Skip to main content

German Physicists Before and Around 1830

  • Chapter
  • First Online:
The Second Physicist

Part of the book series: Archimedes ((ARIM,volume 48))

  • 912 Accesses

Abstract

Early in our period, German physics was driven mostly by experimental research. The balance was somewhat different in France. Although important exploratory experimental work was done there, mathematical physics acquired a certain splendor among the sciences, and from the second quarter of the nineteenth century, German physicists frequently took their starting point in works of French mathematical physics. When the gifted young secondary school teacher Georg Simon Ohm examined French mathematical physics to see what it had left for him to do, he found in Fourier’s theory of heat a model for developing theoretically the subject he was investigating experimentally. We begin our account of theoretical physics in Germany with his grand mathematical theory of the galvanic circuit in 1827. While science textbooks were sometimes used to publish original research, another form of publication had been evolving, the scientific journal. The most important journal for physics in Germany was the Annalen der Physik und Chemie, which came to “unite in itself the entire physical life in Germany.” Ohm like other German researchers who published work in the Annalen pursued a calling for which there was then no set course of training, no prescribed access to the means for doing research, and no regular career.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These generalizations are based on a study of twenty-one German contributors to electricity and magnetism in the early nineteenth century. Kenneth L. Caneva, “From Galvanism to Electrodynamics: The Transformation of German Physics and Its Social Context,” HSPS 9 (1978): 63–160, on 69–70, 95, 132–34, 136–38, 157. This author suggests that the younger physicists broke with the physics of their teachers in part because of the questioning of authority occasioned by the Napoleonic wars and in part by the educational ideal of Wissenschaft and aspects of educational reform (124–25).

  2. 2.

    Ibid., 69.

  3. 3.

    Ernst Gottfried Fischer, Lehrbuch der mechanischen Naturlehre, 3rd ed., 2 vols. (Berlin and Leipzig, 1826–1827), vol. 2, 113, 259–60.

  4. 4.

    They collaborated on the sixth edition of Baumgartner’s Die Naturlehre nach ihrem gegenwärtigen Zustande mit Rücksicht auf mathematische Begründung (Vienna, 1839), 373, 382, 387, 410.

  5. 5.

    Maurice Crosland and Crosbie Smith, “The Transmission of Physics from France to Britain: 1800–1840,” HSPS 9 (1978): 1–61, on 6–7.

  6. 6.

    Peter M. Harman, Energy, Force, and Matter: The Conceptual Development of Nineteenth-Century Physics (Cambridge: Cambridge University Press, 1982), 2–3, 15–17.

  7. 7.

    Crosland and Smith, “Transmission of Physics,” 7–8.

  8. 8.

    All French mathematical physics has been characterized as mathematics not physics, but that is not how many German physicists regarded large parts of it. Ohm, Neumann, Helmholtz, Clausius, Kirchhoff, and others worked with it extensively.

  9. 9.

    Karl Scheel, “Die literarischen Hilfsmittel der Physik,” Naturwiss. 16 (1925): 45–48, on 46.

  10. 10.

    Gustav Wiedemann, “Vorwort,” Ann. 39 (1890), first four unnumbered pages.

  11. 11.

    F. A. C. Gren’s foreword in 1790 to the first volume of Journal der Physik, his original title for the Annalen. His paper was “Prüfung der neuern Theorien über Feuer, Wärme, Brennstoff und Luft,” 3–44, 189–201. In it Gren disputed Adair Crawford’s theory of heat and combustion, which he called a “lazy philosophy” (30). Gren was critical of theories based on too few experiments, which only revealed the experimenters’ narrowness of view and ignorance of the many already established laws of nature (26–27). He used his journal to uphold the phlogiston theory of chemistry against Lavoisier’s new chemistry, defending his own theory of the negative gravity of phlogiston against the criticism of J. T. Mayer, professor of mathematics and natural philosophy at Erlangen University. Mayer, whose work and criticism always hinged on the question of whether or not a theory or hypothesis was in conflict with the laws of mechanics, soon persuaded Gren on mechanical grounds to retract his theory of negative gravity (200), though he continued to defend phlogiston until his conversion to the new chemistry in 1794 (Journal der Physik 8 [1794]: 14). The decision between the old and the new chemistry was displaced as the central theme of Gren’s journal by the subject of animal electricity after Galvani’s experiments were reported in the journal in 1792. Throughout the Journal der Physik—in the articles, extracts, book reviews, letters to the editor, and annotations by the editor—rival theories in physics, chemistry, and physiology were compared in light of the results of experiments. Both theories and experiments were needed to achieve what Gren said was the “goal” of the natural philosopher: the establishment of the general laws of nature (Journal der Physik 8 [1790]: 25–25, 208).

  12. 12.

    The subscription list at the beginning of the first volume shows that there were fewer than a hundred subscribers, among whom were fourteen professors.

  13. 13.

    L. W. Gilbert, “Vorrede,” Ann. 1 (1799), first three pages.

  14. 14.

    Obituary of L. W. Gilbert, Neuer Nekrolog 2 (1824): 491, 493.

  15. 15.

    Gilbert, “Vorrede.”

  16. 16.

    Gilbert, Neuer Nekrolog, 484, 488.

  17. 17.

    Gilbert’s colleagues who wrote textbooks on physics sent their readers to Gilbert’s accounts of recent physics. See, for example, Fischer, Lehrbuch, vol. 2, 81–82, 120. Mayer referred the reader to the “excellent annals of physics of Prof. Gilbert” in his announcement of the third edition of his Anfangsgründe in the Göttingische geleherte Anzeigen, 1812, vol. 2, 1273–74.

  18. 18.

    Obituary of L. W. Gilbert, Ann. 76 (1824): 468–69.

  19. 19.

    A. M. Ampère, “Ueber die gegenseitigen Wirkungen, welche auf einander ausüben zwei electrische Ströme, ein electrischer Strom und ein Magnet oder die Erdkugel, und zwei Magnete,” Ann. 67 (1821): 113–63, 225–58.

  20. 20.

    Gilbert’s remarks, Ann. 69 (1821): 65.

  21. 21.

    When Gilbert became ordinary professor of physics at Leipzig University in 1811, he moved the Annalen with him. He was succeeded in his chair by Brandes, who, according to Poggendorff, wanted to become editor of the Annalen as well, as did Kastner in Erlangen and Muncke in Heidelberg (Emil Frommel, Johann Christian Poggendorff [Berlin, 1877], 70). All three of these prospective editors were authors of several textbooks, some of them major. In the same year that Poggendorff took over the Annalen, Kastner began editing the Archiv für gesammte Naturlehre, and in the following year Brandes along with others began bringing out a new edition of Gehler’s Physikalisches Wörterbuch. The editing of the Annalen was a type of literary activity that extended a professor’s work.

  22. 22.

    J. C. Poggendorff to J. A. Barth, 16 March 1824 and 3 April 1824, quoted in Frommel, Poggendorff, 25–26, 31–25, on 32.

  23. 23.

    J. C. Poggendorff’s foreword to the first volume of Annalen der Physik und Chemie (1824), v–viii.

  24. 24.

    Wiedemann, “Vorwort.”

  25. 25.

    From Poggendorff’s talk at the fiftieth anniversary of his editorship on 28 February 1874 (repr. Frommel, Poggendorff, 68–72, on 71).

  26. 26.

    W. Baretin, “Johann Christian Poggendorff,” Ann. 160 (1877): v–xxiv, on ix.

  27. 27.

    Baretin, “Poggendorff,” ix; Frommel, Poggendorff, 36.

  28. 28.

    A contemporary, Brandes, included in his Vorlesungen (1830–32) an account of the researches of fellow Germans Fechner, Ohm, Thomas Seebeck, Erman, C. H. Pfaff, Bohnenberger (who was known for his instruments), Weber, Chladni, G. G. Schmidt, Muncke, Schweigger, Humboldt, Ritter, and in a negative remark Pohl. But he gave much more space to the researches of French physicists. Earlier textbooks on physics regularly mentioned Goethe’s physical researches, both to criticize and to praise, but after Goethe’s death the long accounts of his theory of color, sometimes extending to several pages, stopped.

  29. 29.

    Carl Gustav Carus, Lebenserrinerungen und Denkwürdigkeiten, nach der zweibändigen Originalausgabe von 1865/66, ed. Elmar Jansen (Weimar: Kiepenheuer, 1966), vol. 1, 264; K. “Riess: Peter Theophil,” ADB 28 (1970): 584–86; Robert J. McRae, “Ritter, Johann Wilhelm,” DSB 11 (1975): 473–75, on 473.

  30. 30.

    Kuno Fischer, Erinnerungen an Moritz Seebeck, wirkl. Geheimerath und Curator der Universität Jena, nebst einem Anhange: Goethe und Thomas Seebeck (Heidelberg, 1886), 9; C. H. Pfaff to his brother, the mathematician J. F. Pfaff, Stuttgart, 1792, in Johann Friedrich Pfaff, Sammlung von Briefen gewechselt zwischen Johann Friedrich Pfaff und Herzog Carl von Würtemberg, F. Bouterwek, A. v. Humboldt, A. G. Kästner, und Anderen, ed. Carl Pfaff (Leipzig, 1853), 78, 105.

  31. 31.

    C. H. Pfaff to J. F. Pfaff, Paris, 1801, in J. F. Pfaff, Sammlung von Briefen, 159–60.

  32. 32.

    In Baden, the government told Heidelberg University “that we consider discovery in science as the business of the scholar, but not as that of the teacher,” which is what a university professor was. Otto Lehmann, “Geschichte des physikalischen Instituts der technischen Hochschule Karlsruhe,” in Festgabe zum Jubiläum der vierzigjährigen Regierung Seiner Königlichen Hoheit des Grossherzogs Friedrich von Baden (Karlsruhe, 1892), 207–65, on 257. Lehmann assumed that the resistance offered by the physics professor at the Karlsruhe Polytechnic to having the state’s physics cabinet, which was under his direction, be made the polytechnic’s was due to his understanding that he would no longer be able to use the cabinet for research once it belonged to a teaching institution, whereas research was the declared purpose of the state cabinet.

  33. 33.

    Thomas Seebeck to Goethe, 25 April 1812 and 11 December 1819, in Goethe’s Naturwissenschaftliche Correspondenz (1812–1832), ed. F. T. Bratranek (Leipzig, 1874), vol. 2, 317, 331; Wilhelm Bernhardt, Dr. Ernst Chladni, der Akustiker (Wittenberg, 1856); Eugen Lommel, “Chladni: Ernst Florens Friedrich,” ADB 4 (1968): 124–26; Wilhelm Weber, “Lebensbild E. F. F. Chladni’s,” in Wilhelm Weber’s Werke, vol. 1, Akustik, Mechanik, Optik und Wärmelehre, ed. Woldemar Voigt (Berlin, 1892), 168–97, on 172.

  34. 34.

    Wilhelm Erman, “Paul Erman. Ein Berliner Gelehrtenleben 1764–1851,” Schriften des Vereins für die Geschichte Berlins 53 (1927): 1–264, on 54, 114, 122–23, 181–82, 198, 251.

  35. 35.

    Erman to Oersted, 1 August 1835 and 2 April 1836, in Hans Christian Oersted, Correspondence de H. C. Oersted avec divers savants, ed. M. C. Harding (Copenhagen: H. Aschehoug, 1920), vol. 2, 318–19.

  36. 36.

    Max Planck, “Das Institut für theoretische Physik,” in Geschichte der Königlichen Friedrich-Wilhelms-Universität zu Berlin, by Max Lenz, 4 vols in 5. (Halle a. d. S.: Buchhandlung des Waisenhauses, 1910–18), vol. 3, Wissenschaftliche Anstalten. Spruchkollegium. Statistik (1910), 276–78, on 276.

  37. 37.

    Our main source is the account C. H. Pfaff wrote 4 years after Oersted’s discovery, describing the work that followed: Der Elektro-Magnetismus, eine historisch-kritische Darstellung der bisherigen Entdeckungen auf dem Gebiete desselben, nebst eigenthümlichen Versuchen (Hamburg, 1824).

  38. 38.

    Ibid., 71–77, 91, 95.

  39. 39.

    Ibid., 71, 102, 108, 115.

  40. 40.

    Ibid., 71, 78–79.

  41. 41.

    Ibid., 135.

  42. 42.

    For example, Kuno Fischer, Seebeck, 9.

  43. 43.

    Pfaff, Elektro-Magnetismus, 182–83.

  44. 44.

    This claim is made by Elizabeth Garber, The Language of Physics: The Calculus and the Development of Theoretical Physics in Europe, 1750–1914 (Boston, Basel, Berlin:Birkhauser, 1999), 156–58.

  45. 45.

    Georg Simon Ohm, “Galvanische Einzelheiten,” Ann. 63 (1844): 389–405; in Ges. Abh., 650–64, on 650.

  46. 46.

    Heinrich von Füchtbauer, Georg Simon Ohm; ein Forscher wächst aus seiner Väter Art, 2nd ed. (Bonn: Ferdinand Dümmler, 1947), 39–40, 82.

  47. 47.

    Ibid., 142.

  48. 48.

    Georg Simon Ohm, “Vorläufige Anzeige des Gesetzes, nach welchem Metalle die Contaktelekricität leiten,” Ann. 4 (1825): 79–88, on 81–82, 84. Ohm’s experiments are analyzed in Morton L. Schagrin, “Resistance to Ohm’s Law,” Am. J. Phys. 31 (1963): 536–47, especially 544; and in Kenneth L. Caneva, “Ohm, Georg Simon,” DSB 10 (1981): 186–94, on 189.

  49. 49.

    Georg Simon Ohm, “Bestimmung des Gesetzes, nach welchem Metalle die Contaktelekricität leiten, nebst einem Entwurf zu einer Theorie des Voltaischen Apparates und des Schweiggerschen Multiplicators,” Jahrb. d. Chem. u. Phys. 46 (1826): 137–66, on 151, 154, 166. In other words, b + x measures the total resistance of the circuit, which today we write as R; a measures the electromotive force of the battery, or E; and if the magnetic action is proportional to the current I, the formula Ohm wrote in 1826 is, in appropriate units, the formula we write today, I = E/R.

  50. 50.

    Georg Simon Ohm, “Versuch einer Theorie der durch galvanische Kräfte hervorgebrachten elektroskopischen Erscheinungen,” Ann. 6 (1826): 459–69, on 460, 463, and Ann.7 (1826): 45–54, 117–18.

  51. 51.

    Georg Simon Ohm, “Versuche zu einer näheren Bestimmung der Natur unipolarer Leiter,” Journ. f. Chem. u. Phys. 59 (1830): 385–435, and 60 (1830): 32–59, reprinted in Gesammelte Abhandlungen, ed. Eugen Lommel (Leipzig, 1892), 344–401, on 344.

  52. 52.

    John L. McKnight, “Laboratory Notebooks of G. S. Ohm: A Case Study in Experimental Method,” Am. J. Phys. 35 (1967): 113–14.

  53. 53.

    Füchtbauer, Ohm, 151–56; Ohm, Nachlass, 70–74.

  54. 54.

    Georg Simon Ohm, Die galvanische Kette, mathematisch bearbeitet (Berlin, 1827); repr. Ohm’s Gesammelte Abhandlungen, 61–186; “The Galvanic Circuit Investigated Mathematically,” in Taylor’s Scientific Memoirs, ed. Richard Taylor, trans. W. Francis (London, 1841), vol. 2, 401–506.

  55. 55.

    Ohm, Die galvanische Kette, 62–64.

  56. 56.

    Ohm wrote the law as S = A/L, where A is the sum of all “tensions” in the circuit, L is the “reduced length” of the circuit, which is proportional to its resistance, and S is the “electric current.”

  57. 57.

    Schagrin, “Resistance,” 546.

  58. 58.

    Ohm, Die galvanische Kette, 64.

  59. 59.

    Joseph Heinrichs, “Ohm im mathematisch-naturwissenschaftlichen Gedankenkreis seiner Zeit,” in Georg Simon Ohm als Lehrer und Forscher in Köln 1817 bis 1826 (Köln: Kölnischer Geschichtsverein, 1939), 254–70, on 260–61.

  60. 60.

    Ludwig Boltzmann, Vorlesungen über die Prinzipe der Mechanik (Leipzig: J. A. Barth, 1904), vol. 2, v.

  61. 61.

    Heinrichs, “Ohm,” 260–61.

  62. 62.

    Ohm, Nachlass, 71. In Die galvanische Kette, Ohm cited experimental work by Erman, Ritter, and other German physicists, showing his physical perspective.

  63. 63.

    Füchtbauer, Ohm, 157–58.

  64. 64.

    According to Martin Ohm. Füchtbauer, Ohm, 157, 167–68.

  65. 65.

    G. F. Pohl to Franz Neumann, 1 January 1828 (the letter is dated 1827 in error), Neumann Papers, Göttingen UB, Ms. Dept.

  66. 66.

    Füchtbauer, Ohm, 168. In response to Pohl’s belittling of his mathematics, Ohm denied that he was a “blind adherent” to Fourier. Because of the special case in electricity he treated, his formulas had “entirely no significance in heat theory” (Georg Simon Ohm, “Nachträge zu Ohm’s mathematischer Bearbeiten der galvanischen Kette,” Archiv für die gesammte Naturlehre 14 [1828]: 475–93, on 488).

  67. 67.

    Pohl to Neumann, 1 January 1828, Göttingen UB, Ms. Dept.; also, Schagrin, “Resistance,” 545–46.

  68. 68.

    Füchtbauer, Ohm, 156–57, 163–64.

  69. 69.

    Wilhelm Wundt, “Zur Erinnerung an Gustav Theodor Fechner,” Philosophische Studien 4 (1888): 471–78. Historically, Fechner’s experimental work was the most important foundation, though Ohm’s electromotive law continued to be tested with ever greater exactness under varying conditions. Ohm’s second, or electroscopic, law, which expresses the intensity of electricity in a cross section of the galvanic wire as a function of the electric state and the dimensions of the conductor, was not experimentally founded until some twenty-odd years later, discussed below. Karl Max Bauernfeind, “Ohm: Georg Simon,” ADB 24 (1970); 187–203, on 195.

  70. 70.

    Gustav Theodor Fechner, Massbestimmungen über die galvanische Kette (Leipzig, 1831), viii–x, 6.

  71. 71.

    Ibid., 5, 225.

  72. 72.

    In Fechner’s translation of Jean Baptiste Biot, Lehrbuch der Experimental-Physik, oder Erfahrungs-Naturlehre, 3rd ed., 4 vols. (Leipzig, 1824–1825), vol. 1, 151, vol. 2, 196.

  73. 73.

    Fechner to Ohm, 14 November 1828; Fechner to Schweigger, 17 November 1828.

  74. 74.

    Ohm, Nachlass, 118–19, 129, 148. His competitor Pohl may have stood in his way, too. Pohl was appointed extraordinary professor at Berlin in 1830 and ordinary professor at Breslau in 1832, realizing his protector’s good intentions. Lenz, Berlin, vol. 2, pt. 1, Ministerium Altenstein (1910), 380–81.

  75. 75.

    Füchtbauer, Ohm, 161. Also Ohm, Nachlass, 94–97.

  76. 76.

    Stahl’s and Siber’s evaluations, 7 and 5 May 1829, in Ohm, Nachlass, 121–24; Schelling to King of Bavaria, 10 May 1829, on 125–26.

  77. 77.

    Ohm to King of Bavaria, 1 September 1831, Ohm, Nachlass, 151–54; Ohm to Bavarian Minister of the Interior Ludwig Prince Öttingen-Wallerstein, 23 February 1833, on 157–59; Ohm to Prussian Ministry of Education, 29 January 1831, on 143–45; the ministry’s reply, 10 March 1831, on 145–46.

  78. 78.

    Ohm to E. Dingler, n.d. [1831]; Ohm to King of Bavaria, 1 September 1831 and 29 July 1832; in Ohm, Nachlass, 149–51, 151–54, 155–56, respectively.

  79. 79.

    Bauernfeind, “Ohm,” 193.

  80. 80.

    K. F. P. von Martius to Ohm, 13 November 1849; Carl Max von Bauernfeind to Ohm, 27 November 1849; General Curator F. W. Thiersch to Ohm, 28 November 1849; in Ohm, Nachlass, 203–4, 205–6, and 206–8, respectively. On 23 November 1849, the Bavarian king, Maximilian II, named Ohm second curator of the state’s collection and ordinary professor for mathematics and physics. On 5 December 1849, he was appointed scientific-technical advisor on telegraphic matters to the ministry of trade. His income was identical to Steinheil’s down to the payment in goods, which was a yearly measure of grain worth about 100 florins; as curator his salary was 1400 florins, and as a scientific-technical advisor to the state he received an additional 400. Ohm, Nachlass, 202.

  81. 81.

    Bavarian Ministry of the Interior to Munich U. Senate, 28 June 1854, Munich UA, E II-N, Boltzmann. Wilhelm Wien, “Das physikalische Institut and das physikalische Seminar,” in Die wissenschaftlichen Anstalten der Ludwig-Maximilians-Universität zu München, ed. Karl Alexander von Müller (Munich: R. Oldenbourg and Dr. C. Wolf, 1926), 207–11, on 208.

  82. 82.

    Eugen Lommel, “Vorrede und Einleitung,” in Ohm, Gesammelte Abhandlungen, v–xviii, on xiv–xv.

  83. 83.

    Ohm, Galvanic Circuit, 438.

  84. 84.

    Ibid., 440.

  85. 85.

    Hermann von Helmholtz, Einleitung zu den Vorlesungen über theoretische Physik, ed. Arthur König and Carl Runge (Leipzig: J. A. Barth, 1903), 25.

  86. 86.

    Ohm, Galvanic Circuit, 445.

  87. 87.

    Ohm, Die galvanische Kette, 5.

  88. 88.

    Ohm, Die galvanische Kette, 6–7.

  89. 89.

    Ohm, Galvanic Circuit, 438.

  90. 90.

    Gustav Kirchhoff, “Ueber den Durchgang eines elektrischen Strőmes durch eine Ebene, insbesondere durch eine kreisfőrmige,” Ann. 64 (1845): 497–514. Ohm, Die galvanische Kette, 121.

  91. 91.

    Ohm, Galvanic Circuit, 404.

  92. 92.

    Albert Einstein, “Principles of Theoretical Physics,” 1914, in Ideas and Opinions (New York: Dell, 1973), 216–19, on 218. At the time, Einstein’s general theory of relativity was in the same situation as Ohm’s theory, waiting for means for testing it.

  93. 93.

    Heinrichs, “Ohm,” 263. Bauernfeind, “Ohm,” 195.

  94. 94.

    Franz Neumann, Vorlesungen über die elektrische Strőme, ed. K. Vondermühll (Leipzig, 1884), 3, 51–54.

  95. 95.

    Ohm, Die galvanische Kette, 62.

  96. 96.

    Ohm, Galvanic Circuit, 401.

  97. 97.

    He cited himself, Davy, Becquerel, Erman, Ritter, Jäger , Pohl, and others for experiments. His book came out before the more exact confirmation of his experimental law by Fechner.

  98. 98.

    Paul Drude, Die Theorie in der Physik. Antrittsvorlesung gehalten am 5. Dezember 1894 an der Universität (Leipzig, 1895), 14.

  99. 99.

    The citation is translated by Johann Christian Poggendorff, “Oeffentliche Anerkennung der Ohm’schen Theorie in England,” Ann. 55 (1842): 178–79.

  100. 100.

    Ohm, Die galvanische Kette, 6–7.

  101. 101.

    Pfaff, Elektro-Magnetismus, 199, 200–201.

  102. 102.

    Heinrich Hertz, The Principles of Mechanics Presented in a New Form, trans. D. E. Jones and J. T. Walley (New York: Dover Reprint, 1956), 4.

  103. 103.

    Leo Königsberger, Hermann von Helmholtz, trans. F. A. Welby (Oxford, 1906), 249. Helmholtz said this in the preface to his and Wertheim’s translation of Thomson and Tait’s text on natural philosophy.

  104. 104.

    Jean Baptiste Joseph Fourier, The Analytical Theory of Heat, trans. Alexander Freeman (Cambridge: Cambridge University Press, 1878), 1–15.

  105. 105.

    Ibid., 7.

  106. 106.

    Max Planck, “Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum,” Verh. d. D. Phys. Ges. 2 (1900): 237–45; “On the Theory of the Energy Distribution Law of the Normal Spectrum,” in The Old Quantum Theory, ed., D. ter Haar (Pergamum Press, 1967), 82–87.

  107. 107.

    Planck, “On the Theory of the Energy Distribution Law of the Normal Spectrum,” 82.

  108. 108.

    Ibid., 85.

  109. 109.

    Ibid.

  110. 110.

    Ibid., 86–87.

  111. 111.

    Ibid., 83.

  112. 112.

    Edmund Whittaker, A History of the Theories of Aether and Electricity, vol. 1, The Classical Theories (New York: Harper & Brothers, 1960), 92–93.

  113. 113.

    Christian August Langguth’s cabinet contained instruments useful for instruction in physics and mathematics as well as in natural history and medicine. Göttingische gelehrte Anzeigen, 1811, vol. 2, 1240.

  114. 114.

    It should be pointed out that the Webers no longer lived in the same house with Chladni and Langguth’s cabinet after Wilhelm was nine. The biographical facts on Weber are taken mainly from Heinrich Weber, Wilhelm Weber. Eine Lebensskizze (Breslau, 1893), but also from Eduard Riecke, “Wilhelm Weber,” Abh. Ges. Wiss. Göttingen 38 (1892): 1–44; and K. H. Wiederkehr, Wilhelm Eduard Weber, Erforscher der Wellenbewegung und der Elektrizität 1804–1891 (Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1967).

  115. 115.

    Riecke, “Weber,” 4–5.

  116. 116.

    A. J. Fresnel submitted his first treatise to the Paris Academy in 1815. He submitted the completed work Mémoire sur la diffraction de la lumière to the academy in 1818, and he published some papers on the subject in the Annales de chimie et de physique around this time. He also published a popular account in 1822, which was translated in the Annalen in 1824. By 1825, when their treatise came out, the Webers knew these articles and cited them (Ferdinand Rosenberger, Die Geschichte der Physik, vol. 3, Geschichte der Physik in den letzten hundert Jahren [Braunschweig, 1890; repr. Hildesheim: G. Olms, 1965], 178–79; E. H. Weber and Wilhelm Weber, Wellenlehre auf Experimente gegründet oder über die Wellen tropfbarer Flüssigkeiten mit Anwendung auf die Schall-und Lichtwellen [Leipzig, 1825], repr. as vol. 5 of Weber, Werke, ed. Eduard Riecke [Berlin, 1893]).

  117. 117.

    Rosenberger, Geschichte der Physik, vol. 3, 256.

  118. 118.

    Introductory remarks by the Webers in their Wellenlehre, 1–18, especially 4–6, 12–13.

  119. 119.

    The Webers dedicated Wellenlehre to Chladni, the occasion of Chladni’s letter on 20 August 1825 to Wilhelm Weber. In it, Chladni said that the Webers had presented wave motion “more clearly and coherently” than anyone before them and had treated “really existing” nature rather than the “idealistic webs” of the nature philosophers. Wiederkehr, Weber, quotes from this letter on 25.

  120. 120.

    Wilhelm Weber and E. H. Weber, “Allgemein fassliche Darstellung des Vorganges, durch welchen Saiten und Pfeifen dazu gebracht werden, einfache Töne und Flageolettöne hervorzubringen,” Allgemeine musikalische Zeitung 28 (1826): 186–99, 206–13, 222–35, repr. in Weber, Werke, vol. 1, 134–67, on 135–36.

  121. 121.

    Wiederkehr, Weber, 27–28.

  122. 122.

    Heinrich Weber, Weber, 9–10.

  123. 123.

    Goethe’s Naturwiss. Corr., vol. 2, 310; Wiederkehr, Weber, 32.

  124. 124.

    Wilhelm Weber, “Bemerkung über ein von Hrn. Poission für die Extension elastischer Drähte auf gestelltes Theorem,” Ann. 14 (1828): 174–76. Quotations from Poisson’s memoir in this volume of the Annalen, 387, 389.

  125. 125.

    Wilhelm Weber, “Vergeleichung der Theorie der Saiten, Stäbe und Blaseinstrumente,” Ann. 28 (1833): 1–17; in Werke, vol. 1, 365–76, on 374.

  126. 126.

    Wilhelm Weber, “Compensation der Orgelpfeifen,“Ann. 14 (1828): 397–408, on 400–401, 404; Wilhelm Weber, “Über die zweckmässige Einrichtung eines Monochords oder Tonmessers und den Gebrauch desselben, zum Nutzen der Physik und Musik,” Ann. 15 (1829): 1–19, on 1–2, 14.

  127. 127.

    Wilhelm Weber, “Versuche mit Zungenpfeifen,” Ann. 16 (1829): 415–38, on 433; “Vergleichung der Theorie der Saiten, Stäbe und Blaseinstrumente,” 367. He demonstrated that the laws can be deduced from a true theory in “Theorie der Zungenpfeifen,” Ann. 17 (1829): 193–246.

  128. 128.

    Wiederkehr, Weber, 34.

  129. 129.

    Weber to Gauss, 10 February 1830, Gőtt. UB, Handschriften Abt. Gauss.

  130. 130.

    Gauss to Weber, 2 April 1830, Gauss Papers, Göttingen UB, Ms. Dept.

  131. 131.

    Weber to “Staats-Minister,” 8 February 1831, Weber Personalakte, Göttingen UA, 4/V b/95a.

  132. 132.

    Wiederkehr, Weber, 37.

  133. 133.

    Luise Neumann, Franz Neumann, Erinnerungsblätter von seiner Tochter, 2nd ed. (Tübingen: J. C. B. Mohr, 1907), 67, 79–80.

  134. 134.

    Ibid., 84–85, 110–11, 244–45. Also Woldemar Voigt, “Zur Erinnerung an F. E. Neumann, gestorben am 23. Mai 1895 zu Königsberg i/Pr.,” Gött. Nachr., 1895, 248–65, on 252; repr. as “Gedächtnissrede auf Franz Neumann,” in Franz Neumanns Gesammelte Werke, ed. by his students, 3 vols. (Leipzig: B. G. Teubner, 1906–28), vol. 1, 3–19; Paul Volkmann, Franz Neumann. 11. September 1798, 23. Mai 1895 (Leipzig, 1896), 7.

  135. 135.

    In addition to the replacement of particles of light by waves, wave fronts replaced rays as a tool of analysis. Jed Z. Buchwald, The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century (Chicago and London: University of Chicago Press, 1989), xiii–xxii.

  136. 136.

    Olivier Darrigol, The History of Optics: From Greek Antiquity to the Nineteenth Century (Oxford: Oxford University Press, 2012), 224, 242, 261; Whittaker, History of the Theories of Aether and Electricity, vol. 1, 108, 115–17.

  137. 137.

    Franz Neumann, “Theorie der doppelten Strahlenbrechung, abgeleitet aus den Gleichungen der Mechanik,” Ann. 25 (1832): 418–54; Wangerin, Neumann, 69–75.

  138. 138.

    Wangerin, Neumann, 81–83, 90; Volkmann, Neumann, 17; Whittaker, History of the Theories of Aether and Electricity, vol. 1, 137–39.

  139. 139.

    Franz Neumann, “Die Gesetze der Doppelbrechung des Lichts in comprimirten oder ungleichfőrmig erwärmten unkrystallinischen Kőrpern,” Ann. 53 (1841): 451, 454; Albert Wangerin, Franz Neumann und sein Wirken als Forscher und Lehrer (Braunschweig: F. Vieweg, 1907), 92, 100, 102–3, 106; Voigt, “Zur Erinnerung an F. E. Neumann,” 260–62. Volkmann, Neumann, 18; and Paul Volkmann, “Franz Neumann als Experimentator,” Phys. Zs. 11 (1910): 932–37, on 934–35.

  140. 140.

    Buchwald, Rise of the Wave Theory of Light, 308–9; Darrigol, History of Optics, 286.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jungnickel, C., McCormmach, R. (2017). German Physicists Before and Around 1830. In: The Second Physicist. Archimedes, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-49565-1_3

Download citation

Publish with us

Policies and ethics