Skip to main content

Background

  • Chapter
  • First Online:
  • 613 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we present the basics that will be used in the rest of the thesis, as well as the results that represent the state of the art. Expert readers may skip this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The authors argued that any complete theory should have an element that describes every ‘element of reality’ (i.e., a physical quantity whose values can be predicted with certainty without disturbing the system).

  2. 2.

    Unless stated otherwise, throughout this Thesis we consider that \(\mathcal{H}\) is a vector space defined over the field of complex numbers, denoted \(\mathbbm {C}\).

  3. 3.

    A problem belongs to the class of complexity NP-hard if any algorithm that solves it can be translated in polynomial time into one solving any problem in NP. Hence, an NP-hard problem is as hard as any problem in NP, although it might be harder.

    NP stands for Nondeterministic Polynomial time and it consists of all problems whose solution can be verified in polynomial time by a deterministic Turing machine.

  4. 4.

    The upper bound \(s \le d_1^2d_2^2\), stems from Carathodory’s theorem [Car11]: Any state expressed as a convex combination like in Eq. (2.2) can be re-expressed as another convex combination of no more than \(\dim _{\mathbbm {R}}\mathcal{D}(\mathcal{H}_{AB})\) terms, as \(\mathcal{D}(\mathcal{H}_{AB})\) can be embedded into the \({\mathbbm {R}}\)-vector space of \(d_1d_2\times d_1d_2\) Hermitian matrices, which has dimension \(d_1^2d_2^2\).

  5. 5.

    A decomposable map \(\Lambda \) can be written as \(\Lambda = \Lambda _{1} + \Lambda _{2}\circ T\), where \(\Lambda _1\) and \(\Lambda _2\) are CP maps. This fact is intimately related to the decomposability of entanglement witnesses via the Choi-Jamiołkowski-Sudarshan isomorphism [Jam72, Cho75].

  6. 6.

    Note that \(\Pi _W\)does not form a subspace; in fact, it can be a finite set.

  7. 7.

    As an example of \(W \in \partial \mathcal{W} \setminus \mathrm {Opt}(\mathcal{W})\), consider the line segment \(W(p)=pW_{+}+(1-p)W_{-} \in M_2 \otimes M_2\) and consider the Bell basis \(| \psi _{\pm } \rangle =(| 00 \rangle \pm | 11 \rangle )/\sqrt{2}\), \(| \phi _{\pm } \rangle =(| 01 \rangle \pm | 10 \rangle )/\sqrt{2}\). Pick \(W_{\pm }=| \psi _{\pm } \rangle \langle \psi _{\pm } |^{T_B} \in \mathrm {Ext}(\mathcal{W})\). For any \(p \in [0,1/2) \cup (1/2,1]\), \(W\in \mathcal{W}\), whereas \(W(1/2)\succeq 0\). Consequently, \(W(p)\notin \mathrm {Opt}(\mathcal{W})\) for any \(0<p<1\). Hence, by moving to one of the extremes of the segment, W(p) can be optimized. \(W(p) \in \partial \mathcal{W}\) because for every \(p\in [0,1]\) and for any \(\varepsilon >0\), \(\mathcal{W}(p) - \varepsilon | \phi _+ \rangle \langle \phi _+ |^{T_B} \notin \mathcal{W}\).

    As an example of \(W\in \mathrm {Opt}(\mathcal{W}) {\setminus }\mathrm {Ext}(\mathcal{W})\), a decomposable witness of the form \(W=Q^{T_A}\) with \(Q\in M_2\otimes M_2\), \(Q \succeq 0\) and \(\mathrm {supp}(Q)\) being a Completely Entangled Subspace (CES) is optimal [Lew+00]; however it is not extremal if \(\mathrm {rank}(Q)>1\). A CES is a subspace containing no product vectors (see e.g. [ATL11]).

  8. 8.

    Exposed EWs form a subset of \(\mathrm {Ext}({\mathcal{W}})\) [HK11]. All extremal decomposable EWs are exposed [CS14].

  9. 9.

    The typical example is the transposition map, which detects all \(2\otimes 2\) and \(2\otimes 3\) states, whereas its corresponding entanglement witness detects just a subset of them [HHH96].

  10. 10.

    There exist other frameworks in which can study nonlocality, such as the ones considered in Sect. 5.5.1. In this Thesis, we consider the typical framework in which parties perform a single measurement on a single copy of their resource and repeat the experiment in the same conditions.

  11. 11.

    For instance, if Alice has to choose between measuring the spin of a electron in the direction x and measuring the spin in the direction z, her choice has to be independent on the state of the electron; in other words, the electron cannot know what Alice is going to measure. This situation is relevant in the framework of quantum cryptography tasks, where the manufacturer of the devices and/or the provider of entangled particles is untrusted and can use this information to fake the statistics \(P(\vec {a}|\vec {x})\), compromising security (see Sect. 6.3.2).

  12. 12.

    A convex polyhedra admits this dual description as well, if we allow for vertices to be at infinity. Some programs avoid this by working in the Projective space instead of the Affine space, by treating points as rays, for example [Fuk14].

  13. 13.

    This follows from a simple combinatorical argument: The number of independent components of \(\vec {P}\in \mathbf {P}_{NS}\) is given by the normalization conditions of probabilities and the number of different marginals because of the NS principle: For every party, one can choose whether to measure it or not; if it is indeed measured, there are m possible measurements to perform, and for each measurement there are \(d-1\) outcomes to specify (because the last outcome can always be recasted as a function of the rest by means of the normalization conditions). If nobody measures, there is no value needed to specify, so we rule out this possibility.

  14. 14.

    A spectrahedron is the feasible set of a Semi-Definite Program (SDP).

  15. 15.

    Note, however, that in polytope theory, a tight inequality is one which just touches the polytope.

  16. 16.

    See also [Fri12] for an interesting duality relation between the vertices and facets of \(\mathbf {P}_{NS}\) and \(\mathbf {P}_L\) in the (n, 2, 2) scenario. A repository of the currently known Bell inequalities can be found in [RBG14].

  17. 17.

    The same argument applies to PR-boxes [Bar+05].

  18. 18.

    There is another formulation of measure of nonlocality formulated by Elitzur–Popescu–Rohrlich (EPR2) [EPR92], which measures the nonlocal content of \(\vec {P}\) by decomposing it as a convex combination of a no-signalling distribution \(\vec {P}_{NS}\in \mathbf {P}_{NS}\) and a local distribution \(\vec {P}_L \in \mathbf {P}_{L}\) with maximal p: \(\vec {P}=p\vec {P}_{NS}+(1-p)\vec {P}_{L}\).

  19. 19.

    A nice way to see this is via the so-called Majorana representation [Maj32], which assigns a product state to every pure Dicke state; when taking a superposition of all permutations of this product state, one recovers the original Dicke state. For \(d=2\) this assignment is unique and it can be easily visualized in the Bloch sphere. Then, the action of \(U^{\otimes n}\) is just a rotation of the Bloch sphere [Mar11].

  20. 20.

    It was shown in [HHH98] that bipartite PPT states cannot be distilled; i.e., no matter how many copies of a non-distillable state are available, there is no protocol that would produce a pure maximally entangled state \(| \psi ^+ \rangle \). This is the reason why bound entanglement (i.e., entanglement of undistillable states) is considered the weakest form of entanglement.

    Interestingly, a conjecture by Peres related the concepts of nonlocality and bound entanglement, claiming that all bound entangled states admit a local model. The intuition that bound entanglement is too weak to violate a Bell inequality was proven to be false both in the multipartite [VB12] and the bipartite [VB14] scenarios very recently.

References

  1. R. Augusiak, M. Demianowicz, A. Acín, Local hidden-variable models for entangled quantum states. J. Phys. A: Math. Theor. 47(42), 424002 (2014). doi:10.1088/1751-8113/47/42/424002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49(2), 91–94 (1982). doi:10.1103/PhysRevLett.49.91

    Article  ADS  Google Scholar 

  3. M.L. Almeida, D. Cavalcanti, V. Scarani, A. Acín, Multipartite fully nonlocal quantum states. Phys. Rev. A 81(5), 052111 (2010). doi:10.1103/PhysRevA.81.052111

    Article  ADS  Google Scholar 

  4. R. Augusiak, J. Tura, M. Lewenstein, A note on the optimality of decomposable entanglement witnesses and completely entangled subspaces. J. Phys. A: Math. Theor. 44(21), 212001 (2011). doi:10.1088/1751-8113/44/21/212001. Featured with insights. Editor’s choice: Highlights of 2011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. R. Augusiak, J. Bae, J. Tura, M. Lewenstein, Checking the optimality of entanglement witnesses: an application to structural physical approximations. J. Phys. A: Math. Theor. 47(6), 065301 (2014). doi:10.1088/1751-8113/47/6/065301. Editor’s choice: Highlights of 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J.-D. Bancal, J. Barrett, N. Gisin, S. Pironio, Definitions of multipartite nonlocality. Phys. Rev. A 88(1), 014102 (2013). doi:10.1103/PhysRevA.88.014102

    Article  ADS  Google Scholar 

  7. J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, D. Roberts nonlocal correlations as an information-theoretic resource. Phys. Rev. A 71(2), 022101 (2005). doi:10.1103/PhysRevA.71.022101

    Article  ADS  Google Scholar 

  8. J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  9. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). doi:10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. G. Boole, On the theory of probabilities. Philos. Trans. R. Soc. Lond. 152, 225–252 (1862). doi:10.1098/rstl.1862.0015

    Article  MATH  Google Scholar 

  11. G. Brassard, H. Buhrman, N. Linden, A. Allan Méthot, A. Tapp, F. Unger, Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 96(25), 250401 (2006). doi:10.1103/PhysRevLett.96.250401

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86(2), 419–478 (2014). doi:10.1103/RevModPhys.86.419

    Article  ADS  Google Scholar 

  13. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992). doi:10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. C. Carathéodory, Über den variabilitätsbereich der fourier’schen konstanten von ositiven harmonischen funktionen Italian. Rendiconti del Circolo Matematico di Palermo 32(1) (1911)

    Google Scholar 

  15. R. Cleve, H. Buhrman, Substituting quantum entanglement for communication. Phys. Rev. A 56(2), 1201–1204 (1997). doi:10.1103/PhysRevA.56.1201

    Article  ADS  Google Scholar 

  16. B. Chazelle, An optimal convex hull algorithm in any fixed dimension English. Discrete Comput. Geom. 10(1), 377–409 (1993). doi:10.1007/BF02573985. ISSN: 0179-5376

    Article  MathSciNet  MATH  Google Scholar 

  17. M.-D. Choi, Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975). doi:10.1016/0024-3795(75)90075-0. ISSN: 0024-3795

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000). doi:10.1103/PhysRevA.61.052306

    Article  ADS  Google Scholar 

  19. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969). doi:10.1103/PhysRevLett.23.880

    Article  ADS  Google Scholar 

  20. D. Chruściński, G. Sarbicki, Entanglement witnesses: construction, analysis and classification. J. Phys. A: Math. Theor. 47(48), 483001 (2014). doi:10.1088/1751-8113/47/48/483001

    Article  MathSciNet  MATH  Google Scholar 

  21. W. van Dam, Nonlocality and communication complexity. Ph.D. thesis, University of Oxford (1999)

    Google Scholar 

  22. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99–110 (1954). doi:10.1103/PhysRev.93.99

    Article  ADS  MATH  Google Scholar 

  23. W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, Quantum repeaters based on entanglement purification. Phys. Rev. A 59(1), 169–181 (1999). doi:10.1103/PhysRevA.59.169

    Article  ADS  MATH  Google Scholar 

  24. K. Eckert, J. Schliemann, D. Bruß, M. Lewenstein, Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88–127 (2002). doi:10.1006/aphy.2002.6268. ISSN: 0003-4916

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R.E. Edwards, Functional Analysis: Theory and Applications Dover, Books on Mathematics (Dover Pub., 1995). ISBN: 9780486681436

    Google Scholar 

  26. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). doi:10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935). doi:10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  28. A.C. Elitzur, S. Popescu, D. Rohrlich, Quantum nonlocality for each pair in an ensemble. Phys. Lett. A 162(1), 25–28 (1992). doi:10.1016/0375-9601(92)90952-I

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Fine, Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–295 (1982). doi:10.1103/PhysRevLett.48.291

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Fritz, A.B. Sainz, R. Augusiak, J.B. Brask, R. Chaves, A. Leverrier, A. Acín, Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 4, 2263 (2013)

    Article  ADS  Google Scholar 

  31. T. Fritz, Polyhedral duality in Bell scenarios with two binary observables. J. Math. Phys. 53(7), 072202 (2012). doi:10.1063/1.4734586

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M. Froissart, Constructive generalization of Bell’s inequalities English. Il Nuovo Cimento B 64(2), 241–251 (1981). doi:10.1007/BF02903286. ISSN: 0369-3554

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Fukuda, cddlib (2014), http://www.inf.ethz.ch/personal/fukudak/cdd_home/

  34. R. Gallego, L. Erik Würflinger, A. Acín, M. Navascués, Operational framework for nonlocality. Phys. Rev. Lett. 109(7), 070401 (2012). doi:10.1103/PhysRevLett.109.070401

    Article  ADS  Google Scholar 

  35. N. Gisin, Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991). doi:10.1016/0375-9601(91)90805-I. ISSN: 0375-9601

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, J. Beyer, T. Gerrits, A.E. Lita, L.K. Shalm, S. Woo Nam, T. Scheidl, R. Ursin, B. Wittmann, A. Zeilinger, Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115(25), 250401 (2015). doi:10.1103/PhysRevLett.115.250401

    Article  ADS  Google Scholar 

  37. L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997). doi:10.1103/PhysRevLett.79.325

    Article  ADS  Google Scholar 

  38. O. Gühne, G. Tóth, H.J. Briegel, Multipartite entanglement in spin chains. New J. Phys. 7(1), 229 (2005). doi:10.1088/1367-2630/7/1/229

    Article  Google Scholar 

  39. L. Gurvits, Classical deterministic complexity of Edmonds’ problem and quantum entanglement. in, Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC ’03 (ACM, San Diego, CA, USA, 2003), pp. 10–19. doi:10.1145/780542.780545. ISBN: 1-58113-674-9

  40. P. Horodecki, A. Ekert, Method for direct detection of quantum entanglement. Phys. Rev. Lett. 89(12), 127902 (2002). doi:10.1103/PhysRevLett.89.127902

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham, D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau, R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575) (2015), 682–686. doi:10.1038/nature15759

  42. M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996). doi:10.1016/S0375-9601(96)00706-2. ISSN: 0375-9601

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. M. Horodecki, P. Horodecki, R. Horodecki, Mixed-state entanglement and distillation: is there a “Bound” entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998). doi:10.1103/PhysRevLett.80.5239

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. K.-C. Ha, S.-H. Kye, Entanglement witnesses arising from exposed positive linear maps. Open Syst. Inf. Dyn. 18(04), 323–337 (2011). doi:10.1142/S1230161211000224

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997). doi:10.1016/S0375-9601(97)00416-7. ISSN: 0375-9601

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3(4), 275–278 (1972). doi:10.1016/0034-4877(72)90011-0. ISSN: 0034-4877

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A.N. Kolmogórov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933)

    Book  MATH  Google Scholar 

  48. M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki, Optimization of entanglement witnesses. Phys. Rev. A 62(5), 052310 (2000). doi:10.1103/PhysRevA.62.052310

    Article  ADS  Google Scholar 

  49. N. Linden, S. Popescu, A.J. Short, A. Winter, Quantum nonlocality and beyond: limits from nonlocal computation. Phys. Rev. Lett. 99(18), 180502 (2007). doi:10.1103/PhysRevLett.99.180502

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. E. Majorana, Atomi orientati in campo magnetico variabile Italian. Il Nuovo Cimento 9(2), 43–50 (1932). doi:10.1007/BF02960953. ISSN: 0029-6341

    Article  MATH  Google Scholar 

  51. D.J.H. Markham, Entanglement and symmetry in permutation-symmetric states. Phys. Rev. A 83(4), 042332 (2011). doi:10.1103/PhysRevA.83.042332

    Article  ADS  Google Scholar 

  52. M. Navascués, Y. Guryanova, M.J. Hoban, A. Acín, Almost quantum correlations. Nat. Commun. 6, 6288 (2015). doi:10.1038/ncomms7288

    Article  ADS  Google Scholar 

  53. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (2000). doi:10.1080/00107514.2011.587535

  54. M.A. Nielsen, Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83(2), 436–439 (1999). doi:10.1103/PhysRevLett.83.436

    Article  ADS  Google Scholar 

  55. M. Navascués, S. Pironio, A. Acín, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008). doi:10.1088/1367-2630/10/7/073013

    Article  ADS  Google Scholar 

  56. M. Navascus, H. Wunderlich, A glance beyond the quantum model. Proc. R. Soc. A: Math. Phys. Eng. Sci. 466(2115), 881–890 (2010). doi:10.1098/rspa.2009.0453

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Zukowski, Information causality as a physical principle. Nature 461(7267), 1101–1104 (2009). doi:10.1038/nature08400

    Article  ADS  Google Scholar 

  58. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996). doi:10.1103/PhysRevLett.77.1413

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. S. Pironio, All Clauser-Horne-Shimony-Holt polytopes. J. Phys. A: Math. Theor. 47(42), 424020 (2014). doi:10.1088/1751-8113/47/42/424020

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. S. Popescu, D. Rohrlich, Quantum nonlocality as an axiom English. Found. Phys. 24(3), 379–385 (1994). doi:10.1007/BF02058098. ISSN: 0015-9018

    Article  ADS  MathSciNet  Google Scholar 

  61. I. Pitowsky, K. Svozil, Optimal tests of quantum nonlocality. Phys. Rev. A 64(1), 014102 (2001). doi:10.1103/PhysRevA.64.014102

    Article  ADS  MathSciNet  Google Scholar 

  62. D. Rosset, J.-D. Bancal, N. Gisin, Classifying 50 years of Bell inequalities. J. Phys. A: Math. Theor. 47(42), 424022 (2014). doi:10.1088/1751-8113/47/42/424022http://www.faacets.com/

  63. D. Rosset, Characterization of correlations in quantum networks. Ph.D. thesis, Université de Gen‘eve (2015)

    Google Scholar 

  64. E. Schrödinger, Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31(04), 555–563 (1935). doi:10.1017/S0305004100013554. ISSN: 1469-8064

    Article  ADS  MATH  Google Scholar 

  65. L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Zhang, D.R. Kumor, W.H. Farr, F. Marsili, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M.W. Mitchell, P.G. Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill, S. Woo Nam, Strong loophole-free test of local realism*. Phys. Rev. Lett. 115(25), 250402 (2015). doi:10.1103/PhysRevLett.115.250402

    Article  ADS  Google Scholar 

  66. Ł. Skowronek, E. Størmer, K. Życzkowski, Cones of positive maps and their duality relations. J. Math. Phys. 50(6), 062106 (2009). doi:10.1063/1.3155378

  67. E. Størmer, Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963). doi:10.1007/BF02391860. ISSN: 0001-5962

    Article  MathSciNet  MATH  Google Scholar 

  68. G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35(10), 3066–3069 (1987). doi:10.1103/PhysRevD.35.3066

    Article  ADS  MathSciNet  Google Scholar 

  69. B.M. Terhal, Bell inequalities and the separability criterion. Phys. Lett. A 271(5–6), 319–326 (2000). doi:10.1016/S0375-9601(00)00401-1. ISSN: 0375-9601

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. G. Tóth, O. Gühne, Entanglement and permutational symmetry. Phys. Rev. Lett. 102(17), 170503 (2009). doi:10.1103/PhysRevLett.102.170503

    Article  ADS  MathSciNet  Google Scholar 

  71. B.M. Terhal, P. Horodecki, Schmidt number for density matrices. Phys. Rev. A 61(4), 040301 (2000). doi:10.1103/PhysRevA.61.040301

    Article  ADS  MathSciNet  Google Scholar 

  72. B. Toner, Monogamy of non-local quantum correlations. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465(2101), 59–69 (2009). doi:10.1098/rspa.2008.0149

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. B. Toner, F. Verstraete, Monogamy of Bell Correlations and Tsirelson’s Bound (2006). arXiv:quant-ph/0611001

  74. T. Vértesi, N. Brunner, Quantum nonlocality does not imply entanglement distillability. Phys. Rev. Lett. 108(3), 030403 (2012). doi:10.1103/PhysRevLett.108.030403

    Article  Google Scholar 

  75. T. Vértesi, N. Brunner, Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement. Nat. Commun. 5, 5297 (2014). doi:10.1038/ncomms6297

    Article  Google Scholar 

  76. R.F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989). doi:10.1103/PhysRevA.40.4277

    Article  ADS  Google Scholar 

  77. S.L. Woronowicz, Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976). doi:10.1016/0034-4877(76)90038-0. ISSN: 0034-4877

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. C. Śliwa, Symmetries of the Bell correlation inequalities. Phys. Lett. A 317(34), 165–168 (2003). doi:10.1016/S0375-9601(03)01115-0. ISSN: 0375-9601

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tura i Brugués, J. (2017). Background. In: Characterizing Entanglement and Quantum Correlations Constrained by Symmetry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-49571-2_2

Download citation

Publish with us

Policies and ethics