors. New J. Phys. 14(6), 063003 (2012). doi:10.1088/1367-2630/14/6/063003

  17. B. Chazelle, An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10(1), 377–409 (1993). doi:10.1007/BF02573985 ISSN: 0179-5376

  18. Q. Chen, S. Yu, C. Zhang, C.H. Lai, C.H. Oh, Test of genuine multipartite nonlocality without inequalities. Phys. Rev. Lett. 112(14), 140404 (2014). doi:10.1103/PhysRevLett.112.140404

  19. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969) doi:10.1103/PhysRevLett.23.880

  20. D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88(4), 040404 (2002). doi:10.1103/PhysRevLett.88.040404

  21. Colbeck Roger and Renner Renato Free randomness can be amplified. Nat. Phys. 8(6), 450–453 (2012). doi:10.1038/nphys2300 ISSN: 1745-2473

  22. J.S. Douglas, H. Habibian, A.V. Gorshkov, H.J. Kimble, D.E. Chang Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photonics 9(5), 331 (2015). doi:10.1038/nphoton.2015.57

  23. X.-L. Deng, D. Porras, J.I. Cirac, Effective spin quantum phases in systems of trapped ions. Phys. Rev. A 72(6), 063407 (2005). doi:10.1103/PhysRevA.72.063407

  24. K. Eckert, J. Schliemann, D. Bruß, M. Lewenstein, Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88–127 (2002). doi:10.1006/aphy.2002.6268 ISSN: 0003-4916

  25. J. Eisert, M. Cramer, M.B. Plenio, Colloquium : Area laws for the entanglement entropy. Rev. Mod. Phys. 82(1), 277–306 (2010). doi:10.1103/RevModPhys.82.277

  26. A. Einstein, B. Podolsky, N. Rosen, Can Quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935). doi:10.1103/PhysRev.47.777

  27. K. Fukuda, cddlib (2014). http://www.inf.ethz.ch/personal/fukudak/cdd_home/

  28. R. Gallego, N. Brunner, C. Hadley, A. Acín, Device-independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105(23), 230501 (2010). doi:10.1103/PhysRevLett.105.230501

  29. O. Gittsovich, P. Hyllus, O. Gühne, Multiparticle covariance matrices and the impossibility of detecting graph-state entanglement with two-particle correlations. Phys. Rev. A 82(3), 032306 (2010). doi:10.1103/PhysRevA.82.032306

  30. N. Gisin, Quantum Chance: Nonlocality, Teleportation and Other Quantum Marvels (Springer International Publishing, Cham, 2014) ISBN: 9783319054728

    Google Scholar 

  31. N. Gisin, Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991). doi:10.1016/0375-9601(91)90805-I ISSN: 0375-9601

  32. M. Giustina, M.A. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, J. Beyer, T. Gerrits, A.E. Lita, L.K. Shalm, S.W. Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Significant-loophole-free test of Bell’s theorem with entangled photons, Phys. Rev. Lett. 115(25), 250401 (2015). doi:10.1103/PhysRevLett.115.250401

  33. T. Graß, M. Lewenstein, Trapped-ion quantum simulation of tunable-range Heisenberg chains. EPJ Quant. Technol. 1(1), 8 (2014). doi:10.1140/epjqt8 ISSN: 2196-0763

  34. A. Goban, K.S. Choi, D.J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N.P. Stern, H.J. Kimble, Demonstration of a state-insensitive, compensated nanofiber trap. Phys. Rev. Lett. 109(3), 033603 (2012). doi:10.1103/PhysRevLett.109.033603

  35. T. Graß, B. Juliá-Díaz, M. Kuś, M. Lewenstein, Quantum chaos in SU(3) models with trapped ions. Phys. Rev. Lett. 111(9), 090404 (2013). doi:10.1103/PhysRevLett.111.090404

  36. J. Gouveia, R.R. Thomas, Chapter 7: Spectrahedral approximations of convex hulls of algebraic sets, in Semidefinite Optimization and Convex Algebraic Geometry (2013), pp. 293–340. doi:10.1137/1.9781611972290.ch7

  37. A. González-Tudela, C.-L. Hung, D.E. Chang, J.I. Cirac, H.J. Kimble, Subwavelength vacuum lattices and atom-atom interactions in two-dimensional photonic crystals. Nat. Photonics 9(5), 325 (2015). doi:10.1038/nphoton.2015.54

  38. P. Hauke, F.M. Cucchietti, A. Müller-Hermes, M.-C. Bañuls, J.I. Cirac, M. Lewenstein, Complete devil’s staircase and crystalsuperfluid transitions in a dipolar XXZ spin chain: a trapped ion quantum simulation. New J. Phys. 12(11), 113037 (2010) doi:10.1088/1367-2630/12/11/113037

  39. B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–686 (2015). doi:10.1038/nature15759

  40. K. Hammerer, A.S. Sørensen, E.S. Polzik, Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82(2), 1041–1093 (2010). doi:10.1103/RevModPhys.82.1041

  41. D.B. Hume, I. Stroescu, M. Joos, W. Muessel, H. Strobel, M.K. Oberthaler, Accurate atom counting in mesoscopic ensembles. Phys. Rev. Lett. 111(25), 253001 (2013). doi:10.1103/PhysRevLett.111.253001

  42. R. Hübener, M. Kleinmann, T.-C. Wei, C. González-Guillén, O. Gühne, Geometric measure of entanglement for symmetric states. Phys. Rev. A 80(3), 032324 (2009). doi:10.1103/PhysRevA.80.032324

  43. F.L. Kien, K. Hakuta, Cooperative enhancement of channeling of emission from atoms into a nanofiber. Phys. Rev. A 77(1), 013801 (2008). doi:10.1103/PhysRevA.77.013801

  44. B. Lücke, C. Klempt, Private communication (2014)

    Google Scholar 

  45. H.J. Lipkin, N. Meshkov, A.J. Glick, Validity of manybody approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nuclear Phys. 62(2), 188198 (1965). doi:10.1016/0029-5582(65)90862-X ISSN: 0029-5582

  46. V.G. Lucivero, P. Anielski, W. Gawlik, M.W. Mitchell, Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature. Rev. Sci. Instrum. 85(11), 113108 (2014). doi:10.1063/1.4901588

  47. B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth, C. Klempt, Detecting multiparticle entanglement of Dicke states. Phys. Rev. Lett. 112(15), 155304 (2014). doi:10.1103/PhysRevLett.112.155304

  48. M. Maik, P. Hauke, O. Dutta, J. Zakrzewski, M. Lewenstein, Quantum spin models with longrange interactions and tunnelings: a quantum Monte Carlo stud. New J. Phys. 14(11), 113006 (2012). doi:10.1088/1367-2630/14/11/113006

  49. W. Muessel, H. Strobel, D. Linnemann, D.B. Hume, M.K. Oberthaler Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113(10), 103004 (2014). doi:10.1103/PhysRevLett.113.103004

  50. F. Mintert, C. Wunderlich, Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87(25), 257904 (2001). doi:10.1103/PhysRevLett.87.257904

  51. K.P. Nayak, P.N. Melentiev, M. Morinaga, F.L. Kien, V.I. Balykin, K. Hakuta, Optical nanofiber as an efficient tool for manipulating and probing atomicFluorescence. Opt. Express 15(9), 5431–5438 (2007). doi:10.1364/OE.15.005431

  52. M. Navascués, S. Pironio, A. Acín, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008). doi:10.1088/1367-2630/10/7/073013

  53. D. Porras, J.I. Cirac, Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92(20), 207901 (2004). doi:10.1103/PhysRevLett.92.207901

  54. W. Pfaff, B.J. Hensen, H. Bernien, S.B. van Dam, M.S. Blok, T.H. Taminiau, M.J. Tiggelman, R.N. Schouten, M. Markham, D.J. Twitchen, R. Hanson, Unconditional quantum teleportation between distant solid-state quantum bits. Science 345(6196), 532–535 (2014). doi:10.1126/science.1253512

  55. S. Pironio, Ll. Masanes, A. Leverrier, A. Acín, Security of device-independent quantum key distribution in the bounded-quantum-storage model. Phys. Rev. X 3(3), 031007 (2013). doi:10.1103/PhysRevX.3.031007

  56. S. Popescu, D. Rohrlich, Generic quantum nonlocality. Phys. Lett. A 166(5–6), 293–297 (1992). doi:10.1016/0375-9601(92)90711-T ISSN: 0375-9601

  57. K.F. Pál, T. Vértesi, Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinitedimensional quantum systems, Phys. Rev. A 82(2), 022116 (2010). doi:10.1103/PhysRevA.82.022116

  58. G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen (German). Acta Mathematica 68(1), 145–254 (1937). doi:10.1007/BF02546665 ISSN: 0001-5962

  59. J.H. Redfield, The theory of group-reduced distributions. Am. J. Math. 49(3), 433–455 (1927). doi:10.2307/2370675 ISSN: 00029327

  60. R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein, N. Sangouard, Bell correlations in a Bose-Einstein condensate. Science 352(6284), 441–444 (2016). doi:10.1126/science.aad8665 ISSN: 0036-8075

  61. C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, C. Monroe, Realization of a quantum integer-spin chain with controllable interactions. Phys. Rev. X 5(2), 021026 (2015). doi:10.1103/PhysRevX.5.021026

  62. R.J. Sewell, M. Napolitano, N. Behbood, G. Colangelo, F. Martin Ciurana, M.W. Mitchell, Ultrasensitive atomic spin measurements with a nonlinear interferometer. Phys. Rev. X 4(2), 021045 (2014). doi:10.1103/PhysRevX.4.021045

  63. L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Zhang, D.R. Kumor, W.H. Farr, F. Marsili, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M.W. Mitchell, P.G. Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill, S.W. Nam, Strong loophole-free test of local realism. Phys. Rev. Lett. 115(25), 250402 (2015). doi:10.1103/PhysRevLett.115.250402

  64. C. Spengler, M. Huber, B.C. Hiesmayr, A composite parameterization of unitary groups, density matrices and subspaces. J. Phys. A: Math. Theor. 43(38), 385306 (2010). doi:10.1088/1751-8113/43/38/385306

  65. Helmut Strobel, Wolfgang Muessel, Daniel Linnemann, Tilman Zibold, David B. Hume, Luca Pezz, Augusto Smerzi, K. Markus, Oberthaler Fisher information and entanglement of non-Gaussian spin states. Science 345(6195), 424–427 (2014). doi:10.1126/science.1250147

    Article  ADS  Google Scholar 

  66. J. Tura, R. Augusiak, A. B. Sainz, T. Vértesi, M. Lewenstein, A. Acín, Detecting nonlocality in many-body quantum states. Science 344(6189), 1256–1258 (2014) doi:10.1126/science.1247715

  67. J Tura, A B Sainz, T Vértesi, A Acín, M Lewenstein, R. Augusiak, Translationally invariant multipartite Bell inequalities involving only two-body correlators. J. Phys. A: Math. Theor. 47(42), 424024 (2014). doi:10.1088/1751-8113/47/42/424024. (Part of the special issue 50 years of Bell’s Theorem)

  68. J. Tura, A. B. Sainz, T. Graß, R. Augusiak, A Acín, M. Lewenstein, Entanglement and nonlocality in many-body systems: a primer. Proc. Int. Sch. Phy. “Enrico Fermi” 191(1), 505–535 (2015). doi:10.3254/978-1-61499-694-1-505. (Course 191 - Quantum Matter at Ultralow Temperatures)

  69. J. Tura, R. Augusiak, A.B. Sainz, B. Lücke, C. Klempt, M. Lewenstein, A. Acín, Nonlocality in many-body quantum systems detected with two-body correlators. Ann. Phys. 362, 370–423 (2015). doi:10.1016/j.aop.2015.07.021 ISSN: 0003-4916

  70. B. Toner, F. Verstraete, Monogamy of Bell correlations and Tsirelson’s bound (2006). arXiv:quant-ph/0611001

  71. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett. 104(20), 203603 (2010). doi:10.1103/PhysRevLett.104.203603

  72. A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a Fermi sea one atom at a time. Science 342(6157), 457–460 (2013). doi:10.1126/science.1240516

  73. R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989). doi:10.1103/PhysRevA.40.4277

  74. T.-C. Wei, P.M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 042307 (2003). doi:10.1103/PhysRevA.68.042307

  75. M. Wieśniak, M. Nawareg, M. Żukowski, N-particle nonclassicality without N-particle correlations. Phys. Rev. A 86(4), 042339 (2012). doi:10.1103/PhysRevA.86.042339

  76. R.F. Werner, M.M. Wolf, Bell inequalities and entanglement. Quantum Inf. Comput. 1(3), 1–25 (2001) ISSN: 1533-7146

    Google Scholar 

  77. J. Zhou, Y. Hu, X.-B. Zou, G.-C. Guo, Groundstate preparation of arbitrarily multipartite Dicke states in the one-dimensional ferromagnetic spin- 1 2 chain. Phys. Rev. A 84(4), 042324 (2011). doi:10.1103/PhysRevA.84.042324

  78. H. Zoubi, H, Ritsch, Hybrid quantum system of a nanofiber mode coupled to two chains of optically trapped atoms. New J. Phys. 12(10) (2010), 103014 doi:10.1088/1367-2630/12/10/103014

  79. G. Zürn, A.N. Wenz, S. Murmann, A. Bergschneider, T. Lompe, S. Jochim, Pairing in few-fermion systems with attractive interactions. Phys. Rev. Lett. 111(17), 175302 (2013). doi:10.1103/PhysRevLett.111.175302

  80. J.W. Britton, B.C. Sawyer, A.C. Keith, C.C. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484(7395), 489492 (2012) ISSN: 0028–0836.doi:10.1038/nature10981

  81. E. Kai, R.-I. Oriol, R. Mirta, L. Maciej, P.S. Eugene, S. Anna, Quantum nondemolition detection of strongly correlated systems. Nat. Phys. 4(1), 5054 (2008). doi:10.1038/nphys776

  82. A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions. Nat. Phys. 4(10), 757761 (2008). doi:10.1038/nphys1032 ISSN: 1745-2473

  83. A. Goban, C.-L. Hung, S.-P. Yu, J.D. Hood, J.A. Muniz, J.H. Lee, M.J. Martin, A.C. McClung, K.S. Choi, D.E. Chang, O. Painter, Atomlight interactions in photonic crystals. Nat. Commun. 5 (2014). doi:10.1038/ncomms480810.1038/ncomms4808

  84. K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Quantum simulation of frustrated Ising spins with trapped ions. Nature 465(7298), 590593 (2010). doi:10.1038/nature09071 ISSN: 0028-0836

  85. M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R.J. Sewell, M.W. Mitchell, Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471(7339), 486489 (2011). doi:10.1038/nature09778 ISSN: 0028-0836

  86. S. Pironio, A. Acín, S. Massar, A.B. de la Giroday, D.N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T.A. Manning, C. Monroe, Random numbers certified by Bell’s theorem, Nature 464(7291), 1021–1024 (2010). doi:10.1038/nature09008 ISSN: 0028-0836

  87. A. Sorensen, L.-M. Duan, J.I. Cirac, P. Zoller, Manyparticle entanglement with Bose-Einstein condensates, Nature 409(6816), 6366 (2001). doi:10.1038/35051038 ISSN: 0028-0836

  88. C. Śliwa, Symmetries of the Bell correlation inequalities. Phys. Lett. A 317(34), 165–168 (2003). doi:10.1016/S0375-9601(03)01115-0 ISSN: 0375-9601

  89. M. Żukowski, Č. Brukner, Bell’s theorem for general n-qubit states. Phys. Rev. Lett. 88(21), 210401 (2002). doi:10.1103/PhysRevLett.88.210401

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tura i Brugués, J. (2017). Nonlocality in Multipartite Quantum States. In: Characterizing Entanglement and Quantum Correlations Constrained by Symmetry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-49571-2_4

Download citation

Publish with us

Policies and ethics