Skip to main content

Double-Diffusive Convection

  • Chapter
  • First Online:
Convection in Porous Media
  • 5844 Accesses

Abstract

In this chapter we turn our attention to processes of combined (simultaneous) heat and mass transfer that are driven by buoyancy. The density gradients that provide the driving buoyancy force are induced by the combined effects of temperature and species concentration nonuniformities present in the fluid-saturated medium. The present chapter is guided by the review of Trevisan and Bejan (1990), which began by showing that the conservation statements for mass, momentum, energy, and chemical species are the equations that have been presented here in Chaps. 1–3. In particular the material in Sect. 3.3 is relevant. The new feature is that beginning with Eq. (3.26) the buoyancy effect in the momentum equation is represented by two terms, one due to temperature gradients and the other to concentration gradients. Useful review articles on double-diffusive convection include those by Mojtabi and Charrier-Mojtabi (2000, 2005), Mamou (2002b), Diersch and Kolditz (2002), and Mojtabi et al. (2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaiza, G., Khan, I. and Shafie, S. 2015 Energy transfer in mixed convection MHD flow of nanofluid containing different shapes of nanoparticles in a channel filled with saturated porous medium. Nanoscale Res. Let. 10, 1-14. [9.7.4]

    Article  Google Scholar 

  • Abahri, O., Sadaoui, D., Mansouri, K., Mojtabi, A. and Charrier-Mojtabi, M. C. 2017 Thermogravitational separation in a horizontal annular porous cell. Mech. Indust. 18, (1) 106. [9.1.4, 9.4]

    Article  Google Scholar 

  • Abbasi, A., Saghir, M. Z. and Kawaji, M. 2011 Study of thermodiffusion of carbon dioxide in binary mixtures of n-butane and carbon dioxide and n-dodecane and carbon dioxide in porous media. Int. J. Therm. Sci. 50, 124-132. [9.1.4]

    Article  Google Scholar 

  • Abdelkrim, L. and Mahfoud, D. 2014 Convective heat and solute transfer in Newtonian fluid saturated inclined porous cavity. Int. J. Phys Res. 2, 78-84. [9.2.2]

    Article  Google Scholar 

  • Abdel-Rahman, G. M. 2008 Thermal diffusion and MHD effects on combined free-forced convection and mass transfer of a viscous fluid flow through a porous medium with heat generation. Chem. Engng. Tech. 31, 554-559. [9.6.1]

    Article  Google Scholar 

  • Abdou, M. M. M. 2010 Effect of radiation with temperature dependent viscosity and thermal conductivity on unsteady stretching sheet through porous media. Nonlinear Anal. Modell. Control 15, 257-270. [9.2.1]

    MATH  Google Scholar 

  • Abdullah, A. H. and Ibrahim, F. S. 2015 Analysis of mixed convection boundary layer flow of a nanofluid past a vertical plate embedded in a porous medium. Int. J. Mat./Models Meth. Appl. Sci. 9, 545-557. [9.7.4]

    Google Scholar 

  • Abel, M. S. and Ueera, P. H. 1998 Viscoelastic fluid flow and heat transfer in a porous medium over a stretching sheet. Int. J. Nonlinear Mech. 33, 531–540. [9.2.1]

    Google Scholar 

  • Abel, M. S., Khan, S. K. and Prasad, K. V. 2001 Convective heat and mass transfer in a viscoelastic fluid flow through a porous medium over a stretching sheet. Int. J. Numer. Meth. Heat Fluid Flow 11, 779-792. [9.2.1]

    Article  MATH  Google Scholar 

  • Abourida, B., Hasnaoui, M. and Raji, A. 2011 Effect of periodic heating temperature on double-diffusive convection in a porous square enclosure submitted to cross gradients of temperature and concentration. Comp. Therm. Sci. 3, 111-122. [9.1.6.4]

    Article  Google Scholar 

  • Abou-zeid, M., Shaaban, M., Alnour, M. Y. 2015 Numerical treatment and global error estimation on natural convective effects on gliding motion of bacteria on a power-law nanoslime through a non-Darcy medium. J. Porous Media 18, 1091-1106. [9.7.3]

    Article  Google Scholar 

  • Acharya, M., Dash, G. C. and Singh, L. P. 2000 Magnetic effects on the free convection and mass transfer flow through porous medium with constant suction and constant heat. Indian J. Pure Appl. Math. 31, 1-18. [9.2.1]

    MATH  Google Scholar 

  • Afifi, A. A. 2007a Effects of temperature-dependent viscosity with Soret and Dufour numbers on non-Darcy MHD free convective heat and mass transfer past a vertical surface embedded in a porous medium. Transp. Porous Media 66, 391-401. [9.2.1]

    Article  Google Scholar 

  • Afifi, A. A. and Elgazery, N. S. 2013 Effect of double dispersion on non-Darcy mixed convective flow over vertical surface embedded in a porous medium. Appl. Math. Mech. English ed. 34, 1247-1262. [9.6.1]

    Article  MathSciNet  Google Scholar 

  • Agarwal, L., Satheesh, A. and Mohan, C. G. 2015 Numerical investigation of double diffusive mixed convection laminar flow in two-sided lid driven porous cavity. Heat Transfer Asian Res., 44, 305-323. [9.6.2]

    Article  Google Scholar 

  • Agarwal, S. 2014 Natural convection in a nanofluid-saturated rotating porous layer: A more realistic approach. Transp. Porous Media 104, 581-592. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Agarwal, S. and Bhadauria, B. S. 2011 Natural convection in a nanofluid saturated rotating porous layer with thermal non-equilibrium model. Transp. Porous Media 90, 627-654. [6.23, 9.7]

    Article  MathSciNet  Google Scholar 

  • Agarwal, S. and Rana, P. 2015a Thermal stability analysis of rotating porous layer with thermal non-equilibrium approach using Al2O3—EG Oldroyd B nanofluid. Microfluidics and Nanofluidics 19, 117-131. [9.7.2]

    Article  Google Scholar 

  • Agarwal, S. and Rana, P. 2015b Convective transport in a binary nanofluid saturated porous layer: A nonlinear approach. J. Comput. Theor. Nanoscience 121, 3130-3147. [9.7.2]

    Article  Google Scholar 

  • Agarwal, S. and Rana, P. 2016 Analysis of periodic and aperiodic convective stability of double diffusive nanofluid convection in rotating porous layer. Appl. Math. Mech. (English ed.) 37, 215-226. [9.7.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal, S., Bhadauria, B. S. and Siddheshwar, P. G. 2011 Thermal instability of a nanofluid saturating a rotating anisotropic porous medium Spec. Top. Rev. Porous Media 2, 53-64. [6.23, 9.7]

    Article  Google Scholar 

  • Agarwal, S., Sacheti, N. M., Chandran, P., Bhadauria, B. S. and Singh, A. K. 2012 Nonlinear convective transport in a binary nanofluid saturated porous layer. Transp. Porous Media 93, 29-49. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Agha, H. A., Bouaziz, M. D. and Hanini, S. 2015 Magnetohydrodynamic, thermal radiation and convective boundary effects of free convection flow past a vertical plate embedded in a porous medium saturated with a nanofluid. J. Mech. 31, 607-616. [9.7.3]

    Article  Google Scholar 

  • Agha, H. A., Bouaziz, M. N., and Hanini, S. 2014 Free convection boundary layer flow from a vertical flat plate embedded in a Darcy porous medium filled with a nanofluid: Effects of magnetic field and thermal radiation. Arabian J. Sci. Tech. 39, 8331-8340. [9.7.3]

    Article  Google Scholar 

  • Ahadi, A., Giraudet, C., Jawad, H., Croccolo, F., Bataller, H. and Saghir, M. Z. 2014 Experimental, theoretical and numerical interpretation of thermodiffusion separation for non-associating binary mixture in liquid/porous layers. Int. J. Therm. Sci. 80, 108-117. [9.4]

    Article  Google Scholar 

  • Ahadi, A., Yousefi, T. and Saghir, M. Z. 2013 Double diffusive convection and thermodiffusion of fullerene-toluene nanofluid in a porous cavity. Canad. J. Chem. Engrg. 91, 1918-1927. [9.7.2]

    Article  Google Scholar 

  • Ahmad, S. and Pop, I. 2010 Mixed convection boundary layer flow from a vertical plate embedded in a porous medium filled with nanofluids. Int. Comm. Heat Mass Transfer 37, 987-991. [9.7.4]

    Article  Google Scholar 

  • Ahmed, N. J. S., Badruddin, I. A., Kanesan, J., Zainal, Z. A. and Ahamaed, K. S. N. 2011 Study of mixed convection in an annular vertical cylinder filled with saturated porous medium, using thermal non-equilibrium model. Int. J. Heat Mass Transfer 54, 3822-3825. [8.3.3]

    Article  MATH  Google Scholar 

  • Ahmed, N., Kalita, D. and Talukhar, S. 2011 Soret effect on MHD free convective Poiseuille flow through a porous medium bounded by two infinite vertical porous plates with chemical reaction. Adv. Appl. Fluid Mech. 19, 21-42. [9.1.4]

    MATH  Google Scholar 

  • Ahmed, N., Sengupta, S. and Datta, D. 2013 An exact analysis for MHD free convection mass transfer flow past an oscillating plate embedded in a porous medium with Soret effect. Chem. Engng. Comm. 200, 494-513. [9.2.1]

    Article  Google Scholar 

  • Ahmed, S. 2007 Effects of unsteady free convective MHD flow through a porous medium bounded by an infinite vertical porous plate. Bull. Calcutta Math. 99, 511-522. [9.2.1]

    MATH  Google Scholar 

  • Ahmed, S. and Zueco, J. 2011 Modeling of heat and mass transfer in a rotating vertical porous channel with Hall current. Chem. Engng. Comm. 198, 1294-1308. [9.4]

    Article  Google Scholar 

  • Ahmed, S. E. 2014 Influence of heat generation/absorption on natural convection of nanofluids in an inclined irregular cavity filled with porous medium. J. Comput. Theor. Nanosci. 11, 2449-2461. [9.7.2]

    Article  Google Scholar 

  • Ahmed, S. E. and Abd El-Aziz, M. M. 2013 Effect of local thermal non-equilibrium on unsteady heat transfer by natural convection of a nanofluid over a vertical wavy surface. Meccanica 48, 33-43. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmed, S. E. and Rashad, A. M. 2016 Natural convection of micropolar nanofluids in a rectangular enclosure saturated with anisotropic porous media. J. Porous Media 19, 737–750. [9.7.2]

    Article  Google Scholar 

  • Ahmed, S. E., Rashad, A. M. and Gorla, R. S. R. 2013 Natural convection in triangular enclosures filled with nanofluid saturated porous media. J. Thermophys. Heat Transfer 27, 700-706. [9.7.2]

    Article  Google Scholar 

  • Ahmed, S. 2014 Numerical analysis for magnetohydrodynamic chemically reacting and radiating fluid past a non-isothermal uniformly moving vertical surface adjacent to a porous regime. Ain Shams Engng. J. 5, 923-933. [5.1.9.10]

    Article  Google Scholar 

  • Ahuja, J., Gupta, U. and Wanchoo, R. K. 2016 Hydrodynamic stability of metallic nanofluids (Cu-water and Ag-water) using Darcy-Brinkman model. Int. J. Geophys. 5864203. [9.7.2]

    Google Scholar 

  • Ajibade, A. O. 2014 Dual-phase-lag and Dufour effects on unsteady double-diffusive convection flow in a vertical microchannel filled with porous material. Proc. Inst. Mech. Engrs. E 228, 272-285. [9.1.4]

    Article  Google Scholar 

  • Akbal, S. and Baytas, F. 2008 Effects on non-uniform porosity on double diffusive natural convection in a porous cavity with partially permeable wall. Int. J. Therm. Sci. 47, 875-885. [9.2.2]

    Article  Google Scholar 

  • Akbar, N. S. 2014 Double-diffusive natural convective peristaltic flow of a Jeffrey nanofluid in a porous channel. Heat Transfer Res. 45, 293-307. [9.7.2]

    Article  Google Scholar 

  • Akbar, N. S. 2015 Double-diffusive natural convection peristaltic flow of a nanofluid in an asymmetric porous channel. J. Comput. Theor. Nanoscience 12, 1553-1559. [9.7.2]

    Article  Google Scholar 

  • Al-Amiri, A. M., Khanafer, K. and Lightstone, M. F. 2006 Unsteady numerical simulation of double diffusive convection heat transfer in a pulsating horizontal heating annulus. Heat Mass Transfer 42, 1007-1015. [9.4]

    Article  Google Scholar 

  • Alavyoon, F. 1993 On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries. Int. J. Heat Mass Transfer 36, 2479-2498. [9.2.2]

    Article  MATH  Google Scholar 

  • Alavyoon, F., Masuda, Y. and Kimura, S. 1994 On the natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls. Int. J. Heat Mass Transfer 37, 195-206. [9.2.2]

    Article  MATH  Google Scholar 

  • Alex, S. M. and Patil, P. R. 2001 Effect of variable gravity field on Soret driven thermosolutal convection in a porous medium. Int. Comm. Heat Mass Transfer 28, 509-518. [9.1.6.4]

    Article  Google Scholar 

  • Al-Farhany, K. and Turan, A. 2011 Non-Darcy effects on conjugate double-diffusive natural convection in a variable porous layer sandwiched by finite thickness walls. Int. J. Heat Mass Transfer 54, 2868-2879. [9.4]

    Article  MATH  Google Scholar 

  • Al-Farhany, K. and Turan, A. 2012 Numerical study of double diffusive natural convective heat and mass transfer in an inclined rectangular cavity filled with a porous medium. Int. Comm. Heat Mass Transfer 39, 174-181. [9.4]

    Article  Google Scholar 

  • Alhashash, A., Saleh, H. and Hashim, I. 2013a Conjugate natural convection in a porous enclosure sandwiched by finite walls under the influence of non-uniform heat generation and radiation. Transp. Porous Media 99, 453-465. [7.3.7]

    Article  MathSciNet  Google Scholar 

  • Alhashash, A., Saleh, H. and Hashim, I. 2013b Effect of conduction in bottom wall on Bénard convection in a porous enclosure with localized heating and lateral cooling. Transp. Porous Media 99, 493-513. 96, 305-318. [6.15.3]

    Google Scholar 

  • Alhusseny, A. and Turan, A. 2015a A numerical study of double-diffusive flow in a long rotating porous channel. Heat Mass Transfer A 51, 497-505. [9.1.6.4]

    Article  Google Scholar 

  • Alhusseny, A., and Turan A. 2015b Effects of centrifugal buoyancy on developing convective laminar flow in a square channel occupied with a high porosity fibrous medium. Int. J. Heat Mass Transfer 82, 335-347. [4.16.5]

    Article  Google Scholar 

  • Ali Agha, H., Bouaziz, M. N. and Hanini, S. 2014 Free convection boundary layer flow from a vertical flat plate embedded in a Darcy porous medium filled with a nanofluid: Effects of magnetic field and thermal radiation. Arabian J. Sci. Engng. 39, 8331-8340. [9.7.3]

    Article  Google Scholar 

  • Ali, F., Khan, I., Samiulhaq, Shafie, S. 2013 Conjugate effects on MHD free convection flow over an inclined plate embedded in a porous medium. PLOS ONE 8, e65223. [9.2.1]

    Article  Google Scholar 

  • Ali, F., Khan, I., Shafie, S. and Musthapa, N. 2013 Heat and mass transfer with free convection MHD flow past a vertical plate embedded in a porous medium. Math. Prob. Engng. 346281. [9.2.1]

    Google Scholar 

  • Ali, M. and Alam, M. S. 2014 Soret and Hall effect on MHD flow, heat and mass transfer over a vertical stretching sheet in a porous medium due to heat generation. J. Engng. Appl. Sci. 9, 361-371. [9.2.1]

    Google Scholar 

  • Allain, C., Cloitre, M. and Mongruel, A. 1992 Scaling in flows driven by heat and mass convection in a porous medium. Europhys. Lett. 20, 313-318. [9.2.1]

    Article  Google Scholar 

  • Alloui, Z. and Vasseur, P. 2011a Natural convection induced by a centrifugal force field in a horizontal annular porous layer saturated with a binary fluid. Transp. Porous Media 88, 169-185. [9.4]

    Article  MathSciNet  Google Scholar 

  • Alloui, Z. and Vasseur, P. 2011b Natural convection in a horizontal annular porous cavity saturated by a binary mixture. Comp. Therm. Sci. 3, 407-417. [9.4]

    Article  Google Scholar 

  • Alloui, Z., and Vasseur, P. 2013a Convection of a binary fluid in a shallow porous cavity heated and salted from the sides. Comput. Fluids 81, 85-94. [9.2.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Alloui, Z., and Vasseur, P. 2013b Fully developed mixed convection of a binary fluid in a vertical porous channel. Canad. J. Chem. Emgng. 91, 127-135. [9.6.2]

    Article  MATH  Google Scholar 

  • Alloui, Z., Bennacer, R. and Vasseur, P. 2009a Variable permeability effect on convection in binary mixtures saturating a porous layer. Heat Mass Transfer 45, 1117-1127. [9.1.6.2]

    Article  Google Scholar 

  • Alloui, Z., Dufau, L., Beji, H. and Vasseur, P. 2009b Multiple steady states in a porous enclosure partially heated and fully salted from below. Int. J. Therm. Sci. 48, 521-534. [9.1.6.4]

    Article  Google Scholar 

  • Alloui, Z., Fekri, M., Beji, H. and Vasseur, P. 2008 Natural convection in a horizontal binary fluid bounded by thin porous layers. Int. J. Heat Fluid Flow 24, 1154-1163. [9.4]

    Article  Google Scholar 

  • Alloui, Z., Robillard, L. and Vasseur, P. 2010a Density maximum effect on Soret-induced natural convection in a square porous cavity. Fluid Dyn. Res. 42, #055507. [9.1.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Alloui, Z., Vasseur, P., Robillard, L. and Bahloul, A. 2010b Onset of double diffusive convection in a horizontal Brinkman cavity.Chem. Engng. Comm. 197, 387-399. [9.1.6.3]

    Article  Google Scholar 

  • Al-Odat, M. Q. and Al-Ghamdi, A. 2012 Numerical investigation of Dufour and Soret effects on unsteady MHD natural convection flow past vertical plate embedded in non-Darcy porous medium. Appl. Math. Mech-English ed. 33, 195-210. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Odat, M. Q., Al-Azab, T. A., Al-Hasan, M. and Shannak, B. A. 2009 Transient MHD double-diffusive natural convection over a vertical surface embedded in a non-Darcy porous medium. Math. Problems Engng. #758046. [9.2.1]

    Google Scholar 

  • Alsabery, A. I., Chamkha, A. J., Hussain, S. H., Saleh, H. and Hashim, I. 2015 Heatline visualization of natural convection in a trapezoidal cavity partly filled with nanofluid porous layer and partly with non-Newtonian fluid layer. Adv. Powder Tech. 26, 1230-1244. [9.7.2]

    Article  Google Scholar 

  • Alsabery, A. J., Chamkha, A. J., Saleh, H., Hashim, I. and Chanane, B. 2017 Effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium porous cavity. Physica A 470, 20–38. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Alsabery, A. I., Saleh, H., Hashim, I. and Siddheswar, P. G. 2016a Transient natural convection heat transfer in nanofluid-saturated porous oblique cavity using thermal non-equilibrium model. Int. J. Mech. Sci. 114, 233-245. [9.7.2]

    Article  Google Scholar 

  • Alsabery, A. I., Saleh, H., Hashim, I. and Hussain, S. H. 2016b Darcian natural convection in inclined square cavity partially filled with the central square hole filled with a fluid and inside a square porous cavity filled with nanofluid. J. Appl. Fluid Mech. 9, 1763-1775. [9.7.2]

    Google Scholar 

  • Al-Sulaimi, B. 2015 The energy stability of Darcy thermosolutal convection with reaction. Int. J. Heat Mass Transfer 86, 369-376. [9.1.6.4]

    Article  Google Scholar 

  • Al-Sulaimi, B. 2016 The non-linear stability of Brinkman thermosolutal convection with reaction. Richerche di Matematica, to appear. [9.1.6.4]

    Google Scholar 

  • Altawallbeh, A. A., Bhadauria, B. S. and Hashim, I. 2013a Linear and nonlinear double-diffusive convection in a saturated anisotropic porous layer with Soret effect and internal heat source. Int. J. Heat Mass Transfer 59, 103-111. [9.1.4]

    Article  Google Scholar 

  • Altawallbeh, A. A., Saeid, N. H. and Hashim, I. 2013b Magnetic field effect on natural convection in a porous cavity heating from below and salting from side. Adv. Mech. Engng. 183079. [9.1.6.4]

    Google Scholar 

  • Altawallbeh, A. A., Saeid, N. H. and Hashim, I. 2013c Numerical solution of diffusive natural convection in a porous cavity partially heated from below and partially salted from the side. J. Porous Media 16, 903-919. [9.2.1]

    Article  Google Scholar 

  • Altawallbeh, A. A., Saeid, N. H. and Hashim, I. 2013d Numerical simulation of magnetic field effect on natural convection in a porous cavity heating from below and salting from side. World Appl. Sci. J. 21, 1-5. [9.1.6.4]

    Google Scholar 

  • Aly, A. M. 2016a Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method. Int. Comm. Heat Mass Transfer 73, 84-90. [9.2.2]

    Article  Google Scholar 

  • Aly, A. M. and Asai, M. 2016 ISPH method for double-diffusive natural convection under cross-diffusion effects in an anisotropic porous cavity/annulus. Int. J. Numer. Meth. Heat Fluid Flow 26, 235-268. [9.2.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Aly, A. M. and Chamkha, A. 2010 Non-similar solutions for heat and mass transfer from a surface embedded in a porous medium for two prescribed thermal and solutal boundary conditions. Int. J. Chem. Reactor Engng. 8, #A56. [9.2.1]

    Google Scholar 

  • Aly, A. M., Mansour, M. A. and Chamkha, A. 2011 Effects of Soret and Dufour numbers on free convection over isothermal and adiabatic stretching surfaces embedded in porous media. J. Porous Media 14, 67-72. [9.2.1]

    Article  Google Scholar 

  • Aly, E. H. 2016b Existence of multiple exact solutions for nanofluid flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects. Powder Tech. 301, 760-781. [9.7.3]

    Article  Google Scholar 

  • Aly, E. H. and Ebaid, A. 2013 New analytical and numerical solutions for mixed convection boundary-layer nanofluid flow along an inclined plate embedded in a porous medium. J. Appl. Math. 219486. [9.7.4]

    Google Scholar 

  • Aly, E. H. and Ebaid, A. 2016 Exact analysis for the effect of heat transfer on MHD and radiation Marangoni boundary layer nanofluid past a surface embedded in a porous medium. J. Molec. Liq. 215, 625-639. [9.7.3]

    Article  Google Scholar 

  • Aly, E. H. and Hassan, M. A. 2014 Suction and injection analysis of MHD nano boundary-layer over a stretching surface through a porous medium with partial slip boundary condition. J. Comp. Theor. Nanosci. 11, 827-839. [9.7.3]

    Article  Google Scholar 

  • Al-Zamily, A. M. J. 2017 Analysis of natural convection and entropy generation in a cavity filled with multi-layers of porous medium and nanofluid with heat generation. Int. J. Heat Mass Transfer 106, 1218–1231. [9.7.2]

    Article  Google Scholar 

  • Amahmid, A., Hasnaoui, M. and Douamna, S. 2001 Analytic and numerical study of double-diffusive parallel flow induced in a vertical porous layer subjected to constant heat and mass fluxes. Strojniski Vestnik-J. Mech. Engng. 47, 501-505. [9.2.2]

    Google Scholar 

  • Amahmid, A., Hasnaoui, M. and Vasseur, P. 1999c Étude analytique et numérique de la convection naturelle dans une couche poreuse de Brinkman doublement diffusive. Int. J. Heat Mass Transfer 42, 2991-3005. [9.2.2]

    Article  MATH  Google Scholar 

  • Amahmid, A., Hasnaoui, M., Mamou, M. and Vasseur, P. 1999a Double-diffusive parallel flow induced in a horizontal Brinkman porous layer subjected to constant heat and mass fluxes: analytical and numerical studies. Heat Mass Transfer 35, 409-421. [9.1.6.3]

    Article  Google Scholar 

  • Amahmid, A., Hasnaoui, M., Mamou, M. and Vasseur, P. 1999b Boundary layer flows in a vertical porous enclosure induced by opposing buoyancy forces. Int. J. Heat Mass Transfer 42, 3599-3608. [9.2.2]

    Article  MATH  Google Scholar 

  • Amahmid, A., Hasnaoui, M., Mamou, M. and Vasseur, P. 2000 On the transition between aiding and opposing double-diffusive flows in a vertical porous cavity. J. Porous Media 3, 123-137. [9.2.2]

    Article  MATH  Google Scholar 

  • Aman, S., Khan, I., Ishmail, Z. and Salleh, H. Z. 2016 Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Neural Comput. Appl., to appear. [9.7.4]

    Google Scholar 

  • Amel, K., Fakhredine, O., Rachid, B. and Afif, E. 2014 3D thermosolutal convection within porous media. Defect and Diffusion Forum 348, 27-39. [9.2.2]

    Article  Google Scholar 

  • Anand Rao, J., Ramesh Babu, P. and Srinivasa Raju, R. 2015 Finite element analysis of unsteady MHD free convection flow past an infinite vertical plate with Soret, Dufour, thermal radiation and heat source. ARPN J. Engng. Appl. Sci. 10, 5338–5351. [9.2.1]

    Google Scholar 

  • Angirasa, D. and Peterson, G. P. 1997a Combined heat and mass transfer by natural convection with opposing buoyancy effects in a fluid saturated porous medium. Int. J. Heat Mass Transfer 40, 2755-2733. [9.2.2]

    Article  MATH  Google Scholar 

  • Angirasa, D., Peterson, G. P. and Pop, I. 1997 Combined heat and mass transfer by natural convection in a saturated thermally stratified porous medium. Numer. Heat Transfer A 31, 255-272. [9.2.1]

    Article  MATH  Google Scholar 

  • Anjalidevi, S. P. and Kyalvizhi, M. 2013 Nonlinear hydrodynamic flow with radiation and heat source over a stretching surface with prescribed heat and mass flux embedded in a porous medium. J. Appl. Fluid Mech. 6, 157-165. [9.2.1]

    Google Scholar 

  • Aouachria, Z. 2009 Heat and mass transfer along a vertical wall by natural convection in porous media. Fluid Dyn. Mater. Proc. 5, 137-147. [9.2.1]

    Google Scholar 

  • Arifin, N. M., Nazar, R. and Pop, I. 2012 Free- and mixed-convection flow past a horizontal surface in a nanofluid. J. Thermophys. Heat transfer 26, 376-382. [9.7.4]

    Article  Google Scholar 

  • Armaghani, T., Chamkha, A. J., Maghrebi, M. J. and Nazari, M. 2014b Numerical analysis of a nanofluid forced convection in a porous channel: A new heat flux model in LTNE condition. J. Porous Media 17, 637-646. [9.7.1]

    Article  Google Scholar 

  • Armaghani, T., Maghrebi, M. J., Chamkha, A. J. and Nazari, M. 2014a Effects of particle migration on nanofluid forced convection heat transfer in a local thermal non-equilibrium porous channel. J. Nanofluids 3, 51-59. [9.7.1]

    Article  Google Scholar 

  • Asbik, M., Sadki, H., Hajar, M., Zeghmati, B. and Khmou, A. 2002 Numerical study of laminar mixed convection in a vertical saturated porous enclosure: The combined effect of double diffusion and evaporation. Numer. Heat Transfer A 41, 403-420. [9.2.2]

    Article  Google Scholar 

  • Ashorynejad, H. R. and Hoseinpour, B. 2017 Investigation of different nanofluids effect on entropy generation of natural convection in a porous cavity. European J. Mech. B 62, 86–93. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Augustin, M., Umla, R. and Lücke, M. 2015 Convection structures of binary fluid mixtures in porous media. In Handbook of Geomathematics, 2nd ed., (W. Freeden, M. Zuhair Nashed, T. Sonar, eds.), Springer, New York. [9.1.4]

    Google Scholar 

  • Augustin, M., Umla, R., Huke, B. and Lucke, M. 2010 Stationary and oscillatory convection of binary fluids in a porous medium. Phys. Rev. E 82, #056303. [9.1.4]

    Article  MATH  Google Scholar 

  • Aurangzaib, Kasim, A. R. M., Mohammad, N. F. and Shafie, S. 2013a Unsteady MHD mixed convection flow with heat and mass transfer over a vertical plate in a micropolar fluid-saturated porous medium. J. Appl. Sci. Engng. 16, 141-150. [9.6.1]

    Google Scholar 

  • Aurangzaib, Kasim, A. R. M., Mohammad, N. F. and Shafie, S. 2013b Unsteady MHD mixed convection flow in a micropolar fluid on a vertical surface in a porous medium with Soret and Dufour effects. Heat Transfer Res. 44, 603-620. [9.6.1]

    Article  Google Scholar 

  • Awad, F. G., Sibanda, P. and Motsa, S. S. 2010 On the linear stability analysis of a Maxwell fluid with double-diffusive convection. Appl. Math. Modell. 34, 3509-3517. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Awad, F. G., Sibanda, P. and Murthy, P. V. S. N. 2015 A note on double dispersion effects in a nanofluid flow in a non-Darcy porous medium. ASME J. Heat Transfer 137, 104501. [9.7.3]

    Article  Google Scholar 

  • Awad, F. G., Sibanda, P., Motsa, S. S. and Makinde, O. D. 2011 Convection from an inverted cone in a porous medium with cross-diffusion effects. Comput. Math. Appl. 61, 1431-1441. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Awad, F. G., Sibanda, P., Narayana, M. and Motsa, S. S. 2011 Convection from a semi-infinite plate in a fluid saturated porous medium with cross-diffusion and radiative heat transfer Int. J. Phys. Sci. 6, 4910-4923. [9.2.1]

    Google Scholar 

  • Aziz, A., Khan, W. A. and Pop, I. 2012 Free convection boundary layer flow past a horizontal plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. Int. J. Therm. Sci. 56, 48-57. [5.2]

    Article  Google Scholar 

  • Aziz, A., Siddique, J. I. and Aziz, T. 2014 Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium. PLoS One 9, e114544. [9.2.1]

    Article  Google Scholar 

  • Badruddin, I. A., Ahmed, N. J. S., Al-Rashed, A. A. A. A. and Kanesan, J. 2012a Analysis of heat and mass transfer in a vertical annular porous cylinder using FEM. Transp. Porous Media 91, 697-715. [9.4]

    Article  MathSciNet  Google Scholar 

  • Badruddin, I. A., Al-Rashad, A. A. A. A., Ahmed, N. J. S. and Kamangar, S. 2012b Investigation of heat transfer in square porous-annulus. Int. J. Heat Mass Transfer 55, 2184-2192. [7.3.3]

    Article  Google Scholar 

  • Badruddin, I. A., Al-Rashed, A. A. A. A., Ahmed, N. J. S., Kamangar, S. and Jeevan, K. 2012c Natural convection in a square porous annulus. Int. J. Heat Mass Transfer 55, 7175-7187. [7.3.3]

    Article  Google Scholar 

  • Bahadori, F. and Rezvantalab, S. 2014 Effects of temperature and concentration dependent viscosity on onset of convection in porous media. J. Chem. Tech. Metall. 49, 541-544. [9.1.6.4]

    Google Scholar 

  • Bahloul, A., Boutana, N. and Vasseur, P. 2003 Double-diffusive and Soret-induced convection in a shallow horizontal porous layer. J. Fluid Mech. 491, 325-352. [9.1.4]

    Article  MATH  Google Scholar 

  • Bahloul, A., Kalla, L., Bennacer, R., Beji, H. and Vasseur, P. 2004a Natural convection in a vertical porous slot heated from below and with horizontal concentration gradients. Int. J. Thermal Sci. 43, 653-663. [9.5]

    Article  Google Scholar 

  • Bahloul, A., Vasseur, P. and Robillard, L. 2007 Convection of a binary fluid saturating a shallow porous cavity subjected to cross heat fluxes. J. Fluid Mech. 574, 317-342. [9.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Bahloul, A., Yahiaoui, M. A., Vasseur, P. and Robillard, L. 2004b Thermogravitational separation in a vertical annular porous layer. Int. Comm. Heat Mass Transfer 31, 783-794. [9.4]

    Article  Google Scholar 

  • Bahloul, A., Yahiaoui, M. A., Vasseur, P., Bennacer, R. and Beji, H. 2006 Natural convection of a two-component fluid in porous media bounded by tall concentric vertical cylinders. ASME J. Appl. Mech. 73, 26-33. [9.2.2]

    Article  MATH  Google Scholar 

  • Balla, C. S., Kishan, N., Gorla R. S. R. and Greesha, B. J. 2016 MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids. Ain Shams Engng. J., to appear. [9.7.2]

    Google Scholar 

  • Bansod, V. J. 2003 The Darcy model for boundary layer flows in a horizontal porous medium induced by combined buoyancy forces. J. Porous Media 6, 273-281. [9.2.1]

    Article  MATH  Google Scholar 

  • Bansod, V. J. and Jadhav, R. K. 2010 On the analytical solution of the Bejan-Khair equation arising in free convection in porous media. Heat Transfer Asian Res. 39, 314-322. [9.2.1]

    Google Scholar 

  • Bansod, V. J., Singh, P. and Rathish Kumar, B. V. 2002 Heat and mass transfer by natural convection from a vertical surface to the stratified Darcian fluid. J. Porous Med. 5, 57-66. [9.2.1]

    Article  MATH  Google Scholar 

  • Bansod, V. J., Singh, P. and Rathish Kumar, B. V. 2005 Laminar natural convection heat and mass transfer from a horizontal in non-Darcy porous media. J. Porous Med. 8, 65-72. [9.2.1]

    Article  MATH  Google Scholar 

  • Baoku, I. G., Onifade, Y. S., Adebayo, L. O. and Yusuff, K. M. 2015 Heat and mass transfer in a second grade fluid over a stretching vertical surface in a porous medium. Int. J. Appl. Mech. Engrg. 20, 239-255. [9.2.1]

    Google Scholar 

  • Baqaie Saryazdi, A., Talebi F., Armaghani, T. and Pop, I. 2016 Numerical study of forced convection flow and heat transfer of a nanofluid flowing inside a straight circular pipe filled with a saturated porous medium. European Phys. J. Plus 131 (4) Art 76, 2016. [9.7.1]

    Article  Google Scholar 

  • Barletta, A. and Nield, D. A. 2011b Thermosolutal convective instability and viscous dissipation effect in a fluid-saturated porous medium. Int. J. Heat Mass Transfer 54, 1641-1648. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Barletta, A., Tyvand, P. A. and Nygard, H. S. 2015a Onset of thermal convection in a porous layer with mixed boundary conditions. J. Engng. Math. 91, 105-120. [6.2]

    Article  MathSciNet  Google Scholar 

  • Basu, A. and Islam, M. R. 1996 Instability in a combined heat and mass transfer problem in porous media. Chaos, Solitons, Fractals 7, 109-123. [9.2.4]

    Article  Google Scholar 

  • Basu, R. and Layek, G. C. 2013 Cross-diffusive effects on the onset of double-diffusive convection in a horizontal saturated porous fluid layer heated and salted from above. Chinese Physics 22, 054702. [9.1.4]

    Article  Google Scholar 

  • Bayomy, A. M. and Saghir, M. Z. 2017 Experimental study of y-Al2O3-water nanofluid through aluminum foam heat sink: Comparison with numerical approach. Int. J. Heat Mass Transfer 107, 181–203. [9.7.1]

    Article  Google Scholar 

  • Baytas, A. C., Baytas, A. f., Ingham, D. B. and Pop, I. 2009 Double diffusive natural convection in an enclosure filled with a step type porous layer: Non-Darcy flow. Int. J. Therm. Sci. 48, 665-673. [9.4]

    Article  Google Scholar 

  • Bedrikovetskii, P. G., Polonskii, D. G. and Shapiro, A. A. 1993 Analysis of the convective instability of a binary mixture in a porous medium. Fluid Dyn. 28, 82-89. [9.1.4]

    Article  Google Scholar 

  • Bedrikovetskii, P. G., Polonskii, D. G. and Shapiro, A. A. 1994 Convective stability of a binary mixture in a fractured porous medium. Fluid Dyn. 29, 68-75. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Bég, O. A., Bakier, A. Y. and Prasad, V. R. 2009a Numerical study of magnetohydrodynamic heat and mass transfer from a stretching surface to a porous medium with Soret and Dufour effects. Comput. Mater. Sci. 46, 57-65. [9.2.1]

    Article  Google Scholar 

  • Bég, O. A., Zueco, J., Bhargava, R. and Takhar, H. S. 2009d Magnetohydrodynamic convection flow from a sphere to a non-Darcian porous medium with heat generation or absorption effects: network simulation. Int. J. Therm. Sci. 48, 913-921. [5.6.1]

    Article  Google Scholar 

  • Bég, T. A., Rashidi, M. M., Bég, O.A. and Rahimzadeh, N. 2013b Differential transform semi-numerical analysis of biofluid-particle suspension flow and heat transfer in non-Darcian porous media. Comput. Meth. Biomech. Biomed. Engng. 16, 896-907. [7.1.7]

    Article  Google Scholar 

  • Behseresht, A., Nogrehabadi, A. and Ghalambaz, M. 2014 Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using practical ranges of nanofluids thermo-physical properties. Chem. Engnrg. Res. Design 92, 447-452. [9.7.3]

    Article  Google Scholar 

  • Bejan, A. 1984 Convection Heat Transfer, Wiley, New York. [1.1, 4.1, 4.2, 4.5, 4.17, 5.1.4, 5.11.1, 6.9.2, 7.1.1, 7.1.2, 7.3.3, 7.4.2, 9.2.1, 10.1.2]

    MATH  Google Scholar 

  • Bejan, A. 1992a Comments on “Coupled heat and mass transfer by natural convection from vertical surfaces in porous media.” Int. J. Heat Mass Transfer 35, 3498. [9.2.1]

    Article  Google Scholar 

  • Bejan, A. and Khair, K. R. 1985 Heat and mass transfer by natural convection in a porous medium. Int. J. Heat Mass Transfer 28, 909-918. [9.2.1]

    Article  MATH  Google Scholar 

  • Beji, H., Bennacer, R. and Duval, R. 1999 Double-diffusive natural convection in a vertical porous annulus. Numer. Heat Transfer A 36, 153-170. [9.4]

    Article  Google Scholar 

  • Ben Kheifa, N., Alloui, Z., Bég, H. and Vasseur, P. 2012 Natural convection in a horizontal porous cavity filled with a non-Newtonian binary fluid of power law type. J. Non-Newtonian Fluid Mech. 169-170, 15-25. [9.1.6.4]

    Article  Google Scholar 

  • Ben Khelifa, N., Alloui, Z., Beji, H. and Vasseur, P. 2012 Natural convection in a vertical porous cavity filled with a non-Newtonian fluid. AIChE J. 58, 1704-1716. [9.2.2]

    Article  Google Scholar 

  • Benano-Melly, L. B., Caltagirone, J.-P., Faissat, B., Montel, F. and Costeseque, P. 2001 Modelling Soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int. J. Heat Mass Transfer 44, 1285-1297. [9.1.4]

    Article  MATH  Google Scholar 

  • Benerji Babu, A., Ravi, R. and Tagare, S. G. 2014 Nonlinear thermohaline magnetoconvection in sparsely packed porous medium. J. Porous Media 17, 31-57. [9.6.1.4]

    Article  Google Scholar 

  • Benerji Babu, A., Ravi, R., Tagare, S. G. and Anikumar, D. 2012b Linear and weakly nonlinear thermohaline convection in a sparsely packed porous medium with thermal radiation. Int. Rev. Modlell. Simul. 5, 2484-2500. [9.1.6.4]

    Google Scholar 

  • Benhadji, K. and Vasseur P. 2003 Double-diffusive convection in a shallow porous cavity filled with a non-Newtonian fluid. Int. Comm. Heat Mass Transfer 28, 763-772. [9.2.2]

    Article  Google Scholar 

  • Benazir, A. J., Sivaraj, R. and Rashidi, M. M. 2016 Comparison between Casson fluid flow in the presence of heat and mass transfer from a vertical cone and flat plate. ASME J. Heat Transfer 138, 112005. [9.1.6.4]

    Article  Google Scholar 

  • Bennacer, R. 2000 The Brinkman model for thermosolutal convection in a vertical annular porous layer. Int. Comm. Heat Mass Transfer 27, 69-80. [9.4]

    Article  Google Scholar 

  • Bennacer, R. 2004 Natural convection in anisotropic heterogeneous porous medium. In Emerging Technologies and Techniques in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 271-284. [9.1.6.2]

    Chapter  Google Scholar 

  • Bennacer, R. and Lakhal, A. 2005 Numerical and analytical analysis of the thermosolutal convection in an annular field: effect of thermodiffusion. In Transport Phenomena in Porous Media III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 341-365. [9.4]

    Chapter  Google Scholar 

  • Bennacer, R., Beji, H. and Mohamad, A. A. 2003a Double diffusive convection in a vertical enclosure inserted with two saturated porous layers containing a fluid layer. Int. J. Thermal Sci. 42, 141-151. [9.4]

    Article  Google Scholar 

  • Bennacer, R., Beji, H., Duval, R. and Vasseur, P. 2000 The Brinkman model for thermosolutal convection in a vertical annular porous layer. Int. Comm. Heat Mass Transfer 27, 69-80. [9.2.2]

    Article  Google Scholar 

  • Bennacer, R., Beji, H., Oueslati, F. and Belgith, A. 2001a Multiple natural convection solution in porous media under cross temperature and concentration gradients. Numer. Heat Transfer A 39, 553-567. [9.2.2]

    Article  Google Scholar 

  • Bennacer, R., El Ganaoui, M. and Fauchais, P. 2004 On the thermal anisotropy affecting transfers in multiplayer porous medium. Comptes Rendus Mécanique 332, 539-546. [9.5]

    Article  MATH  Google Scholar 

  • Bennacer, R., Mahidjiba, A., Vasseur, P., Beji, H. and Duval, R. 2003b The Soret effect on convection in a horizontal porous domain under cross-temperature and concentration gradients. Int. J. Numer. Meth. Heat Fluid Flow 13, 199-215. [9.2.2]

    Article  MATH  Google Scholar 

  • Bennacer, R., Mohamad, A. A. and El Ganaoui, M. 2005 Analytical and numerical investigation of double diffusion in thermally anisotropic multilayer porous medium. Heat Mass Transfer 41, 298-305. [9.5]

    Article  Google Scholar 

  • Bennacer, R., Mohamad, A. A. and El Ganoui, M. 2009 Thermodiffusion in porous media; Multi-domain constituent separation. Int. J. Heat Mass Transfer 52, 1725-1733. [9.4]

    Article  MATH  Google Scholar 

  • Bennacer, R., Tobbal, A., Beji, H. and Vasseur, P. 2001b Double diffusive convection in a vertical enclosure filled with anisotropic media. Int. J. Thermal Sci. 40, 30-41. [9.2.2]

    Article  Google Scholar 

  • Bennisaad, S. and Ouazaa, N. 2012 Analytical and numerical study of double diffusive natural convection in a confined porous medium subjected to heat and mass fluxes. J. Porous Media 15, 909-976. [9.4]

    Article  Google Scholar 

  • Benzeghiba, M., Chikh, S. and Campo, A. 2003 Thermosolutal convection in a partly porous vertical annular cavity. ASME J. Heat Transfer 125, 703-715. [9.4]

    Article  Google Scholar 

  • Bera P., Pippal, S. and Sharma, A. K. 2014 A thermal non-equilibrium approach on double diffusive natural convection in a square porous-medium cavity. Int. J. Heat Mass Transfer 78, 1080-1094. [9.2.2]

    Article  Google Scholar 

  • Bera, P. and Khalili, A. 2002a Double-diffusive natural convection in an anisotropic porous cavity with opposing buoyancy forces: multi-solutions and oscillations. Int. J. Heat Mass Transfer 45, 3205-3222. [9.2.2]

    Article  MATH  Google Scholar 

  • Bera, P., Eswaran, V. and Singh, P. 1998 Numerical study of heat and mass transfer in an anisotropic porous enclosure due to constant heating and cooling. Numer. Heat Transfer A, 34, 887-905. [9.2.2]

    Article  Google Scholar 

  • Bera, P., Eswaran, V. and Singh, P. 2000 Double-diffusive convection in slender anisotropic porous enclosures. J. Porous Media 3, 11-29. [9.2.2]

    MATH  Google Scholar 

  • Bera, P., Kapoor, S. and Khandelwal, M. K. 2012 Double-diffusive mixed convection in a vertical pipe: A thermal non-equilibrium approach. Int. J. Heat Mass Transfer 55, 7079-7082. [9.6.2]

    Article  Google Scholar 

  • Bera, P., Kapoor, S. and Khandelwal, M. K. 2012 Double-diffusive mixed convection in a vertical pipe; A thermal non-equilibrium approach. Int. J. Heat Mass Transfer 55, 7093-7103. [9.6.2]

    Article  Google Scholar 

  • Bera, P., Kumar, P. and Khalili, A. 2011 Hot springs mediate spatial exchange of heat and mass in the enclosed sediment domain: A stability perspective. Adv. Water Resourc. 34, 817–828. [9.1.6.4]

    Article  Google Scholar 

  • Bestman, A. R. 1989 Free convection heat and mass transfer to steady flow in a semi-infinite vertical porous medium. Int. J. Energy Res. 13, 311-316. [9.2.1]

    Article  Google Scholar 

  • Bhadauria, B. S. 2007b Double diffusive convection in a porous medium with modulated temperature on the boundaries. Transp. Porous Media 70, 191-211. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Bhadauria, B. S. 2007c Double diffusive convection in a rotating porous layer with temperature modulation on the boundaries. J. Porous Media 10, 569-583. [9.1.6.4]

    Google Scholar 

  • Bhadauria, B. S. 2011 Nonlinear two dimensional double diffusive convection in a rotating porous layer saturated by a viscoelastic fluid. Transp. Porous Media 87, 229-250. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Bhadauria, B. S. 2012 Double-diffusive convection in a saturated anisotropic porous layer with internal heat source. Transp. Porous Media 92, 299-310. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Bhadauria, B. S. and Agarwal, S. 2011a Convective transport in a nanofluid saturated porous layer with thermal non-equilibrium model. Transp. Porous Media 88, 107-131. [6.23, 9.7.2]

    Article  MathSciNet  Google Scholar 

  • Bhadauria, B. S. and Agarwal, S. 2011b Natural convection in a nanofluid saturated rotating porous layer: A nonlinear study. Transp. Porous Media 87, 585-602. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Bhadauria, B. S. and Kiran, P. 2014a Nonlinear thermal Darcy convection in a nanofluid saturated porous medium under gravity modulation. Adv. Sci. Lett. 20, 903-910. [9.7.2]

    Article  Google Scholar 

  • Bhadauria, B. S. and Sherani, A. 2008b Onset of double diffusive convection in a thermally modulated fluid-saturated porous medium. Z. Naturforschung A 63 291-300. [6.1.6.4]

    MATH  Google Scholar 

  • Bhadauria, B. S. and Srivastava, A. K. 2010 Magneto-double-diffusive convection in an electrically conducting-fluid-saturated porous medium with temperature modulation of the boundaries. Int. J. Heat Mass Transfer 53, 2530-2538. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Bhadauria, B. S., Agarwal, S. and Kumar, A. 2011a Nonlinear two-dimensional convection in a nanofluid saturated porous medium. Transp. Porous Media 90, 606-625. [9.7.2]

    MathSciNet  Google Scholar 

  • Bhadauria, B. S., Hashim, I., Kumar, I. and Srivastava, A. 2013c Cross-diffusion convection in a Newtonian fluid-saturated rotating porous medium. Transp. Porous Media 98, 683-697. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Bhadauria, B. S., Kumar, A., Kumar, J., Sacheti, N. C. and Chandran, P. 2011 Natural convection in a rotating anisotropic porous layer with internal heat generation. Transp. Porous Media 90, 687-705. [6.22]

    Article  MathSciNet  Google Scholar 

  • Bondareva, N. S., Sheremet, M. A., Oztop, H. F. and Abu-Hamdeh, N. 2016 Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with nanofluid with a local heater. Int. J. Heat Mass Transfer 99, 872-888. [4.17, 9.7.2]

    Article  Google Scholar 

  • Bouaziz, A. M. and Hanini, S. 2016 Double dispersion for double diffusive boundary layer in non-Darcy saturated porous medium filled by a nanofluid. J. Mech., to appear. [9.7.3]

    Google Scholar 

  • Boulechfar, H. and Djezzar, M. 2014 Thermosolutal natural convection in horizontal elliptical annulus containing a fluid-saturated porous medium: Effects of aiding buoyancy for low Rayleigh-Darcy number. Lect. Notes Engng. Comp. Sci. 2, 1249-1256. [9.4]

    Google Scholar 

  • Bourantas, G. C., Skouras, E., Loukopoulos, V. C. and Burganas, V. N. 2014a Heat transfer and natural convection of nanofluids in porous media, European J. Mech. B 43, 45-56. [9.7.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Bourich, M., Amahmid, A. and Hasnaoui M. 2004a Double diffusive convection in a porous enclosure submitted to cross gradients of temperature and concentration. Energy Conv. Management 45, 1655-1670. [9.5]

    Article  Google Scholar 

  • Bourich, M., Hasnaoui, M. and Amahmid, A. 2004b Double-diffusive natural convection in a porous enclosure partially heated from below and differentially salted. Int. J. Heat Fluid Flow 25, 1034-1046. [9.5]

    Article  Google Scholar 

  • Bourich, M., Hasnaoui, M., Amahmid, A. 2004c A scale analysis of thermosolutal convection in a saturated porous enclosure submitted to vertical temperature and horizontal concentration gradients. Energy Conv. Management 45, 2795-2811. [9.1.3]

    Article  Google Scholar 

  • Bourich, M., Hasnaoui, M., Amahmid, A. and Mamou, M. 2002 Soret driven thermosolutal convection in a shallow porous enclosure. Int. Comm. Heat Mass Transfer 29, 717-728. [9.1.4]

    Article  MATH  Google Scholar 

  • Bourich, M., Hasnaoui, M., Amahmid, A. and Mamou, M. 2005a Onset of convection and finite amplitude flow due to Soret effect within a sparsely packed porous enclosure heated from below. Int. J. Heat Fluid Flow 26, 513-525. [9.1.4]

    Article  Google Scholar 

  • Bourich, M., Hasnaoui, M., Amahmid, A., Er-Raki, M. and Mamou, M. 2008 Analytical and numerical study of combined effects of a magnetic field and an external shear stress on convection in a horizontal porous enclosure. Numer. Heat Transfer A 54, 1042-1060. [9.1.6.4]

    Article  Google Scholar 

  • Bourich, M., Hasnaoui, M., Amahmid, A., Er-raki, M., Lagra, A. and Mamou, M. 2016 Soret convection in a shallow porous cavity under a magnetic field and submitted to uniform fluxes of heat and mass. J. Appl. Fluid Mech. 9, 741-749. [9.1.4]

    Article  Google Scholar 

  • Bourich, M., Hasnaoui, M., Mamou, M. and Amahmid, A. 2004e Soret effect inducing subcritical and Hopf bifurcations in a shallow enclosure filled with a clear binary fluid or a saturated porous medium: A comparative study. Phys. Fluids 16, 551-568. [9.1.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Bourich, M., Hasnaoui, M., Mamou, M. and Amahmid, A. 2005b Hydrodynamical boundary conditions effects on Soret-driven thermosolutal convection in a shallow porous enclosure. J. Porous Media 8, 455-469. [9.1.4]

    Article  Google Scholar 

  • Bourich, M., Mamou, M., Hasnaoui, M. and Amahmid, A. 2004f On stability analysis of Soret convection within a horizontal porous layer. In Emerging Technologies and Techniques in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds.), Kluwer Academic, Dordrecht, pp. 221-234. [9.1.4]

    Chapter  Google Scholar 

  • Bousri, A., Bouhadef, K., Beji, H., Bennacer, R. and Nebbali, R. 2012 Heat and mass transfer in reactive porous media with local nonequilibrium. J. Porous Media 15, 329-341. [9.1.6.4]

    Article  Google Scholar 

  • Bousri, A., Bouhadef, K., Langlet, T. and Beji, H. 2011 Forced convection analysis of coupled heat and mass transfer in a channel filled with a reactive porous medium. Prog. Comp. Fluid Dyn. 11, 305-317. [9.6.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Bousri, A., Nebbali, R., Bennacer, R., Bouhadef, K. and Beji, H. 2017 Numerical investigation of forced convection nonequilibrium effects on heat and mass transfer in porous media. Heat Transfer Engng. 38, 122–136. [9.6.2]

    Article  Google Scholar 

  • Boutana, N., Bahloul, N., Vasseur, P. and Joly, F. 2004 Soret and double diffusive convection in a porous cavity. J. Porous Media 7, 41-57. [9.1.4]

    Article  MATH  Google Scholar 

  • Brand, H. and Steinberg, V. 1983a Convective instabilities in binary mixtures in a porous medium. Physica A 119, 327-338. [9.1.3, 9.1.4]

    Article  MathSciNet  Google Scholar 

  • Brand, H. and Steinberg, V. 1983b Nonlinear effects in the convective instability of a binary mixture in a porous medium near threshold. Phys. Lett. A 93, 333-336. [9.1.3, 9.1.4]

    Article  Google Scholar 

  • Brand, H. R., Hohenberg, P. C., and Steinberg, V. 1983 Amplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous medium. Phys. Rev. A 27, 591-594. [9.1.3]

    Article  Google Scholar 

  • Brevdo, L. and Cirpka, O. A. 2012 Absolute/convective instability dichotomy in a Soret-driven thermosolutal convection induced in a porous layer by inclined thermal and vertical solutal gradients. Transp. Porous Media 95, 425-446. [9.5]

    Article  MathSciNet  Google Scholar 

  • Bulgarkova, N. S. 2012 Condition of the onset and nonlinear regimes of convection of a three-component isothermal mixture in a porous rectangle under modulation of the concentration gradient. Fluid Dyn. 47, 608-619. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Cai, R. and Liu, Q. 2008 A new method for deriving analytical solutions of partial differential equations—Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media Sci. China G. 51, 1733-1744. [7.1.7, 9.2.2]

    Article  Google Scholar 

  • Cai, R. X., Zhang, N. and Liu, W. W. 2003 Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media. Prog. Nat. Sci. 13, 848-851. [9.2.2]

    Article  MATH  Google Scholar 

  • Cao, Y. and Cui, X. 2015 Natural convection of power law fluids in porous media with variable thermal and mass diffusivity. Int. J. Heat Tech. 33, 85-90. [9.2.1]

    Article  Google Scholar 

  • Capone, F. and De Luca, R. 2012a Onset of convection for ternary fluid mixture saturating horizontal porous layer with large pores. Att. Acad. Nat. Lincei, Classes Sci. Fiz. Mat. Nat 23, 405-428. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Capone, F. and de Luca, R. 2012b Ultimately boundedness and stability of triply diffusive mixtures in rotating porous layers under the action of Brinkman law. Int. J. Nonlinear Mech. 47, 799-805. [9.1.6.3]

    Article  Google Scholar 

  • Capone, F. and De Luca, R. 2014a Coincidence between linear and global nonlinear stability of non-constant throughflows via the Rionero “Auxiliary System Method”. Meccanica 49, 2024-2036. [9.1.6.4]

    MathSciNet  MATH  Google Scholar 

  • Capone, F. and De Luca, R. 2014b On the stability-instability of vertical throughflows in double diffusive mixtures saturating rotating porous layers with large pores. Ricerche di Matematica 63, 119-148. [9.1.6.4]

    MathSciNet  MATH  Google Scholar 

  • Capone, F., De Cataids V., De Luca, R. and Torcicollo, I. 2014 On the stability of vertical constant throughflows for binary mixtures in porous layers. Int. J. Non-Linear Mech. 59, 1-8. [9.1.6.4]

    Article  Google Scholar 

  • Capone, F., De Luca, R. and Toricollo, I. 2013 Longtime behavior of vertical throughflows for binary mixtures in porous layers. Int. J. Nonlinear Mech. 52, 1-7. [9.1.6.4]

    Article  Google Scholar 

  • Carr, M. 2003b A model for convection in the evolution of under-ice melt ponds. Contin. Mech. Thermodyn. 15, 45-54. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Chakrabarti, A. and Gupta, A. S. 1981 Nonlinear thermohaline convection in a rotating porous medium. Mech. Res. Comm. 8, 9-22. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Chamkha, A. J. 2000 Non-similar solutions for heat and mass transfer by hydromagnetic mixed convection flow over a plate in porous media with surface suction or injection. Int. J. Numer. Meth. Heat Fluid Flow 10, 142-162. [9.6.1]

    Article  MATH  Google Scholar 

  • Chamkha, A. J. 2001a Coupled heat and mass transfer by natural convection from a permeable non-isothermal vertical plate embedded in porous media. Int. J. Fluid Mech. Res. 28, 449-462. [9.1.6.4]

    Google Scholar 

  • Chamkha, A. J. 2002 Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects. Numer. Heat Transfer A 41, 65-87. [9.1.6.4]

    Article  Google Scholar 

  • Chamkha, A. J. and Al-Naser, H. 2001 Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. Int. J. Therm. Sci. 40, 227-244. [9.4]

    Article  Google Scholar 

  • Chamkha, A. J. and Al-Naser, H. 2002 Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients. Int. J. Heat Mass Transfer 45, 2465-2483. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Chamkha, A. J. and Abdulgafoor, F. 2006 Double-diffusive convection in a tilted enclosure filled with a non-Darcian porous medium. Int. J. Heat Tech. 24, 141-152. [9.4]

    Google Scholar 

  • Chamkha, A. J. and Al-Humoud, J. M. 2007 Mixed convection heat and mass transfer of non-Newtonian fluids from a permeable surface embedded in a porous medium. Int. J. Numer. Meth. Heat Fluid Flow 17, 195-212. [9.6.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Al-Mudhaf, A. 2008 Double-diffusive natural convection in inclined porous cavities with various aspect ratios and temperature-dependent source or sink. Heat Mass Transfer 44, 679-693. [9.4]

    Article  Google Scholar 

  • Chamkha, A. J. and Aly, A. M. 2011 Heat and mass transfer in stagnation-point flow of a polar fluid towards a stretching surface in porous media in the presence of Soret, Dufour and chemical reaction effects. Chem. Engng. Commun. 198, 214-234. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Ben-Nakhi, A. 2007 Coupled heat and mass transfer in mixed convective flow of a non-Newtonian fluid over a permeable surface embedded in a non-Darcian porous medium. Int. J. Heat Tech. 25, 33-41. [9.6.1]

    Google Scholar 

  • Chamkha, A. J. and Ben-Nakhi, A. 2008 MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour effects. Heat Mass Transfer 44, 845-856. [9.6.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Ismael, M. A. 2013b Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int. J. Therm. Sci. 67, 135-151. [9.7.2]

    Article  Google Scholar 

  • Chamkha, A. J. and Ismael, M. A. 2014 Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer. Heat Transfer A 65, 1089-1113. [9.7.2]

    Article  Google Scholar 

  • Chamkha, A. J. and Khaled, A. R. A. 1999 Nonsimilar hydromagnetic simultaneous heat and mass transfer by mixed convection from a vertical plate embedded in a uniform porous medium. Numer. Heat Transfer A 36, 327-344. [9.6.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Khaled, A. R. A. 2000a Hydromagnetic simultaneous heat and mass transfer by mixed convection from a vertical plate embedded in a stratified porous medium with thermal dispersion effects. Heat Mass Transfer 36, 63-70. [9.6.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Khaled, A. R. A. 2000b Similarity solutions for hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media. Int. J. Numer. Meth. Heat Fluid Flow 10, 94-115. [9.6.1]

    Article  MATH  Google Scholar 

  • Chamkha, A. J. and Khaled, A. R. A. 2000c Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in a fluid-saturated porous medium. Int. J. Numer. Meth. Heat Fluid Flow 10, 445-476. [9.1.6.4]

    MATH  Google Scholar 

  • Chamkha, A. J. and Khaled, A. R. A. 2000d Hydromagnetic coupled heat and mass transfer by natural convection from a permeable constant heat flux surface in porous media. J. Porous Media 3, 259-266. [9.2.1]

    MATH  Google Scholar 

  • Chamkha, A. J. and Khanafer, K. 1999 Nonsimilar combined convection flow over a vertical surface embedded in a variable porosity medium. J. Porous Media 2, 231-249. [9.6.1]

    Article  MATH  Google Scholar 

  • Chamkha, A. J. and Pop, I. 2004 Effect of thermophoresis particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Comm. Heat Mass Transfer 31, 421-430. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Quadri, M. M. A. 2001 Heat and mass transfer from a permeable cylinder in a porous medium with magnetic field and heat generation/adsorption effects. Numer. Heat Transfer A. 40, 387-401. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Quadri, M. M. A. 2002 Combined heat and mass transfer by hydromagnetic natural convection over a cone embedded in a non-Darcian porous medium with heat generation/absorption effects. Heat Mass Transfer 38, 487-495. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Quadri, M. M. A. 2003 Simultaneous heat and mass transfer by natural convection from a plate embedded in a porous medium with thermal dispersion effects. Heat Mass Transfer 39, 561-569. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J. and Rashad, A. M. 2012 Natural convection from a vertical permeable cone in a nanofluid saturated porous media for uniform heat and nanoparticle volume fraction fluxes. Int. J. Numer. Meth. Heat Fluid Flow 22, 1073-1085. [9.7.3]

    Article  Google Scholar 

  • Chamkha, A. J., Abbasbandy, S. and Rashad, A. M. 2015a Non-Darcy natural convection flow for non-Newtonian nanofluid over cone saturated in porous medium with uniform heat and volume fraction fluxes. Int. J. Numer. Meth. Heat Fluid Flow 25, 422-437. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Chamkha, A. J., Abbasbandy, S., Rashad, A. M. and Vajravelu, K. 2012 Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid. Transp. Porous Media 91, 261-279. [9.7.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Chamkha, A. J., Abbasbandy, S., Rashad, A. M. and Vajravelu, K. 2013a Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid. Meccanica 48, 275-285. [9.7.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Chamkha, A. J., Al-Mudhaf, A. and Al-Meshaiei, E. 2011b Thermo-solutal convection in an inclined porous cavity with various aspect ratios under mixed thermal and species boundary conditions. Heat Transfer Asian Res. 40, 693-720. [9.4]

    Article  Google Scholar 

  • Chamkha, A. J., Al-Mudhaf, A. and Al-Yatama, J. 2004 Double-diffusive convective flow of a micropolar fluid over a vertical plate embedded in a porous medium with a chemical reaction. Int. J. Fluid Mech. Res. 31, 529-551. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J., Al-Mudhaf, A. F. and Pop, I. 2006a Effect of heat generation or absorption on thermophoretic free convection boundary layer from a vertical plate embedded in porous medium. Int. Comm. Heat Mass Transfer 33, 1096-1102. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J., Aly, A. M. and Mansour, M. A. 2010b Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects. Chem. Engng. Comm. 197, 846-858. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J., and Al-Mudhaf, A. F. 2008 Double-diffusive natural convection in inclined porous cavities with various aspect ratios and temperature-dependent heat source or sink. Heat Mass Transfer 44, 679-693. [9.4]

    Article  Google Scholar 

  • Chamkha, A. J., Bercea, C. and Pop, I. 2006b Free convection flow over a truncated cone embedded in a porous medium saturated with pure or saline water at low temperatures, Mech. Res. Commun. 33, 433-440. [9.2.1]

    Article  MATH  Google Scholar 

  • Chamkha, A. J., El-Kabeir, S. M. M. and Rashad, A. M. 2011c Heat and mass transfer by non-Darcy free convection from a vertical cylinder embedded in porous media with a temperature-dependent viscosity. Int. J. Numer. Meth. Heat Fluid Flow 21, 847-863. [9.2.1]

    Article  Google Scholar 

  • Chamkha, A. J., Gorla, R. S. R. and Ghodeswar, K. 2011d Non-similar solution for natural convective boundary layer flow over a sphere embedded in a non-Darcy porous medium saturated with a nanofluid. Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom. 2, 135-158. [9.7.3]

    Google Scholar 

  • Chamkha, A. J., Jaradat, M. and Pop, I. 2004 Thermophoresis free convection flow from a vertical cylinder embedded in a porous medium. Int. J. Appl. Mech. Engng. 9, 471-481. [5.7]

    MATH  Google Scholar 

  • Chamkha, A. J., Khaled, A. R. A. and Al-Hawaj, O. 2000 Simultaneous heat and mass transfer by natural convection from a cone and a wedge in porous media. J. Porous Media 3, 155-164. [9.2.1]

    MATH  Google Scholar 

  • Chamkha, A. J., Mallikarjuna, B., Vijaya, R. B. and Rao, D. R. V. P. 2014a Heat and mass transfer in a porous medium filled rectangular duct with Soret and Dufour effects under inclined magnetic field. Int. J. Numer. Meth. Heat Fluid Flow 24, 1405-1436. [9.1.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Chamkha, A. J., Mansour, M. A. and Ahmed, S. E. 2010d Double-diffusive natural convection in inclined finned triangular porous enclosures in the presence of heat generation/absorption. Heat Mass Transfer 46, 757-768. [9.4]

    Article  Google Scholar 

  • Chamkha, A. J., Mohamed, R. A. and Ahmed, S. E. 2011e Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and radiation effects. Meccanica 46, 399-411. [5.1.9.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Chamkha, A. J., Rashad, A. M. and Aly, A. 2013b Non-Darcy natural convection of a nanofluid about a permeable vertical cone embedded in a porous medium. Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom. 4, 99-114. [9.7.3]

    Google Scholar 

  • Chamkha, A. J., Rashad, A. M. and Aly, A. M. 2015b Non-Darcy natural convection of a nanofluid about a permeable cone embedded in a porous medium. In Progress in Microscale and Nanoscale Thermal and Fluid Science (L. Cheng, ed.), Nova Science Publishers, New York. [9.7.3]

    Google Scholar 

  • Chamkha, A. J., Rashad, A. M. and Gorla, R. S. R. 2014b Nonsimilar solutions for mixed convection along a wedge embedded in a porous medium saturated by a non-Newtonian nanofluid: Natural convection dominated regime. Int. J. Numer. Meth. Heat Fluid Flow 24, 1471-1486. [9.7.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Chamkha, A. J., Rashad, A. M., Reddy, C. R. and Murthy, P. V. S. N. 2014c Effect of suction/injection along a vertical plate in a nanofluid-saturated non-Darcy porous medium with internal heat generation. Indian J. Pure Appl. Math. 45, 321-341. [9.7.3]

    Article  MATH  Google Scholar 

  • Chamkha, A. J., Rashad, A. M., Reddy, C. R. and Murthy, P. V. S. N. 2014d Viscous dissipation and magnetic field effects in a non-Darcy porous medium saturated with a nanofluid under convective boundary conditions. Spec. Topics Rev. Porous Media 5, 27-39. [9.7.3]

    Article  Google Scholar 

  • Chamkha, A. J., Takhar, H. S. and Bég, O. A. 2004 Radiative free-convective non-Newtonian fluid flow past a wedge embedded in a porous medium. Int. J. Fluid Mech. Res. 31, 529-551. [5.8]

    Article  Google Scholar 

  • Chand, K. and Kumar, R. 2012 Hall effect on heat and mass transfer in the flow of oscillating viscoelastic fluid through porous medium with wall slip conditions. Indian J. Pure Appl. Phys. 50, 149-155. [9.2.1]

    Google Scholar 

  • Chand, R. 2013 Thermal instability of rotating Maxwell visco-elastic fluid with variable gravity in porous medium. J. Indian Math. Soc. 80, 23-31. [6.22]

    MathSciNet  MATH  Google Scholar 

  • Chand, R. and Rana, G. C. 2012b Dufour and Soret effects on the thermosolutal instability of Rivlin-Ericksen elastico-viscous fluid in porous medium. Zeit. Naturforsch. A 67, 685-691. [9.1.6.4]

    Article  Google Scholar 

  • Chand, R. and Rana, G. C. 2012d On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium. Int. J. Heat Mass Transfer 55, 5417-5424. [9.7.2]

    Article  Google Scholar 

  • Chand, R. and Rana, G. C. 2012a Oscillating convection of nanofluid in porous medium. Transp. Porous Media 95, 269-284. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Chand, R. and Rana, G. C. 2012c Thermal instability of Rivlin-Ericksen elastic-viscous nanofluid saturated by a porous medium. ASME J. Fluids Engng. 134, 121203. [9.7.2]

    Article  Google Scholar 

  • Chand, R. and Rana, G. C. 2014 Thermal instability in a Brinkman porous medium saturated by nanofluid with no nanoparticle flux on boundaries. Spec. Topics Rev. Porous Media 5, 277-286. [9.7.2]

    Article  Google Scholar 

  • Chand, R., Rana, G. C. and Hussein, A. K. 2015a On the onset of thermal instability in a low Prandtl number nanofluid layer in a porous medium. J. Appl. Fluid Mech. 8, 265-272. [9.7.2]

    Article  Google Scholar 

  • Chand, R., Rana, G. C. and Kango, S. K. 2015b Effect of variable gravity on thermal instability of rotating nanofluid in porous medium. FME Trans. 43, 62-69. [9.7.2]

    Article  Google Scholar 

  • Chand, R., Rana, G. C. and Yadav, D. 2016 Electrothermo convection in a porous medium saturated by nanofluid. J. Appl. Fluid Mech 9, 1081-1088. [9.7.2]

    Google Scholar 

  • Chand, S. 2012 Effect of rotation on triple-diffusive convection in a magnetized ferrofluid with internal angular momentum saturating a porous medium. Appl. Math. Sci. 6, 3245-3258. [9.1.6.4]

    MATH  Google Scholar 

  • Chand, S. 2013 Linear stability of triple-diffusive convection in micropolar ferromagnetic fluid saturating porous medium. Appl. Math. Mech.- English ed. 34, 309-326. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Chandra Shekhar, B. and Kishan, N. 2015 Soret and Dufour effects on free convective heat and solute transfer in fluid saturated inclined porous cavity. Engng. Sci. Tech., to appear. [9.2.2]

    Google Scholar 

  • Chandra, A. J., Rashad, A. M., Reddy, C. R. and Murthy, P. V. S. N. 2014a Effect of suction/injection on free convection along a vertical plate in a nanofluid saturated non-Darcy porous medium with internal heat generation. Indian J. Pure Appl. Math. 45, 321-341. [9.7.3]

    Article  MATH  Google Scholar 

  • Chandra, A. J., Rashad, A. M., Reddy, C. R. and Murthy, P. V. S. N. 2014b Viscous dissipation and magnetic field effects in a non-Darcy porous medium saturated with a nanofluid under convective boundary condition. Spec. Topics Rev. Porous Media 5, 27-39. [9.7.3]

    Article  Google Scholar 

  • Charrier-Mojtabi, M. C., Elhajjah, B. and Mojtabi, A. 2007 Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer. Phys. Fluids 19, #124104. [9.1.4]

    Article  MATH  Google Scholar 

  • Charrier-Mojtabi, M. C., Elhajjah, B., Ouattara, B., Mojtabi, A. and Costeseque, P. 2011 Soret-driven convection and separation of binary mixtures in a porous horizontal slot submitted to a heat flux. C. R. Mecanique 339, 303-309. [9.1.4]

    Article  Google Scholar 

  • Charrier-Mojtabi, M. C., Karimi-Fard, M. and Mojtabi, A. 1997 Onset of thermosolutal convective regimes in rectangular porous cavity. C. R. Acad. Sci. II B 324, 9-17. [9.2.2]

    MATH  Google Scholar 

  • Charrier-Mojtabi, M. C., Karimi-Fard, M., Azaiez, M. and Mojtabi, A. 1998 Onset of a double-diffusive convective regime in a rectangular porous cavity. J. Porous Media 1, 107-121. [9.2.2]

    Article  MATH  Google Scholar 

  • Charrier-Mojtabi, M. C., Pedram Razi, Y. P, Maliwan, K. and Mojtabi, A. 2004 Influence of vibration on Soret-driven convection in porous media. Numer. Heat Transfer 46, 981-993. [9.1.6.4]

    Article  Google Scholar 

  • Charrier-Mojtabi, M. C., Pedram Razi, Y., Maliwan, K. and Mojtabi, A. 2005 Effect of vibration on the onset of double-diffusive convection in porous media. In Transport Phenomena in Porous Media III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 261-286. [9.1.6.4]

    Chapter  Google Scholar 

  • Chaudhary, R. C. and Jain, A. 2007a Combined heat and mass transfer effects on MHD free convection flow past an oscillating plate embedded in a porous medium. Roman. J. Phys. 52, 505-524. [9.2.1]

    Google Scholar 

  • Chaudhary, R. C. and Jain, P. 2007b Combined heat and mass transfer in magneto-micropolar fluid flow with radiate surface with variable permeability in slip-flow regime. ZAMM 87, 549-563. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Chaves, C. A., Camargo, J. R., Cardoso, S. and de Macedo, A. G. 2005 Transient natural convection heat transfer by double-diffusion from a heated cylinder buried in a saturated porous medium. Int. J. Therm. Sci. 44, 720-725. [9.4]

    Article  Google Scholar 

  • Chaves, C. A., Lamas, W. D. Q., Do Patrincinio Nunes, L. E. N., Camargo, J. R. and Grandinetti, F. J. 2015 Notes on steady natural convection heat transfer by double diffusion from a heated cylinder buried in a saturated porous medium. ASME J. Heat Transfer 137, 074501. [9.4]

    Article  Google Scholar 

  • Chen, B. M. 1998d Experimental study for natural convective heat and mass transfer in porous media. J. Hydrodyn. 10(4) 90–99. [9.1.6.4]

    Google Scholar 

  • Chen, B., Wang, B. and Fang, Z. 1999a Electrochemical experimental method for natural convective heat and mass transfer in porous media. Heat Transfer Asian Res. 28, 266-277. [9.2.2]

    Article  Google Scholar 

  • Chen, C. H. and Chen, C. K. 1993 Influence of non-Darcian flow phenomena on conjugate natural convection over a vertical circular pin embedded in a porous medium. J. Chinese Soc. Mech. Engrs. 14, 319-327. [5.12.1]

    Google Scholar 

  • Chen, F. 1990 On the stability of salt-finger convection in superposed fluid and porous layers. ASME J. Heat Transfer 112, 1088-1092. [9.4]

    Article  Google Scholar 

  • Chen, F. 1992 Salt-finger instability in an anisotropic and inhomogeneous porous substrate underlying a fluid layer. J. Appl. Phys. 71, 5222-5236. [9.1.6.2]

    Article  Google Scholar 

  • Chen, F. and Chen, C. F. 1993 Double-diffusive fingering convection in a porous medium. Int. J. Heat Mass Transfer 36, 793-807. [9.1.6.3]

    Article  MATH  Google Scholar 

  • Chen, F. and Lu, J. W. 1992b Onset of salt-finger convection in anisotropic and inhomogeneous porous media. Int. J. Heat Mass Transfer 35, 3451-3464. [6.19.1.2, 9.1.6.2]

    Article  Google Scholar 

  • Chen, H. T. and Chen, C. K. 1988b Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium. Int. Comm. Heat Mass Transfer 15, 605-614. [5.5.1, 5.6.1]

    Article  Google Scholar 

  • Chen, Q. S., Prasad, V. and Chatterjee, A. 1999b Modeling of fluid flow and heat transfer in a hydrothermal crystal growth system: use of fluid-superposed porous layer theory. ASME J. Heat Transfer 121, 1049-1058. [6.19.2]

    Article  Google Scholar 

  • Chen, S., Liu, F. and Ji, X. 2012 Numerical simulation of interfacial effect on natural convection in a partially porous cavity. Adv. Intell. Soft. Comput. 146. 281-289. [7.7]

    Google Scholar 

  • Chen, X., Wang, S. W., Tao, J. J. and Tan, W. C. 2011 Stability analysis of thermosolutal convection in a horizontal porous layer using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 32, 78-87. [9.1.6.4]

    Article  Google Scholar 

  • Cheng, C. Y. 1999 Effect of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media—an integral approach. Int. Comm. Heat Mass Transfer 26, 935-943. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2000a An integral approach for heat and mass transfer by natural convection from truncated cones in porous media with variable wall temperature and concentration. Int. Comm. Heat Mass Transfer 27, 537-548. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2000b Transient heat and mass transfer by natural convection from vertical surfaces in porous media. J. Phys. D 33, 1425-1430. [9.2.3]

    Article  Google Scholar 

  • Cheng, C. Y. 2000c Natural convection heat and mass transfer near a wavy cone with constant wall temperature and concentration in a porous medium. Mech. Res. Comm. 27, 613-620. [9.2.1]

    Article  MATH  Google Scholar 

  • Cheng, C. Y. 2000d Natural convection heat and mass transfer near a vertical wavy surface with constant wall temperature and concentration in a porous medium. Int. Comm. Heat Mass Transfer 27, 1143-1154. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2005 An integral approach for hydromagnetic natural convection heat and mass transfer form vertical surfaces with power-law variation in wall temperature and concentration in porous media. Int. Comm. Heat Mass Transfer 32, 204-213. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2006a Fully developed natural convection heat and mass transfer in a vertical annular porous medium with asymmetric wall temperatures and concentrations. Appl. Thermal Engng. 26, 2442-2447. [9.4]

    Article  Google Scholar 

  • Cheng, C. Y. 2006b Natural convection heat and mass transfer from a horizontal cylinder of elliptic cross section with constant wall temperature and concentration in saturated porous media. J. Mech. 22, 257-261. [5.5.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2007a Double diffusion from a vertical wavy surface in a porous medium saturated with a non-Newtonian fluid. Int. Comm. Heat Mass Transfer 34, 285-294. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2007b A boundary layer analysis of heat transfer by free convection from permeable horizontal cylinders of elliptic cross-section in porous media using a thermal non-equilibrium model. Int. Comm. Heat Mass Transfer 34, 613-622. [5.5.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2008 Double-diffusive natural convection along a vertical wavy truncated cone in non-Newtonian fluid saturated porous media with thermal and mass stratification. Int. Comm. Heat Mass Transfer 33, 985-990. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2009a Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification. Int. Comm. Heat Mass Transfer 36, 351-356. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2009b Natural convection heat and mass transfer from a vertical truncated cone in a porous medium saturated with a non-Newtonian fluid with variable wall temperature and concentration. Int. Comm. Heat Mass Transfer 36, 585-589. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2009c Natural convection heat transfer of non-Newtonian fluids in porous media from a vertical cone under mixed thermal boundary conditions. Int. Comm. Heat Mass Transfer 36, 693-697. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2009d Soret and Dufour effects on natural convection heat and mass transfer from a vertical cone in a porous medium. Int. Comm. Heat Mass Transfer 36, 1020-1024. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2009e Nonsimilar boundary layer analysis of double-diffusive convection from a vertical truncated cone in a porous medium with variable viscosity. Appl. Math. Comput. 212, 185-193. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, C. Y. 2009f Soret and Dufour effects on natural convection heat and mass transfer from a vertical cone in a porous medium. Int. Comm. Heat Mass Transfer 36, 1020-1024. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2010a Double diffusion from a vertical truncated cone in a non-Newtonian fluid saturated porous medium with variable heat and mass fluxes. Int. Comm. Heat Mass Transfer 37, 261-265. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2010b Double diffusive natural convection along an inclined wavy surface in a porous medium Int. Comm. Heat Mass Transfer 37, 1471-1476. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2010c Soret and Dufour effects on free convection boundary layer over a vertical cylinder in a saturated porous medium Int. Comm. Heat Mass Transfer 37, 796-800. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2010d Soret and Dufour effects on heat and mass transfer by natural convection boundary layer flow over a vertical cone in a porous medium with variable wall temperature and concentration. Int. Comm. Heat Mass Transfer 37, 1031-1035. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2011a Soret and Dufour effects on heat and mass transfer on natural convection boundary layer flow over a vertical cone in a porous medium with constant wall heat and mass fluxes Int. Comm. Heat Mass Transfer 38, 44-48. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2011a Soret and Dufour effects on natural convection heat and mass transfer near a vertical wavy cone in a porous medium with constant wall temperature and concentration. Int. Comm. Heat Mass Transfer 38, 1056-1060. [9.2.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2012a Soret and Dufour effects on double-diffusive free convection over a vertical truncated cone in porous media with variable wall heat flux and mass fluxes. Transp. Porous Media 91, 877-888. [9.4]

    Article  MathSciNet  Google Scholar 

  • Cheng, C. Y. 2012b Soret and Dufour effects on mixed convection heat and mass transfer from a vertical wedge in a porous medium with constant wall temperature and concentration. Transp. Porous Media 94, 123-132. [9.6.1]

    Article  MathSciNet  Google Scholar 

  • Cheng, C. Y. 2012c Free convection boundary layer flow over a horizontal cylinder of elliptic cross section in porous media saturated by a nanofluid. Int. Comm. Heat Mass Transfer 39, 931-936. [5.5.1]

    Article  Google Scholar 

  • Cheng, C. Y. 2012d Free convection of non-Newtonian nanofluids about a vertical truncated cone in a porous medium. Int. Comm. Heat Mass Transfer 39, 1348-1353. [9.7.3]

    Article  Google Scholar 

  • Cheng, C. Y. 2012e Soret and Dufour effects on free convection heat and mass transfer from an arbitrarily inclined plate in a porous medium with constant wall temperature and concentration. Int. Comm. Heat Mass Transfer 39, 72-77. [9.7.3]

    Article  Google Scholar 

  • Cheng, C. Y. 2012f Natural convection boundary layer flow over a truncated cone in a porous medium saturated by a nanofluid. Int. Comm. Heat Mass Transfer 39, 231-235. [9.7.3]

    Article  Google Scholar 

  • Cheng, C. Y. 2012g Soret and Dufour effects on double-diffusive mixed convection from a vertical wall heat and mass fluxes. J. Chinese Soc. Mech. Engnrs. Trans. Chinese Inst. Engnrs C 33, 141-148. [9.6.1]

    Google Scholar 

  • Cheng, C. Y. 2013a Double-diffusive natural convection from a vertical cone in a porous medium saturated with a nanofluid. J. Chinese Soc. Mech. Engrs. 34, 401-409. [9.7.3]

    Google Scholar 

  • Cheng, C. Y. 2014c Analysis of free convection about a vertical cone in a porous medium saturated by a nanofluid. J. Chinese Soc. Mech. Engrs. 35, 453-462. [9.7.3]

    Google Scholar 

  • Cheng, C. Y. 2015b Soret and Dufour effects on double-diffusive free convection from a frustum or a wavy cone in porous media with nonuniform wall temperature and concentration. J. Chinese Soc. Mech. Engrs. 36, 167-174. [9.4]

    Google Scholar 

  • Cheng, P., Betsehorn, M. and Firoozabadi, A. 2012b Effect of permeability anisotropy on buoyancy-driven flow for CO2 sequestration in saline aquifers. Water Resources Res. 48, W0539. [11.11]

    Google Scholar 

  • Choudhury, R. and Das, S. K. 2014 Viscoelastic MHD free convective flow through porous media in presence of radiation and chemical reaction with heat and mass transfer. J. Appl. Fluid Mech. 7, 603-609. [9.1.6.4]

    Google Scholar 

  • Choudhury, R. and Das, B. 2016 Influence of visco-elasticity on MHD heat and mass transfer flow through a porous medium bounded by an inclined surface with chemical reaction. Int. J. Heat Tech. 34, 332-338. [9.2.1]

    Article  Google Scholar 

  • Choudhury, R. and Dey, D. 2010 Free convective visco-elastic flow with heat and mass transfer through a porous medium with periodic permeability. Int. J. Heat Mass Transfer 53, 1666-1672. [9.2.1]

    Article  MATH  Google Scholar 

  • Choukairy, K. and Bennacer, R. 2012 Numerical and analytical analysis of the thermosolutal convection in a heterogeneous porous cavity. Fluid Dyn. Mater. Process. 8, 155-172. [9.2.2]

    MathSciNet  Google Scholar 

  • Choukairy, K., De Sa, C. and Bennacer, R. 2016 Limitation of the 2D parallel flow assumption in thermosolutal convection: 2D-3D transition. Prog. Comput. Fluid Dyn. 16, 102-107. [9.2.2]

    Article  MathSciNet  Google Scholar 

  • Chowdhury, R., Parvin, S. and Khan, M. A. H. 2016 Finite element analysis of double-diffusive natural convection in a porous triangular enclosure filled with Al2O3-water nanofluid in presence of heat generation. Heliyon 2 (2), e00140. [9.7.2]

    Article  Google Scholar 

  • Cimpean, D. S. and Pop, I. 2012 Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int. J. Heat Mass Transfer 55, 907-914. [9.7.4]

    Article  MATH  Google Scholar 

  • Cooper, C. A., Glass, R. J. and Tyler, S. W. 1997 Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele-Shaw cell. Water Resources Res. 33, 517-526. [2.5, 9.1.1]

    Article  Google Scholar 

  • Cooper, C. A., Glass, R. J. and Tyler, S. W. 2001 Effect of buoyancy ratio on the development of double-diffusive finger convection in a Hele-Shaw cell. Water Resources Res. 37, 2323-2332. [9.1.1]

    Article  Google Scholar 

  • Costa, V. A. F. 2004 Double-diffusive natural convection in parallelogrammic enclosures filled with fluid-saturated porous media. Int. J. Heat Mass Transfer 47, 2699-2714. [9.4]

    Article  MATH  Google Scholar 

  • Costesèque, P., Frague, D. and Jamet, P. 2002 Thermodiffusion in porous media and its consequences. Lecture Notes in Physics 584, 389-427. [9.1.4]

    Article  Google Scholar 

  • Das, S. S., Panda, J. P. and Patnaik, A. B. 2009 Effect of free convection and mass transfer on MHD flow of a rotating elastic-viscous fluid past an infinite vertical plate through a porous medium with constant suction and heat flux. Indian J. Sci. Tech. 2, 2951816. [5.1.9.10]

    Google Scholar 

  • Das, S. S., Sahoo, S. K., Dash, G. C. and Panda, J. P. 2006 Free convective and mass transfer flow through a porous medium in the presence of source/sink with constant suction and heat flow. Modell. Meas. Control B. 75, 1-20. [9.2.1]

    Google Scholar 

  • Das, S. S., Satapathy, A., Das, J. K. and Panda, J. P. 2009 Mass transfer effects on a MHD flow and heat transfer past a vertical porous plate through a porous medium under oscillatory suction and heat source. Int. J. Heat Mass Transfer 52, 5962-5969. [9.2.1]

    Article  MATH  Google Scholar 

  • Das, S., Banu, A. S., Jana, R. N. and Makinde, O. D. 2015b Entropy analysis on MHD pseudo-plastic nanofluid flow through a vertical porous channel with convective heating. Alexandria Engng, J. 54, 325-337. [9.7.2]

    Article  Google Scholar 

  • Das, U. J. 2013 Heat and mass transfer effects on hydromagnetic flow along a continuously moving vertical surface in porous medium with chemical reaction. Adv. Appl. Fluid Mech. 13, 25-35. [9.2.1]

    MathSciNet  MATH  Google Scholar 

  • Dash, G. C., Rath, P. K. and Kar, M. 2011 Free convective MHD flow through porous media of an rotating Oldroyd fluid past an infinite vertical porous plate with heat and mass transfer. Proc. Nat. Acad. Sci. India A 81, 223-230. [9.2.1]

    MathSciNet  Google Scholar 

  • Dash, G. C., Rath, P. K. and Mahapatra, N. 2010 Unsteady free convection MHD flow and mass transfer through porous media of a second order fluid between two heated plates with source/sink. Proc. Nat. Acad. Sci. India A 80, 203-212. [9.2.2]

    Google Scholar 

  • Dash, G. C., Rath, P. K. and Patra, A. K. 2009a Unsteady free convective MHD flow through porous media in a rotating system with fluctuating temperature and concentration. Modell. Meas. Control B. 78, 32-49. [5.1.9.7]

    Google Scholar 

  • Dash, G. C., Rath, P. K., Mahapatra, N. and Das, P. K. 2009b Free convective MHD flow through porous media of a rotating visco-elastic fluid past an infinite vertical plate with heat and mass transfer in the presence of a chemical reaction. Modell. Meas. Control B. 78, 21-36. [9.2.1]

    Google Scholar 

  • Davarzani, H., Marcoux, M. and Quintard, M. 2010 Theoretical predictions of the effective thermodiffusion coefficients in porous media. Int. J. Heat Mass Transfer 53, 1514-1528. [9.1.4]

    Article  MATH  Google Scholar 

  • Davidson, M. K. 1986 Natural convection of gas/vapour mixtures in a porous medium. Int. J. Heat Mass Transfer 29, 1371-1381. [9.1.1]

    Article  MATH  Google Scholar 

  • de Lemos, M. J. S. 2009 Turbulent flow and fluid-porous interfaces computed with a diffusion-jump model for k and ε transport equations. Transp. Porous Media 78, 331-346. [1.8]

    Article  Google Scholar 

  • Deepika, N. and Narayana, P. A. L. 2016 Nonlinear stability of double-diffusive convection in a porous layer with throughflow and concentration based internal heat source. Transp. Porous Media 111, 751-762. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Deepika, N., Matta, A. and Laskshmi Narayana, P. A. 2016 Effect of throughflow on double diffusive convection in a porous medium with concentration based internal heat source. J. Porous Media 19, 303-312. [9.1.6.4]

    Article  Google Scholar 

  • Dehsara, M., Dalir, N. and Nobari, M. R. H. 2014 Numerical analysis of entropy generation in nanofluid flow over a transparent plate in a porous medium in presence of solar radiation, viscous dissipation and variable magnetic field. J. Mech. Sci. Tech. 28, 1819-1831. [9.7.3]

    Article  Google Scholar 

  • Delenda, N., Hirata, S. C. and Ouarazi, M. N. 2012 Primary and secondary instabilities of viscoelastic mixtures saturating a porous medium: Application to separation of species. J. Non-Newtonian Fluid Mech. 181, 11-21. [9.1.6.4]

    Article  Google Scholar 

  • Dey, B. and Sekhar, G. P. R. 2014 Mass transfer and species separation due to oscillatory flow in a Brinkman medium. Int. J. Engng. Sci. 74, 35-54. [9.6.2]

    Article  MathSciNet  Google Scholar 

  • Diaz, E. and Brevdo, L. 2011 Absolute/convective instability dichotomy at the onset of convection in a porous layer with either horizontal or vertical solutal and inclined thermal gradients, and horizontal throughflow. J. Fluid Mech. 681, 567-596. [9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Diaz, E. and Brevdo, L. 2012 Transition from convective to absolute instability in a porous layer with either horizontal or vertical solutal and inclined thermal gradients, and horizontal throughflow. Transp. Porous Media 92, 597-617. [9.1.3]

    Article  MathSciNet  Google Scholar 

  • Dickson, C., Torabi, M. and Karimi, N. 2016 First and second law analyses of nanofluid forced convection in a partially-filled porous channel—The effects of local thermal non-equilibrium and internal heat sources. Appl. Therm. Engng. 103, 459-480. [9.7.1]

    Article  Google Scholar 

  • Diersch, H. J. G. and Kolditz, O. 2002 Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Res. 25, 899-944. [9]

    Article  Google Scholar 

  • Divya, Sharma, R. C. and Sunil. 2005 Thermosolutal convection in a ferromagnetic fluid saturating a porous medium. J. Porous Media 8, 393-408. [9.1.6.4]

    Google Scholar 

  • Doh, D. H., Muthtamilselvan, M. and Prakash, D. 2016 Transient heat and mass transfer of micropolar fluid between porous vertical channel with boundary conditions of third kind. Int. J. Nonlinear Sci. Numer. Simul. 17, 231-242. [9.2.2]

    MathSciNet  Google Scholar 

  • Durga Prasad, P., Kiran Kumar, R. V. M. S., Mamatha, B. and Varma, S. V. K. 2016 Diffusion-thermo and porous medium effects on MHD free convection heat and mass transfer flow over an inclined surface. Global J. Pure Appl. Math. 12, 142-150. [9.2.1]

    Google Scholar 

  • Duwairi, H. M. and Damseh, R. A. 2008b Thermophoresis particle deposition—thermal radiation interaction on mixed convection from a vertical surface embedded in porous medium. Canad. J. Phys. 87, 161-167. [9.2.1]

    Article  MATH  Google Scholar 

  • Duwairi, H. M. and Damseh, R. A. 2009 Thermophoresis particle deposition—thermal radiation interaction on natural convection heat and mass transfer from vertical permeable surfaces. Int. J. Numer. Meth. Heat Fluid Flow 19, 617-632. [9.2.1]

    Article  Google Scholar 

  • El Ayachi, R., Raji, A., Hasnaoui, M., Abdelbaki, A. and Naimi, M. 2010 Resonance of double-diffusive convection in a porous medium heated by a sinusoidal exciting temperature. J. Appl. Fluid Mech. 3, 43-52. [9.1.6.4]

    Google Scholar 

  • El-Amin, M. F. 2004a Double dispersion effects on natural convection heat and mass transfer in non-Darcy porous medium. Appl. Math. Comput. 156, 1-17. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • El-Amin, M. F., Aissa, W. A. and Salama, A. 2008 Effects of chemical reaction and double dispersion on non-Darcy free convection heat and mass transfer. Transp. Porous Media 75, 93-109. [9.1.6.4]

    Article  Google Scholar 

  • El-Arabawy, H. A. M. 2009 Soret and Dufour effects on natural convection flow past a vertical surface in a porous medium with variable surface temperature. J. Math. Stat. 5, 190-198. [9.1.5]

    Article  MATH  Google Scholar 

  • El-Aziz, M. A. 2007 Blowing/suction effects on hydromagnetic simultaneous heat and mass transfer by natural convection from a vertical cylinder embedded in a thermally stratified porous medium. J. Porous Media 10, 297-310. [9.2.1]

    Article  Google Scholar 

  • Elbashbeshy, E. M. A., Emam, T. G., El-Azab, M. S. and Abdelgaber, K. M. 2015 Effect of thermal radiation on flow, heat, and mass transfer of a nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection. J. Porous Media 18, 215-229. [9.7.3]

    Article  Google Scholar 

  • Elbashbeshy, E. M. A., Yassmin, D. M. and Dalia, A. A. 2010 Heat transfer over an unsteady porous stretching surface embedded in a porous medium with variable heat flux in the presence of heat source or sink. African J. Math. Comput. Sci. Res. 3, 68-73. [9.2.1]

    Google Scholar 

  • Elbouzidi, A., Gueraoui, K, Samaouali, A., Sammouda, M. and Oudrhiri, H. 2014a New characterization of the phenomenon of natural and thermosolutal natural convection in porous media with non-uniform porosity. Appl. Math. Sci. 8, 8941-8952. [9.1.6.4]

    Article  Google Scholar 

  • Elbouzidi, A., Gueroui, K, Samaouali, A., Sammouda, M. and Oudrhiri, H. 2014b New characterization of the phenomenon of thermosolutal natural convection in porous media with non-uniform porosity. Contemp. Engng. Sci. 7, 1867-1880. [9.1.6.4]

    Article  Google Scholar 

  • Eldabe, N. T. M. and Sallam, S. N. 2005 Non-Darcy Couette flow through a porous medium of magnetohydrodynamic viscoelastic fluid with heat and mass transfer. Canad. J. Phys. 83, 1241–1263. [9.2.2]

    Article  Google Scholar 

  • Eldabe, N. T., Ahmed, M., Fouad, A. and Sayed, A. 2008 Numerical study of flow of magnetohydrodynamic non-Newtonian fluid obeying the Eyring-Powell mode through a non-Darcy porous medium with coupled heat and mass transfer. J. Porous Media 11, 691-700. [9.2.1]

    Article  Google Scholar 

  • Elhajjar, B., Charrier-Mojtabi, M. C. and Mojtabi, A. 2008 Separation of a binary fluid mixture in a porous horizontal cavity. Phys. Rev. E 77, #026310. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Elhajjar, B., Mojtabi, A. and Charrier-Mojtabi, M. C. 2009 Influence of vertical vibrations on the separation of a binary mixture in a horizontal porous layer heated from below. Int. J. Heat Mass Transfer 52, 165-172. [9.1.4]

    Article  MATH  Google Scholar 

  • Elhajjar, B., Mojtabi, A. and Charrier-Mojtabi, M. C. 2010 Separation in an inclined porous thermogravitational cell. Int. J. Heat Mass Transfer 53, 4844-4851. [9.1.4]

    Article  MATH  Google Scholar 

  • El-Hakiem, M. A. 2009 Radiative effects on non-Darcy natural convection from a heated vertical plate in saturated porous media with mass transfer for non-Newtonian fluid. J. Porous Media 12, 89-99. [9.2.1]

    Article  Google Scholar 

  • El-Kabeir, S. M. M. 2011 Soret and Dufour effects on heat and mass transfer due to a stretching cylinder saturated porous medium with chemically-reactive species. Latin Amer. Appl. Res. 41, 331-337. [9.2.1]

    Google Scholar 

  • El-Kabeir, S. M. M. 2012 Soret and Dufour effects on heat and mass transfer by mixed convection over a vertical surface saturated porous medium with temperature dependent viscosity. Int. J. Numer. Methods Fluids 69, 1633-1645. [9.6.1]

    Article  MathSciNet  MATH  Google Scholar 

  • El-Kabeir, S. M. M., Chamkha, A. J. and Rashad, A. M. 2014 Effect of thermal radiation on non-Darcy natural convection from a vertical cylinder embedded in a nanofluid porous media. J. Porous Media 17, 269-278. [9.7.3]

    Article  Google Scholar 

  • El-Kabeir, S. M. M., El-Hakiem, M. A. and Rashad, A. M. 2008 Group method analysis of combined heat and mass transfer by MHD non-Darcy non-Newtonian natural convection adjacent to horizontal cylinder in a saturated porous medium. Appl. Meth. Mod. 32, 2378-2395. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • El-Kabeir, S. M. M., El-Hakiem, M. A. and Rashad, A. M. 2008 Lie group analysis of unsteady MHD three dimensional natural convection from an inclined stretching surface saturated porous medium. J. Comput. Appl. Math. 213, 582-603. [5.3]

    Article  MathSciNet  MATH  Google Scholar 

  • El-Kabeir, S. M. M., Modather, M. and Rashad, A. M. 2015a Heat and mass transfer by unsteady natural convection over a moving vertical plate embedded in a saturated porous medium with chemical reaction, Soret and Dufour effects. J. Appl. Fluid Mech. 8, 453-463. [9.2.1]

    Article  Google Scholar 

  • El-Kabeir, S. M. M., Modather, M. and Rashad, A. M. 2015b Effect of thermal radiation on mixed convection flow of a nanofluid about a solid sphere in a saturated porous medium under convective boundary conditions. J. Porous Media 18, 569-584. [9.7.4]

    Article  Google Scholar 

  • Ellahi, R., Aziz, S. and Zeeshan, A. 2013 Non-Newtonian nanofluid flow through a porous medium between two co-axial cylinders with heat transfer and variable viscosity. J. Porous Media 16, 205-216. [9.7.4]

    Article  Google Scholar 

  • El-Sayed, M. F., Eldabe, N. T. M., Ghaly, A. Y. and Sayed, H. M. 2011 Effect of chemical reaction, heat and mass transfer on non-Newtonian fluid flow through porous medium in a vertical peristaltic tube. Transp. Porous Media 89, 185-212. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Er-Raki, M., Hasnaoui, M., Amahmid, A. and Bourich, M. 2005 Soret driven thermosolutal convection in a shallow porous layer with a stress-free upper surface. Engng. Comput. 22, 186-205. [9.1.4]

    Article  MATH  Google Scholar 

  • Er-Raki, M., Hasnaoui, M., Ahamid, A., Bourich, M. and El Ganaoui, M. 2010 Thermosolutal natural convection combined with Soret effect within a vertical porous enclosure in a boundary layer regime. Phys. Chem. News 55, 103-106. [9.2.2]

    Google Scholar 

  • Er-Raki, M., Hasnaoui, M., Amahmid, A. and Mamou, M. 2006a Soret effect on the boundary layer flow regime in a vertical porous enclosure subject to horizontal heat and mass fluxes. Int. J. Heat Mass Transfer 49, 3111-3120. [9.1.4]

    Article  MATH  Google Scholar 

  • Er-Raki, M., Hasnaoui, M., Amahmid, A., El Ganaoui, M. 2008 Specific behaviour of thermosolutal convection induced in a vertical porous medium in the case of separation coefficient identical to the ratio of buoyancy forces. C. R. Mecanique 336, 304-312. [9.1.4]

    Article  MATH  Google Scholar 

  • Estebe, J. and Schott, J. 1970 Concentration saline et cristallisation dans un milieu poreux par effet thermogravitationnel. C. R. Acad. Sci. Paris 271, 805-807. [9.1.6.4]

    Google Scholar 

  • Eswaramurthi, M. and Kandaswamy, P. 2009 Transient double-diffusive convection of water around 4 degrees C in a porous cavity. ASME J. Heat Transfer 131, 052601. [9.2.2]

    Article  Google Scholar 

  • Falsaperla, P., Giacobbe, A. and Mulone, G. 2012 Double diffusion in rotating porous media under general boundary conditions. Int. J. Heat Mass Transfer 55, 2412-2419. [9.1.3, 9.1.6.4]

    Article  Google Scholar 

  • Faruque, D, Saghir, M. Z., Chacha, M. and Ghorayeb, K. 2004 Compositional variation considering diffusion and convection for a binary mixture in a porous medium. J. Porous Media 7, 73-91. [9.1.4]

    Article  MATH  Google Scholar 

  • Ferdows, M. and Chen, C. H. 2009 Heat and mass transfer on MHD free convection from a vertical plate in a porous medium with Dufour and Soret effects. Int. J. Heat Tech. 27, 33-38. [9.2.1]

    Google Scholar 

  • Ferdows, M. Tzirtzilakis, E., Kaino, K. and Chen, C. H. 2008 Soret and Dufour effects on natural convection heat and mass transfer flow in a porous medium. Int. J. Appl. Math. Stat. 13, (D08) 36-48. [9.2.1]

    MathSciNet  Google Scholar 

  • Ferdows, M., Kaino, K. and Sivasankaran, S. 2009 Free convection flow in an inclined porous surface. J. Porous Media 12, 997-1003. [5.3]

    Article  Google Scholar 

  • Ferdows, M., Kaino, K. and Sivasankaran, S. 2009 MHD free convection and mass transfer flow in an inclined porous surface with simultaneous rotating fluid. J. Porous Media 12, 997-1003. [5.3]

    Article  Google Scholar 

  • Ferdows, M., Khan, M. S., Alam, M. M. and Sun, S. Y. 2012 MHD convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet. Math. Problems Engng. 408526. [9.7.4]

    Google Scholar 

  • Ferdows, M., Uddin, M. J. and Khaleque, T. S. 2013 Double diffusion, slips and variable diffusivity effects on combined heat mass transfer with variable viscosity via a point transformation. Prog. Comput. Fluid Dyn. 13, 54-64. [9.1.4]

    Article  MathSciNet  Google Scholar 

  • Fersdaou, I., Kahalerras, H. and Ganaoui, M. E. 2015 MHD mixed convection and entropy generation of a nanofluid in a vertical porous channel. Comp. Fluids 121, 164-179. [9.7.4]

    Article  MathSciNet  Google Scholar 

  • Forsyth, P. A. and Simpson, R. B. 1991 A two-phase, two-component model for natural convection in a porous medium. Int. J. Numer. Meth. Fluids 12, 655-682. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Franchi, F. and Straughan, B. 1993 Continuous dependence on the body force for solutions of the Navier-Stokes equations and the heat supply in a model for double diffusive porous convection. J. Math. Anal. Appl. 72, 117-129. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, W. S. and Ke, W. W. 2000 Effects of random porosity model on double-diffusive natural convection in a porous medium enclosure. Int. Comm. Heat Mass Transfer 27, 119-132. [9.2.2]

    Article  Google Scholar 

  • Gaikwad, S. N. and Begum, I. 2013 Onset of double-diffusive reaction-convection in an anisotropic rotating porous layer. Transp. Porous Media 98, 239-257. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Gaikwad, S. N. and Birada, B. S. 2013 The onset of double-diffusive convection in a Maxwell fluid saturated porous layer. Spec. Top. Rev. Porous Media 4, 181-195. [9.1.6.4]

    Article  Google Scholar 

  • Gaikwad, S. N. and Dhanraj, M. 2014a Soret effect on Darcy-Brinkman convection in a binary viscoelastic fluid-saturated porous layer. Heat Transfer Asian Res. 43, 297-320. [9.1.4]

    Article  Google Scholar 

  • Gaikwad, S. N. and Dhanraj, M. 2015 Onset of double diffusive reaction-convection in an anisotropic porous layer with an internal heat source. J. Porous Media 18, 597-612. [9.1.6.4]

    Article  Google Scholar 

  • Gaikwad, S. N. and Dhanraj, M. 2016 Onset of Darcy-Brinkman reaction convection in an anisotropic porous layer. J. Appl. Fluid Mech. 9, 975-986. [9.1.6.4]

    Article  Google Scholar 

  • Gaikwad, S. N. and Kamble, S. S. 2012 Soret effect on linear DDC in a horizontal sparsely packed porous layer. Int. J. Phys. Math. Sci. 2, 97-104. [9.1.4]

    Google Scholar 

  • Gaikwad, S. N. and Kamble, S. S. 2014 Linear stability analysis of double diffusive convection in a horizontal sparsely packed rotating anisotropic porous layer in presence of Soret effect. J. Appl. Fluid Mech. 7, 459-471. [9.1.4]

    Google Scholar 

  • Gaikwad, S. N. and Kamble, S. S. 2016 Cross-diffusion effects on the onset of double-diffusive convection in a couple-stress fluid saturated rotating anisotropic porous layer. J. Appl. Fluid Mech. 9, 1645-1654. [9.1.6.4]

    Google Scholar 

  • Gaikwad, S. N. and Kousar, S. 2012 Analytical study of linear and nonlinear double diffusive convection in a rotating anisotropic porous layer with Soret effect. J. Porous Media 15, 745-774. [9.1.4]

    Article  Google Scholar 

  • Gaikwad, S. N. and Kouser, S. 2013 Onset of Darcy-Brinkman convection in a binary viscoelastic fluid-saturated porous layer with internal heat source. Heat Transfer Asian Res. 42, 676-703. [9.1.6.4]

    Article  Google Scholar 

  • Gaikwad, S. N. and Kouser, S. 2014 Double diffusive convection in a couple stress fluid saturated porous layer with internal heat source. Int. J. Heat Mass Transfer 78, 1254-1264. [9.1.6.4]

    Article  Google Scholar 

  • Gaikwad, S. N. and Prasad, K. R. 2011 An analytical study of double diffusive convection in a porous medium saturated with couple stress fluid in the presence of Soret effect. J. Porous Media 14, 1019-1031. [9.1.4]

    Article  Google Scholar 

  • Gaikwad, S. N., Malashetty, M. S. and Prasad, K. R. 2009a An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect. Appl. Math. Modell. 33, 3617-3635. [9.1.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Gaikwad, S. N., Malashetty, M. S. and Prasad, K. R. 2009b Linear and nonlinear double diffusive convection in a fluid-saturated anisotropic porous layer with cross-diffusion effects. Transp. Porous Media 80, 537-560. [9.1.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Gaillard, S., Farsgue, D. and Jamet, P. 2003 Analytical and numerical exploration of oscillatory convection in porous media. Phil. Mag. 83, 2131-2138. [9.1.4]

    Article  Google Scholar 

  • Ganapathy, R. 1994a Free convective heat and mass transfer flow induced by an instantaneous point source in an infinite porous medium. Fluid Dyn. Res. 14, 313-329. [5.11.2]

    Article  Google Scholar 

  • Ganapathy, R. 1994b Free convection flow induced by a line source in a sparsely packed porous medium. Adv. Water Resources 17, 251-258, Corrigendum 19, 255-257. [9.3.2]

    Article  Google Scholar 

  • Ganapathy, R. 2012 Double diffusion from a heated sphere in an infinite porous medium. ASME J. Heat Transfer 134, 092001. [9.2.1]

    Article  Google Scholar 

  • Ganapathy, R. and Mohan, A. 2016 Thermo-diffusive Darcy flow induced by a concentrated source. Ain Shams Engng. J. 7, 1069–1078. [9.3.1]

    Article  Google Scholar 

  • Ganesan, P., Suganthi, R. K. and Loganathan, P. 2014 Thermophoresis particle deposition effects in a free convective doubly stratified medium over a vertical plate. Meccanica 49, 659-672. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Ganghadhar, K. and Bhaskar Reddy, N. 2013 Chemically reacting MHD boundary layer flow of heat and mass transfer over a moving vertical plate in a porous medium with suction. J. Appl. Fluid Mech. 6, 107-114. [9.2.1]

    Google Scholar 

  • Gershuni, G. Z., Zhukhovitskii, E. M. and Lyubimov, D. V. 1976 Thermo-concentration instability of a mixture in a porous medium. Dokl. Akad, Nauk. SSSR 229, 575-578 (English translation Sov. Phys. Dokl . 21, 375-377.) [9.2.4]

    Google Scholar 

  • Gershuni, G. Z., Zhukhovitskii, E. M. and Lyubimov, D. V. 1980 Stability of stationary convective flow of a mixture in a vertical porous layer. Fluid Dynamics 15, 122-127. [9.2.4]

    Article  MATH  Google Scholar 

  • Getachew, D., Poulikakos, D. and Minkowycz, W. J. 1998 Double diffusion in porous cavity saturated with non-Newtonian fluid. J. Thermophys. Heat Transfer 12, 437-446. [9.2.2]

    Article  MATH  Google Scholar 

  • Ghalambaz, A. Noghrehabadi, A. 2014 Effects of heat generation/absorption on natural convection of nanofluids over the vertical plate embedded in a porous medium using drift-flux model, Journal of Computational and Applied Research in Mechanical Engineering 3(2), 113-123. [9.7.3]

    Google Scholar 

  • Ghalambaz, M., Behseresht, A., Behseresht, J. and Chamkha, A. 2015a Effect of nanoparticle diameter and concentration on natural convection in Al2O3–water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv. Powder Tech. 26, 224-235. [9.7.3]

    Article  Google Scholar 

  • Ghalambaz, M., Moattar, F., Sheremet, M. A. and Pop, I. 2016 Triple-diffusive natural convection in a square porous cavity. Transp. Porous Media 111, 59-79. [9.2.2]

    Article  MathSciNet  Google Scholar 

  • Ghalambaz, M., Moattar, F.M., Karbassi, A., Sheremet, M. A. and Pop, I. 2017 Triple diffusive mixed convection in a porous open cavity. Transp. Porous Media, to appear. [9.6.2]

    Google Scholar 

  • Ghalambaz, M., Noghrehabadi, A. and Ghanbarzadeh, A. 2014 Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium. Brazilian J. Chem. Engng. 31, 413-427. [9.7.3]

    Article  Google Scholar 

  • Ghalambaz, M., Sheremet, M. A. and Pop, I. 2015c Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das model. PLoS ONE 10, 0126486. [9.7.2]

    Article  Google Scholar 

  • Gilman, A. and Bear, J. 1996 The influence of free convection on soil salinization in arid regions. Transport Porous Media 23, 275-301. [9.1.6.4, 11.8]

    Article  Google Scholar 

  • Gobin, D. and Goyeau, B. 2010 Thermosolutal natural convection in partially porous domains. 14th Int. Heat Transfer Conf. 8, 621-637. [9.1.6.4]

    Google Scholar 

  • Gobin, D., Goyeau, B. 2012 Thermosolutal natural convection in partially porous domains. ASME J. Heat Transfer 134, #031013. [1.6, 9.4]

    Google Scholar 

  • Gobin, D., Goyeau, B. and Neculae, A. 2005 Convective heat and solute transfer in partially porous cavities. Int. J. Heat Mass Transfer 48, 1898-1908. [9.4]

    Article  MATH  Google Scholar 

  • Gobin, D., Goyeau, B. and Songbe, J. P. 1998 Double diffusive natural convection in a composite porous layer. ASME J. Heat Transfer 120, 234-242. [9.4]

    Article  MATH  Google Scholar 

  • Goldobin, D. S. and Lyubimov, D. V. 2007 Soret-driven convection of binary mixture in a horizontal porous layer in the presence of a heat or concentration source. J. Exper. Theor. Phys. 104, 830-836. [9.1.4]

    Article  Google Scholar 

  • Gorla, R. S. R and Abdel-Gaied, S. M. 2011 Mixed convection in a porous medium saturated with a nanofluid: Entire regime. J. Thermophys. Heat Transfer 26, 386-390. Corrigendum 29, 647-647 (2015). [9.7.4]

    Article  Google Scholar 

  • Gorla, R. S. R. and Chamkha, A. 2011 Natural convective boundary layer flow over a non-isothermal vertical plate embedded in a porous medium saturated with a nanofluid. Nanoscale Microscale Thermophys. Engng. 15, 81-94. [5.1.9.12]

    Article  Google Scholar 

  • Gorla, R. S. R. and Chamkha, A. J. 2011b Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid. J. Modern Phys. 2, 62-71. [9.7.3]

    Article  Google Scholar 

  • Gorla, R. S. R. and Chamkha, A. J. 2011c Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a non-Newtonian nanofluid. Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom. 2, 211-227. [9.7.3]

    Google Scholar 

  • Gorla, R. S. R. and Hossain, A. 2013 Mixed convective boundary layer flow over a vertical cylinder embedded in a porous medium saturated with a nanofluid. Int. J. Numer. Mech. Heat Fluid Flow 23, 1393-1405. [9.7.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Gorla, R. S. R. and Khan, W. 2012 Natural convective boundary-layer flow over a vertical cylinder embedded in a porous medium saturated with a nanofluid. J. Nanotech. Engng. Med. 3, 034501. [9.7.3]

    Article  Google Scholar 

  • Gorla, R. S. R. and Kumari, M. 2011 Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: Entire regime. Prog. IMEE, J. Nanoengineering Nanosystems 225, 55-66. [9.7.4]

    Article  Google Scholar 

  • Gorla, R. S. R., Chamkha, A. J. and Ghodeswar, K. 2014 Natural convective boundary layer flow over a vertical cone embedded in a porous medium saturated with a nanofluid. J. Nanofluids 3, 65-71. [9.7.3]

    Article  Google Scholar 

  • Gorla, R. S. R., Chamkha, A. J. and Rashad, A. M. 2011b Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid: Natural convection dominated regime. Nanoscale Res. Lett. 6, X1-9. [9.7.4]

    Article  Google Scholar 

  • Govender, S. 2016a Thermal instability in a rotating vertical porous layer saturated by a nanofluid. ASME J. Heat Transfer 138, 052601. [9.7.2]

    Article  Google Scholar 

  • Govender, S. 2016b Thermal instability of convection in a rotating nanofluid saturated porous layer placed at a finite distance from the axis of rotation. ASME J. Heat Transfer 138, 102402. [9.7.2]

    Article  Google Scholar 

  • Govindarajan, A., Chamkha, A. J., Kesavan, S. and Vidhya, M. 2014 Chemical reaction effects on unsteady magnetohydrodynamic free convective flow in a rotating porous medium with mass transfer. Thermal Science 18 (Suppl. 2) 515-526. [9.2.1]

    Article  Google Scholar 

  • Goyal, N. and Jaimala 2012 On thermosolutal convection in micropolar fluid in porous medium: Soret-Dufour phenomenon. AIP Conf. Proc. 1453, 197-202. [9.1.4]

    Article  Google Scholar 

  • Goyeau, B. and Gobin, D. 1999 Heat transfer by thermosolutal natural convection in a vertical composite fluid-porous cavity. Int. Comm. Heat Mass Transfer 26, 1115-1126. [9.4]

    Article  Google Scholar 

  • Goyeau, B., Mergui, S., Songe, J. P. and Gobin, D. 1996b Convection thermosolutale en cavité partiellement occupée par une couch poreuse faibllement perméable. C.R. Acad. Sci. Paris, Sér. II, 323, 447-454. [9.4]

    Google Scholar 

  • Goyeau, B., Songe, J. P. and Gobin, D. 1996a Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation. Int. J. Heat Mass Transfer 39, 1363-1378. [9.2.2]

    Article  MATH  Google Scholar 

  • Green, T. 1984 Scales for double-diffusive fingering in porous media. Water Resources Res. 20, 1225-1229. [9.1.3]

    Article  Google Scholar 

  • Griffiths, R. W. 1981 Layered double-diffusive convection in porous media. J. Fluid Mech. 102, 221-248. [2.5, 9.1.3]

    Article  Google Scholar 

  • Grosan, T., Revnic, C., Pop, I. and Ingham, D. B. 2015 Free convection heat transfer in a square cavity filled with a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 87, 36-41. [9.7.2]

    Article  Google Scholar 

  • Guo, J. and Kaloni, P. N. 1995a Nonlinear stability of convection induced by inclined thermal and solutal gradients. Z. Angew. Math. Phys. 46, 645-654. [9.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, J. and Kaloni, P. N. 1995b Double-diffusive convection in a porous-medium, nonlinear stability, and the Brinkman effect. Stud. Appl. Math. 94, 341-358. [9.1.6.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Hadidi, N., Bennacer, R. and Ould-Amer, Y. 2015 Two-dimensional thermosolutal natural convection heat and mass transfer in a bi-layered and inclined porous enclosure. Energy 93, 2582-2592, part 2. [9.4]

    Google Scholar 

  • Hadidi, N., Bennacer, R. and Ould-Amer, Y. 2016 Numerical study of double-diffusive convection developed within horizontal partially porous enclosure. Desalination Water Treatment, to appear. [9.2.2]

    Google Scholar 

  • Hadidi, N., Ould-Amer, Y. and Bennacer, R. 2013 Bi-layered and inclined porous collector: Optimum heat and mass transfer. Energy 51, 422-430. [9.4]

    Article  Google Scholar 

  • Hady, F. M., Ibrahim, F. S., Abdel-Gaied, S. M. and Eid, M. R. 2011c Influence of yield stress on free convective boundary layer flow of a non-Newtonian nanofluid past a vertical plate in a porous medium. J. Mech. Sci. Tech. 25, 2043-2050. [9.7.3]

    Article  MATH  Google Scholar 

  • Hady, F. M., Ibrahim, F. S., Abdel-Gaied, S. M. and Eid, M. R. 2011a Effect of heat generation/absorption on natural convective boundary-layer flow from a vertical cone embedded in a porous medium filled with a non-Newtonian nanofluid. Int. Comm. Heat Mass Transfer 38, 1414-1420. [9.7.3]

    Article  Google Scholar 

  • Hady, F. M., Ibrahim, F. S., Abdel-Gaied, S. M. and Eid, M. R. 2011b Boundary-layer non-Newtonian flow over vertical plate in porous medium saturated with nanofluid. Appl. Math. Mech. (English ed.) 32, 1577-1588. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Hady, F. M., Ibrahim, S. M., Abdel-Gaied, S. M. and Eid, M. R. 2016 Boundary-layer flow in a porous medium of a nanofluid past a vertical cone. Int. J. Engng. Res. Africa 19, 57–74. [9.7.3]

    MATH  Google Scholar 

  • Haile, E. and Shankar, B. 2016 Effects of radiation, viscous dissipation and magnetic field on nanofluid flow in a saturated porous media with convective boundary condition. Comput. Therm. Sci. 8, 177-191. [9.7.3]

    Article  Google Scholar 

  • Hajipour, M. and Dehkordi, A. M. 2012a Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium. Int. J. Therm. Sci. 55, 103-113. [8.4.1]

    Article  Google Scholar 

  • Hajipour, M. and Dehkordi, A. M. 2012b Transient behavior of fluid flow and heat transfer in vertical channel partially filled with porous medium: Effects of inertial term and viscous dissipation. Energy Convers. Manag. 61, 1-7. [7.7]

    Article  Google Scholar 

  • Hajipour, M. and Dehkordi, A. M. 2014 Mixed convection flow of Al2O3-H2O nanofluid in a channel partially filled with porous metal foam: Experimental and numerical study. Exp. Therm. Fluid Sci. 53, 49-56. [9.7.4]

    Article  Google Scholar 

  • Hajipour, M., Dehkordi, A. M. and Jamshidi, S. 2014 Numerical investigation of nanofluid mixed-convection flow in the entrance region of a vertical channel partially filled with porous medium. Heat Transfer Asian Res. 43, 607-627. [9.7.4]

    Article  Google Scholar 

  • Hamad, M. A. A. and Pop, I. 2011 Scaling transformations for boundary layer flow near the stagnation point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects. Transp. Porous Media 87, 25-39. [5.1.9.9]

    Article  MathSciNet  Google Scholar 

  • Haque, M. M., Alam, M. M., Ferdows, M. and Al-Mdallal, Q. M. 2013 Numerical simulation and stability analysis on MHD free convective heat and mass transfer unsteady flow through a porous medium in a rotating system with induced magnetic field. Int. J. Appl. Electromag. Mech. 41, 121-141. [9.1.6.4]

    Google Scholar 

  • Harfash, A. J. 2016d Nonhomogeneous porosity and thermal diffusivity effects on a double-diffusive convection in anisotropic porous media. Int. J. Nonlinear Sci. Numer. Simul. 17, 2015-220. [9.1.6.2]

    MathSciNet  Google Scholar 

  • Harfash, A. J. and Alshara, A. K. 2015a Chemical reaction effect on double diffusive convection in porous media with magnetic and variable gravity effects. Korean J. Chem. Engng. 32, 1046-1059. [9.1.6.4]

    Article  Google Scholar 

  • Harfash, A. J. and Alshara, A. K. 2015b Magnetic field and throughflow effects on double-diffusive convection in internally heated anisotropic porous media. Korean J. Chem. Engng. 32, 1970-1985. [9.1.6.4]

    Article  Google Scholar 

  • Harfash, A. J. and Hill, A. A. 2014 Simulation of three-dimensional double-diffusive throughflow in internally heated anisotropic porous media. Int. J. Heat Mass Transfer 72, 609-615. [9.1.6]

    Article  Google Scholar 

  • Harish Babu, D. and Satya Narayana, P. V. 2013 Influence of variable permeability and radiation absorption on heat and mass transfer in MHD micropolar flow over a vertical moving porous plate. ISRN Thermodynamics 953536. [9.2.1]

    Google Scholar 

  • Harzallah, H. S., Jbara, A. and Slimi, K. 2014 Double-diffusive natural convection in anisotropic porous medium bounded by finite thickness walls: Validity of local thermal equilibrium assumption. Transp. Porous Media 103, 207-231. [9.2.2]

    Article  MathSciNet  Google Scholar 

  • Hashemi Amrei S. M. H. and Dekhordi, A. M. 2014 Modeling and CFD simulation of mixed convection flow of regular fluids and nanofluids in vertical porous and regular channels. Heat Transfer Asian Res. 43, 243–269. [9.7.4]

    Article  Google Scholar 

  • Hassan, M. and Mujumdar, A. S. 1985 Transpiration-induced buoyancy effect around a horizontal cylinder embedded in a porous medium. Int. J. Energy Res. 9, 151-163. [9.2.1]

    Article  Google Scholar 

  • Hassanien, I. A. and Allah, M. H. O. 2002 Oscillatory hydromagnetic flow through a porous medium with variable permeability in the presence of free convection and mass transfer flow. Int. Comm. Heat Mass Transfer 29, 567-575. [9.2.1]

    Article  Google Scholar 

  • Hassanien, I. A., Essawy, A. H. and Moursy, N. M. 2003a Variable viscosity and thermal conductivity effects on combined heat and mass transfer in mixed convection over a UHF/UMF wedge in porous media: the entire regime. Appl. Math. Comput. 145, 667-682. [9.6.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Hatami, M., Sheikholeslami, M. and Ganji, D. D. 2014 Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall. J. Molecular Liquids 195, 230-239. [9.7.1]

    Article  Google Scholar 

  • Hayat, T., Abbas, Z., Pop, I. and Asghar, S. 2010a Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int. J. Heat Mass Transfer 53, 466-474. [8.1.6]

    Article  MATH  Google Scholar 

  • Hayat, T., Farooq, S., Alsaedi, A. and Ahmad, B. 2016 Effect of variable viscosity and radial magnetic field on peristalsis of copper-water nanomaterial in a non-uniform porous medium. Int. J. Heat Mass Transfer 103, 1133-1143. [9.7.3]

    Article  Google Scholar 

  • Hayat, T., Imtiaz, M. and Alsaedi, A. 2015a MHD 3D flow of nanofluid in presence of convective conditions. J. Molec. Liquids 212, 203-208. [9.7.3]

    Article  Google Scholar 

  • Hayat, T., Imtiaz, M. and Alsaedi, A. 2015b Impact of magnetohydrodynamics in bidirectional flow of nanofluid subject to second order slip velocity and homogeneous-heterogeneous reactions. J. Magnet. Magnet. Mater. 395, 294-302. [9.7.3]

    Article  Google Scholar 

  • Hayat, T., Imtiaz, M., Alsaedi, A. and Mansoor, R. 2014 MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions. Chinese Phys. B. 23, 054701. [9.7.3]

    Article  Google Scholar 

  • Hayat, T., Muhammed, T., Shehzad, S. A. and Alsaedi, A. 2015c Soret and Dufour effects in three-dimensional flow over an exponentially stretching surface with porous medium, chemical reaction and heat source/sink. Int. J. Numer. Meth. Heat Fluid Flow 25, 762-781. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Hayat, T., Nawaz, S., Alsaedi, A. and Rafiq, M. 2016 Impact of second-order velocity and thermal slips in the mixed convection peristalsis with carbon nanotubes and porous medium. J. Molecular Liquids. 221, 434-442. [9.7.4]

    Article  Google Scholar 

  • Hayat, T., Qasim, M. and Abbas, S. 2010c Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Comm. Nonlinear Sci. Numer. Simul. 15, 2375-2387. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Hemalatha, K., Kameswaran, P. K. and Madhavi, M. V. D. N. S. 2015 Mixed convection heat transfer from a vertical plate embedded in a saturated non-Darcy porous medium with concentration and melting effect. Sadhana – Acad. Proc. Engng 40, 455-465. [9.6.1]

    Google Scholar 

  • Hidouri, N., Mchirgui, A., Magherbi, M. and Ben Brahim, A. 2013 Numerical investigation of entropy generation for double diffusive convection with Soret effect in a square porous cavity using Darcy-Brinkman model. J. Porous Media 16, 811-822. [9.1.6.4]

    Article  Google Scholar 

  • Hill, A. A. 2005 Double-diffusive convection in a porous medium with concentration based internal heat source. Proc. Roy. Soc. Lond. A 461, 561-574. [9.3.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, A. A. 2008 Global stability for penetrative double-diffusive convection in a porous medium. Acta Mech. 200, 1-10. [9.1.3]

    Article  MATH  Google Scholar 

  • Hill, A. A. 2009 A differential constraint approach to obtain global stability for radiation-induced double-diffusive convection in a porous medium. Math. Meth. Appl. Sci. 32, 914-921. [9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, A. A. and Carr, M. 2013a The influence of a fluid-porous interface on solar pond stability. Adv. Water Resour. 52, 1-6. [9.1.6.4]

    Article  Google Scholar 

  • Hill, A. A. and Carr, M. 2013b Stabilizing solar ponds by utilizing porous materials. Adv. Water Resour. 60, 1-6. [9.1.6.4]

    Article  Google Scholar 

  • Hill, A. A. and Malashetty, M. S. 2012 An operative method to obtain sharp nonlinear stability for systems with spatially dependent coefficients. Proc. Roy. Soc. Lond. A 468, 323-336. [9.1.3]

    Article  MathSciNet  Google Scholar 

  • Himrane, N., Ameziani, D. E., Bouhadef, K. and Bennacer, K. 2016 Thermal enhancement in storage silos with periodic wall heating. Arabian J. Sci. Engng. 41, 623-637. [9.4]

    Article  Google Scholar 

  • Hirata, M. C., Hady, F. M., Abdel-Gaied, S. M. and Eid, M. R. 2010 Influence of chemical reaction on heat and mass transfer of non-Newtonian fluid with yield stress by free convection from vertical surface in porous medium considering Soret effect. Appl. Math. Mech.-English Ed. 31, 675-684. [9.2.1]

    Article  MATH  Google Scholar 

  • Hirata, S. C., Goyeau, B. and Gobin, D. 2012 Onset of convective instabilities in under-ice melt ponds. Phys. Rev. E 85, 066306. [9.1.6.4]

    Article  Google Scholar 

  • Holzbecher, E. 2005b Groundwater flow pattern in the vicinity of a salt lake. Hydrobiologica 532, 233-242. [9.1.6.4]

    Article  Google Scholar 

  • Holzbecher, E., Kohfahi, C., Mazurowski, M., Bacik, A. and Dobies, M. 2010 The sensitivity of thermohaline groundwater circulation to flow and transport parameters: A numerical study based on double-diffusive convection above a salt dome. Transp. Porous Media 83, 771-791. [9.1.6.4]

    Article  Google Scholar 

  • Hossain, M. A., Pop, I. and Vafai, K. 1999a Combined free-convection heat and mass transfer above a near-horizontal surface in a porous medium. Hybrid Methods Engng. 1, 87-102. [9.2.1]

    Google Scholar 

  • Hossain, M. A., Vafai, K. and Khanafer, K. M. N. 1999b Non-Darcy natural convection heat and mass transfer along a vertical permeable cylinder embedded in a porous medium. Rev. Gén. Therm. 38, 854-862. [9.2.1]

    Article  Google Scholar 

  • Hossain, R., Mahmud, S., Dutta, A. and Pop, I. 2015 Energy storage system based on nanoparticle-enhanced phases change material inside porous medium. Int. J. Them. Sci. 91, 49-58. [9.7.2]

    Article  Google Scholar 

  • Hsiao, C. Y., Chang, W. J., Char, M. I. and Tai, B. C. 2014 Influence of thermophoretic particle deposition on MHD free convection flow of non-Newtonian fluids from a vertical plate embedded in porous media considering Soret and Dufour effects. Appl. Math. Comp. 244, 390-397. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Hsiao, K. L. 2009 Heat and mass mixed convection for viscoelastic fluid past a stretching sheet with Ohmic dissipation through a porous space. Int. Rev. Mech. Engng. 3, 22-28. [9.6.1]

    Google Scholar 

  • Huang, C. J. 2016a Lateral mass flux and thermal radiation on natural convection heat and mass transfer from a vertical flat plate in porous media considering Soret/Dufour effects. J. King Saud Univ. Sci., to appear. [9.2.1]

    Google Scholar 

  • Huang, C. J. 2016b Effect of thermal radiation and internal heat generation on natural convection from a vertical flat plate in porous media considering Soret/Dufour effects. J. Aeronaut. Astronaut. Aviat. A. 48, 1-10. [9.2.1]

    Google Scholar 

  • Huang, J. S., Tsai, R., Huang, K. H. and Huang, C. H. 2011 Thermal-diffusion and diffusion-thermo effects on natural convection along an inclined stretching surface in a porous medium with chemical reaction. Chem. Engng. Comm. 198, 453-473. [9.2.1]

    Article  Google Scholar 

  • Hung, Y. M. 2010 Analytical study on forced convection of nanofluids with viscous dissipation in microchannels. Heat Transfer Engng. 31, 1184–1192. [9.7.1]

    Article  Google Scholar 

  • Husnain, S., Mehmood, A. and Ali, A. 2012 Heat and mass transfer analysis in unsteady boundary layer flow through porous media with variable viscosity and thermal diffusivity. J. Appl. Mech. Tech. Phys. 53, 722-732. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Husnain, S., Mehmood, A., Bég, O. A. and Ali, A. 2012 Suction and blowing effects on unsteady flow and heat transfer through porous media with variable viscosity. J. Porous Media 15, 293-302. [5.1.9.12]

    Article  Google Scholar 

  • Hussaini, S. A., Ramana Murthy, M. V., Waheedullah, A. and Rafiuddin 2013 MHD unsteady memory convective flow through porous medium with variable suction. J. Appl. Fluid Mech. 6, 187-202. [9.2.1]

    Google Scholar 

  • Hussanan, A., Saleh, M. Z., Khan, I., Tahar, R. M. and Ishmail, Z., 2015 Soret effects on unsteady magnetohydrodynamic mixed-convection heat and mass transfer in a porous medium with Newtonian heating. Maejo Int. J. Sci. Tech. 9, 224-245. [9.6.1]

    Google Scholar 

  • Ibanez, G., Lopez, A., Pantoja, J and Moreira J. 2016 Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation. Int. J. Heat Mass Transfer 100, 89-97. [9.7.1]

    Article  Google Scholar 

  • Ibrahim, F. S., Hady, F. M., Abdel-Gaied, S. M. and Eid, M. R. 2010 Influence of chemical reaction on heat and mass transfer of Non-Newtonian fluid with yield stress by free convection from vertical surface in porous medium considering Soret effect. Appl. Math. Mech.- English ed. 31, 675-684. [9.2.1]

    Article  MATH  Google Scholar 

  • Ibrahim, S. M. and Suneetha, K. 2016 Heat source and chemical effects on MHD convection flow embedded in a porous medium with Soret, viscous and Joules dissipation. Ain Shams Engng. J., to appear. [9.2.1]

    Google Scholar 

  • Imhoff, P. T. and Green, T. 1988 Experimental investigation of double-diffusive groundwater fingers. J. Fluid Mech. 188, 363-382. [9.1.3]

    Article  Google Scholar 

  • Ismael, M. A., Armaghani, T. and Chamkha, A. J. 2016 Conjugate heat transfer and entropy generation in a cavity filled with a nanofluid-saturated porous media and heated by a triangular solid. J. Taiwan Inst. Chem. Engrs. 59, 138-151. [9.7.2]

    Article  Google Scholar 

  • Ismail, Z., Khan, I., Nasir, N. M., …, Saleh, M. Z. and Shafie, S. 2014 Rotation effects on coupled heat and mass transfer by unsteady MHD free convection flow in a porous medium past an infinite inclined plate. AIP Conf. Psroc. 1605, 410–415. [9.2.1]

    Google Scholar 

  • Jaber, K. K. 2011 Transient MHD mixed double diffusive convection along a vertical plate embedded in a non-Darcy porous medium with suction or injection. J. Math. Stat. 8, 15-23. [9.6.1]

    Google Scholar 

  • Jaber, T. I. and Saghir, M. Z. 2011 Three-dimensional study of permeability effect on convection in heterogeneous porous medium filled with a ternary hydrocarbon mixture. J. Porous Media 14, 305-315. [9.1.6.4]

    Article  Google Scholar 

  • Jaber, T. J., Yan, Y. and Saghir, M. Z. 2008 Soret effect for a ternary mixture in porous cavity: Modeling with variable diffusion coefficients and viscosity. ASME J. Fluids Engng. 130, #081703. [9.1.4]

    Article  Google Scholar 

  • Jaimala and Singh, R. 2014 A note on a paper of Nield and Kuznetsov. Transp. Porous Media 102, 137–138. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Jain, N. C., Chaudhary, D. and Jat, R. V. 2009 MHD unsteady free convection mass transfer flow through a porous medium with radiation and velocity slip boundary conditions. Modell. Meas. Control 78, 60-73. [9.2.1]

    Google Scholar 

  • Jamet, P., Frague, D., Costesèque, P., de Marsily, G. and Cernes, A. 1992 The thermogravitational effect in porous media: A modeling approach. Transport Porous Media 9, 223-240. [9.1.4]

    Article  Google Scholar 

  • Jamshidzadeh, Z., Tsai, F. T. C., Mirbagheri, S. A. and Ghasemzadeh, H. 2013 Fluid dispersion effects on density-driven thermohaline flow and transport in porous media. Adv. Water Resources 61, 12-28. [6.14]

    Article  Google Scholar 

  • Jang, J. Y. and Chang, W. J. 1988b The flow and vortex instability of horizontal natural convection in a porous medium resulting from combined heat and mass buoyancy effects. Int. J. Heat Mass Transfer 31, 769-777. [9.2.1]

    Article  MATH  Google Scholar 

  • Jang, J. Y. and Chang, W. J. 1988c Buoyancy-induced inclined boundary layer flow in a porous medium resulting from combined heat and mass buoyancy effects. Int. Comm. Heat Mass Transfer 15, 17-30. [9.2.1]

    Article  Google Scholar 

  • Jang, J. Y. and Hsu, C. T. 2009a Hall effect on the heat and mass transfer with MHD natural convection from a vertical plate in a porous medium. J. Chinese Soc. Mech. Engrs. 30, 371-380. [9.2.1]

    Google Scholar 

  • Jang, J. Y. and Ni, J. R. 1989 Transient free convection with mass transfer from an isothermal vertical flat plate embedded in a porous medium. Int. J. Heat Fluid Flow 10, 59-65. [9.2.1]

    Article  Google Scholar 

  • Jang, J. Y., Tzeng, D. J. and Shaw, H. J. 1991 Transient free convection with mass transfer on a vertical plate embedded in a high porosity medium. Numer. Heat Transfer A 20, 1-18. [9.2.3]

    Article  Google Scholar 

  • Jasmin, S. and Prud’homme, M. 2005 Inverse determination of a heat source from a solute concentration generation model in porous medium. Int. Comm. Heat Mass Transfer 32, 43-53. [9.3.1]

    Article  Google Scholar 

  • Jbara, A., Harzallah, H. S., Slimi, K. and Mhimid, A. 2013a Unsteady double-diffusive natural convection and thermal radiation within a vertical porous enclosure. J. Porous Media 16, 167-182. [9.4]

    Article  Google Scholar 

  • Jeci, R., Kramer, J. and Skerget, L. 2009 Double diffusive natural convection in a horizontal porous layer with the boundary domain integral method. Acta Geotech. Slov. 6, 4-18. [9.1.6.4]

    Google Scholar 

  • Jena, S. K., Mahapatra, S. K. and Ng, C. O. 2013a Double diffusive buoyancy opposed natural convection in a porous cavity having partially active vertical walls. Int. J. Heat Mass Transfer 62, 805-817. [9.2.2]

    Article  Google Scholar 

  • Jena, S. K., Mahapatra, S. K. and Sarkar, A. 2013b Thermosolutal convection in a rectangular concentric annulus: A comprehensive study. Transp. Porous Media 98, 103-124. [9.4]

    Article  MathSciNet  Google Scholar 

  • Jena, S. K., Mahapatra, S. K. and Sarkar, A. 2013c Thermosolutal convection in a fluid-porous composite medium. Heat Transfer Asian Res . 42, 281-299. [9.1.6.4]

    Article  Google Scholar 

  • Jha, B. K., Aina, B. and Mohammed, S. A. 2015a Combined effects of suction/injection and wall surface curvature on natural convection flow in a vertical micro-porous annulus. Thermophys. Aeromech. 22, 217-228. [7.3.3]

    Article  Google Scholar 

  • Jha, B. K., Ajibade, A. O. and Daramola, D. 2015b Mixed convection flow in a vertical tube filled with porous material with time-periodic boundary conditions: steady-periodic regime. Afrika Mathematika 26, 529-543. [8.4.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Jha, B. K., Daramola, D. and Ajibade, A. G. 2015c Mixed convection in an inclined channel filled with porous material having time-periodic boundary conditions: steady-periodic regime. Transp. Porous Media 109, 495-512. [8.4.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Jha, B. K., Joseph, S. B. and Ajibade, A. O. 2015e Role of thermal diffusion on double-diffusive natural convection in a vertical annular porous medium. Ain Shams Engng. J. 6, 629–637. [9.4]

    Article  Google Scholar 

  • Jhansi Rani, K., Ramana Reddy, G. V., Ramana Murthy, C. V. and Ramana Murthy, M. V. 2015 Heat and mass transfer effects on MHD free convection flow over an inclined plate embedded in a porous medium. Int. J. Chem. Sci. 13, 1998-2016. [9.2.1]

    Google Scholar 

  • Jiang, C. B. J., Saghir, M. Z. and Kawaji, M. 2006a Numerical analysis of thermal –solutal convection in heterogeneous porous media. ASME J. Appl. Mech. 73, 21-25. [9.1.4]

    Article  MATH  Google Scholar 

  • Jiang, C. G., Saghir, M. Z., Kawaji, M. and Ghorayeb, K. 2004b Two-dimensional numerical simulation of thermo-gravitational convection in a vertical porous column filled with a binary mixture. Int. J. Therm. Sci. 43, 1057-1065. [9.1.4]

    Article  Google Scholar 

  • Jiang, C. G., Saghir, M. Z., Kawaji, M. and Ghorayeb, K. 2004c Contribution of the thermal and molecular diffusion to convection in a vertical porous cavity. In Emerging Technologies and Techniques in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 307-320. [9.1.4]

    Chapter  Google Scholar 

  • Jiang, C. G., Sahgir, M. Z. and Kawaji, M. 2004a Thermo-solutal convection in heterogeneous porous media. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Évora, Portugal, pp. 287-292. [9.1.4]

    Google Scholar 

  • Joly, F., Vasseur, P. and Labrosse, G. 2001 Soret instability in a vertical Brinkman porous enclosure. Numer. Heat Transfer A 39, 339-359. [9.1.4]

    Article  Google Scholar 

  • Joulin, A. and Ouarzazi, M. N. 2000 Mixed convection of a binary mixture in a porous medium. C. R. Acad. Sci. Paris II B 328, 311-316. [9.1.6.4]

    Google Scholar 

  • Jounet, A. and Bardan, G. 2001 Onset of thermohaline convection in the presence of vertical vibration. Phys. Fluids 13, 3234-3246. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Jumar, R. J., Banat, F. A. and Abu-Al-Rub, F. 2001 Darcy-Forchheimer mixed convection heat and mass transfer in fluid saturated porous media. Int. J. Numer. Meth. Heat Fluid Flow 11, 600-618. [9.2.1]

    Article  MATH  Google Scholar 

  • Jumar, R. Y. and Majumdar, A. S. 2000 Free convection heat mass transfer of non-Newtonian power law fluids with yield stress from a vertical flat plate in saturated porous media. Int. Comm. Heat Mass Transfer 27, 485-494. [9.2.1]

    Article  Google Scholar 

  • Jumar, R. Y. and Majumdar, A. S. 2001 Natural convection heat mass transfer from a vertical flat plate with variable wall temperature and concentration to power-law fluids with yield stress in a porous medium. Chem. Engng. Comm. 185, 165-182. [9.2.1]

    Article  Google Scholar 

  • Kairi, R. R. 2011 Viscosity and dispersion effects on natural convection from a vertical cone in a non-Newtonian fluid saturated porous medium. Thermal Science 15, S307-S316. [9.2.1]

    Article  Google Scholar 

  • Kairi, R. R. and Murthy, P. V. S. N. 2010 Effect of double dispersion on mixed convection heat and mass transfer in a non-Newtonian fluid-saturated non-Darcy porous medium. J. Porous Media 13, 749-757 [9.6.1]

    Article  Google Scholar 

  • Kairi, R. R. and Ramreddy, C. 2014 Solutal dispersion and viscous dissipation effects on non-Darcy free convection over a cone in power-law fluids. Heat Transfer Asian Res. 43, 476-488. [9.2.1]

    Article  Google Scholar 

  • Kairi, R. R. and Ramreddy, C. 2015 The effect of melting on mixed convection heat and mass transfer in a non-Newtonian nanofluid saturated in porous medium. Frontiers Heat Mass Transfer 6, 1-7. [9.7.4]

    Google Scholar 

  • Kairi, R. R. and Murthy, P. V. S. N. 2011 Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturate no-Darcy porous medium. Appl. Math. Comp. 217, 8100-8114. [9.2.1]

    Article  MATH  Google Scholar 

  • Kairi, R. R., Narayana, P. A. L. and Murthy, P. V. S. N. 2009 The effect of double dispersion on natural convection heat and mass transfer in a non-Newtonian fluid saturated non-Darcy porous medium. Transp. Porous Media 76, 379-390. [9.2.1]

    Article  MathSciNet  Google Scholar 

  • Kalita, J. C. and Dass, A. K. 2011 Higher order compact simulation of double-diffusive natural convection in a vertical porous annulus. Engng. Appl. Comp. Fluid Mech. 5, 357-371. [9.4]

    Google Scholar 

  • Kalla, L., Mamou, M., Vasseur, P. and Robillard, L. 2001a Multiple solutions for double-diffusive convection in a shallow porous cavity with vertical fluxes of heat and mass. Int. J. Heat Mass Transfer 44, 4493-4504. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Kalla, L., Vasseur, P., Benacer, R., Beji, H and Duval, R. 2001b Double-diffusive convection within a horizontal porous layer salted from the bottom and heated horizontally. Int. Comm. Heat Mass Transfer 28, 1-10. [9.5]

    Article  Google Scholar 

  • Kaloni, P. N. and Guo, J. 1996 Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl. 204, 138-155. [9.1.6.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Kaloni, P. N. and Qiao, Z. 2000 Nonlinear convection induced by inclined thermal and solutal gradient with mass flow. Cont. Mech. Thermodyn. 12, 185-194. [9.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Kamel, M. H. 2001 Unsteady MHD convection through porous medium with combined heat and mass transfer with heat source/sink. Energy Conv. Management 42, 393-405. [9.2.1]

    Article  Google Scholar 

  • Kameswaran, P. K. and Sibanda, P. 2013 Thermal dispersion effects on convective heat and mass transfer in an Ostwald de Waele nanofluid flow in porous media. Boundary Value Problems 2013 (1) 243. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Kameswaran, P. K., Makukula, Z. G., Sibanda, P., Motsa, S. S. and Murthy, P. V. S. N. 2014a A new algorithm for internal heat generation in nanofluid flow due to a stretching sheet in a porous medium. Int. J. Numer. Meth. Heat Fluid Flow 24, 1020-1043. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Kameswaran, P. K., Narayana, N. and Shaw, S. 2014c Heat and mass transfer from an isothermal wedge in nanofluids with Soret effect. European Phys. J. Plus, 07/2014, 129-154. [9.7.3]

    Google Scholar 

  • Kameswaran, P. K., Sibanda, P., Partha, M. K. and Murthy, P. V. S. N. 2014b Thermophoretic and nonlinear convection in non-Darcy porous medium. ASME J. Heat Mass Transfer 136, 042601. [9.2.1]

    Article  Google Scholar 

  • Kameswaren, P. K., Vasu, B., Murthy, P. V. S. K. and Gorla, R. S. R. 2016 Mixed convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq approximation. Int. Comm. Heat Mass Transfer 77, 78-86. [9.7.4]

    Article  Google Scholar 

  • Kandasamy, R. and Muhaimin, I. 2010a Scaling transformation for the effect of temperature-dependent fluid viscosity with thermophoresis particle deposition on MHD-free convective heat and mass transfer over a porous stretching surface. Transp. Porous Media 84, 549-568. [9.6.1]

    Article  MathSciNet  Google Scholar 

  • Kandasamy, R. and Muhaimin, I. 2010b Homotopy analysis method for thermophoretic particle deposition effect on magnetohydrodynamic mixed convective heat and mass transfer past a porous wedge in the presence of suction. J. Appl. Mech. Tech. Phys. 51, 249-260. [9.6.1]

    Article  MATH  Google Scholar 

  • Kandasamy, R. and Palanima 2007 Effects of chemical reactions, heat and mass transfer on nonlinear boundary layer flow over a wedge with a porous medium in the presence of ohmic heating and viscous dissipation. J. Porous Media 10, 489-501. [9.2.1]

    Article  Google Scholar 

  • Kandasamy, R., Mohammad, R. and Muhaimin, I. 2016 Carbon nanotubes on unsteady MHD non-Darcy flow over porous wedge in presence of thermal radiation energy. Appl. Math. Mech. English ed. 37, 1031-1040. [9.7.3]

    Article  MathSciNet  Google Scholar 

  • Kandasamy, R., Muhaimin, I. and Amin, N. S. 2010a Lie group analysis for the effect of temperature-dependent fluid viscosity with thermophoresis or magnetohydrodynamic free convective heat and mass transfer over a porous stretching surface. Int. J. Comput. Fluid Dyn. 24, 1-11. [9.2.1]

    Article  MATH  Google Scholar 

  • Kandasamy, R., Muhaimin, I. and Hashim, I. 2008d Thermophoresis and chemical reaction effects on non-Darcy mixed convective heat and mass transfer past a porous wedge with variable viscosity in the presence of suction or injection. Nuclear Engng. Design 238, 2699-2705. [9.6.1]

    Article  MATH  Google Scholar 

  • Kandasamy, R., Muhaimin, I. and Rosmila, A. K. 2014 The performance evaluation of unsteady MHD non-Darcy flow over a porous wedge due to renewable (solar) energy. Renewable Energy 64, 1-9. [9.7.3]

    Article  Google Scholar 

  • Kandasamy, R., Muhaimin, I., Khamis, A. B. and bin Roslan, R. 2013 Unsteady Hiemenz flow of Cu-nanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation : Lie group transformation. Int. J. Thermal Sci. 65, 196-205. [9.7.3]]

    Article  Google Scholar 

  • Kandasamy, R., Muhaimin, I., Ram, N. S. and Prabhu, K. K. S. 2012 Thermal stratification effects on Hiemenz flow of nanofluid over a porous wedge sheet in the presence of suction/injection due to solar energy: Lie group transformation. Transp. Porous Media 94, 399-416. [9.7.3]

    Article  MathSciNet  Google Scholar 

  • Kandasamy, R., Nordin, M. and Khamis, A. B. 2010b Variable viscosity and chemical reaction effects on non-Darcy magnetohydrodynamic mixed convection heat and mass transfer past a porous wedge in the presence of suction or injection. J. Porous Media 13, 579-590. [9.6.1]

    Article  Google Scholar 

  • Kandaswamy, P., Muthtamilselvan, M. and Lee, J. 2008c Prandtl number effects on mixed convection in a lid-driven porous cavity. J. Porous. Media 11, 791-801. [8.4.3]

    Article  Google Scholar 

  • Kang, J. H., Zhou, F. B., Tan, W. C. and Xia, T. Q. 2014a Thermal instability of a nonhomogeneous power-law nanofluid in a porous layer with horizontal throughflow. J. Non-Newtonian Fluid Mech. 213, 50-56. [9.7.2]

    Article  Google Scholar 

  • Kantur, O. Yu. and Tsibulin, V. G. 2004 Numerical investigation of the plane problem of convection in a multicomponent fluid in a porous medium. Fluid Dyn. 39, 464-473. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Kapoor, S., Bera, P. and Kumar, A. 2012 Effect of Rayleigh thermal number in double diffusive non-Darcy mixed convection flow in a vertical pipe filled with porous medium. Procedia Engng. 38, 314-320. [9.6.2]

    Article  Google Scholar 

  • Karimi-Fard, M., Charrier-Mojtabi, M. C. and Mojtabi, A. 1997 Non-Darcy effects on double-diffusive convection within a porous medium Numer. Heat Transfer A 31, 837-852. [9.2.2]

    Article  MATH  Google Scholar 

  • Karimi-Fard, M., Charrier-Mojtabi, M. C. and Mojtabi, A. 1998 Analytical and numerical simulation of double-diffusive convection in a tilted cavity filled with porous medium. Heat Transfer 1998, Proc. 11 th IHTC, 4, 453-458. [9.4]

    Google Scholar 

  • Karimi-Fard, M., Charrier-Mojtabi, M. C. and Mojtabi, A. 1999 Onset of stationary and oscillatory convection in a tilted porous cavity saturated with a binary fluid: Linear stability analysis. Phys. Fluids 11, 1346-1358. [9.4]

    Article  MATH  Google Scholar 

  • Karthikeyan, S., Bhuvaneshwari, M., Sivasankaran, S. and Rajan, S. 2016 Soret and Dufour effects on MHD mixed convection heat and mass transfer of a stagnation point flow towards a vertical plate in a porous medium with chemical reaction, radiation and heat generation. J. Appl. Fluid Mech. 9, 1447-1455. [9.6.2]

    Google Scholar 

  • Kasaeian, A., Azarian, R. D., Mahian, O., Kolsi, L., Chemkha, A. J., Wongwises, S. and Pop, I. 2017 Nanofluid flow and heat transfer in porous media: A review of latest developments. Int. J. Heat Mass Transfer 107, 778–791. [9.7]

    Article  Google Scholar 

  • Kataria, H. R. and Mittal, A. S. 2017 Velocity, mass and temperature analysis of gravity-driven convection nanofluid flow past an oscillating vertical plate in the presence of magnetic field in a porous medium. Appl. Therm. Engng. 110, 864-874. [9.7.3]

    Article  Google Scholar 

  • Kazmierczak, M. and Poulikakos, D. 1989 Numerical simulation of transient double diffusion in a composite porous/fluid layer heated from below. AIChE Sympos. Ser. 269, 108-114. [9.4]

    Google Scholar 

  • Kazmierczak, M. and Poulikakos, D. 1991 Transient double diffusion in a fluid layer extending over a permeable substrate. ASME J. Heat Transfer 113, 148-157. [9.4]

    Article  Google Scholar 

  • Kefayati, G. H. R. 2016a Simulation of double diffusion natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects. (Part I: Study of fluid flow, heat and mass transfer.) Int. J. Heat Mass Transfer 94, 539-581. [9.2.2]

    Article  Google Scholar 

  • Kefayati, G. H. R. 2016b Simulation of double diffusion natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects. (Part II: Entropy generation.) Int. J. Heat Mass Transfer 94, 582-624. [9.2.2]

    Article  Google Scholar 

  • Kefayati, G. H. R. 2016c Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Tech. 299, 127-149. [9.7.2]

    Article  Google Scholar 

  • Kesavaiah, D. C., Satyanarayana, P. V. and Venkataramana, S. 2011a Effects of chemical reaction and radiation absorption on an unsteady MHD convective heat and mass transfer flow past a semi-infinite vertical permeable moving plate embedded in a porous medium with heat source and suction. Int. J. Appl. Math. Mech. 7, 52-69. [9.2.1]

    MATH  Google Scholar 

  • Kesavaiah, D. C., Satyanarayana, P. V. and Venkataramana, S. 2011b Radiation absorption, chemical reaction and magnetic field effects on the free convection and mass transfer flow past a semi-infinite vertical permeable moving plate embedded in a porous medium with heat source and suction. IOSR J. Engng. 1, 028-036. [9.2.1]

    Article  MATH  Google Scholar 

  • Khadiri, A., Amahmid, A. and Hasnaoui, M. 2010a Soret effect on double-diffusive convection in a square porous cavity heated and salted from below. Numer. Heat Transfer A 57, 848-868. [9.1.4]

    Article  Google Scholar 

  • Khadiri, A., Bennacer, R., Hasnaoui, M. and Ahamid, A. 2010b Thermosolutal natural convection in a porous cavity heated and salted from below: Comparison between two-dimensional and three-dimensional models. Phys. Chem. News 55, 57-61. [9.1.6.4]

    Google Scholar 

  • Khadiri, A., Bennacer, R., Hasnaoui, M. and Amahmid, A. 2011 Two and three-dimensional multiple steady states in a porous cavity heated and salted from below. Int. J. Therm. Sci. [50, 918-929. [9.1.6.4]

    Article  Google Scholar 

  • Khaled, A. R. A. and Chamkha, A. J. 2001 Variable porosity and thermal dispersion effects on coupled heat and mass transfer by natural convection from a surface embedded in a non-metallic porous medium. Int. J. Numer. Meth. Heat Fluid Flow 11, 413-429. [9.2.1]

    Article  MATH  Google Scholar 

  • Khalili, S., Dinavand, S., Hosseini, R., Saber, M. and Pop, I. 2014a Magnetohydrodynamic stagnation point flow toward stretching/shrinking permeable plate in porous medium filled with a nanofluid. Proc. Inst. Mech. Engrs. E 228, 309-319. [9.7.3]

    Article  Google Scholar 

  • Khalili, S., Dinavand, S., Hosseini, R., Tamin, H. and Pop, I. 2014b Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid. Chinese Phys. B. 23, 048203. [9.7.3]

    Article  Google Scholar 

  • Khamis, S., Makinde, O. D. and Nkansah-Gyekye, Y. 2015 Buoyancy-driven heat transfer of a water-based nanofluid in a permeable pipe with Navier slip through a saturated porous medium. J. Porous Media 18, 1169-1180. [9.7.3]

    Article  Google Scholar 

  • Khan, A. A. and Zebib, A. 1981 Double diffusive instability in a vertical layer of porous medium. ASME J. Heat Transfer 103, 179-181. [9.2.4]

    Article  Google Scholar 

  • Khan, A., Khan, I., Ali, F., and Shafie, S. 2016a A note on entropy generation in MHD flow over a vertical plate embedded in a porous medium with arbitrary shear stress and ramped wall temperature, J. Porous Media 19, 175-187. [5.1.9.10]

    Article  Google Scholar 

  • Khan, A., Khan, I., Ali, F., Khalia, A. and Shafie, S. 2015a Exact solutions of heat and mass transfer with MHD flow in a porous medium under time-dependent shear stress and temperature. Abstracts Appl. Anal. 975201. [9.2.1]

    Google Scholar 

  • Khan, N. A. and Sultan, F. 2015b On the double diffusive convection flow of Eyring-Powell fluid due to cone through a porous medium with Soret and Dufour effects. AIP Advances 5, 057140. [9.2.1]

    Article  Google Scholar 

  • Khan, U., Mohyud-Din, S. T. and Bin-Mohsin, B. 2016 Convective heat transfer and thermo-diffusion effects on flow of nanofluid towards a permeable stretching sheet saturated by a porous medium. Aerospace Sci. Tech. 50, 196-203. [9.7.3]

    Article  Google Scholar 

  • Khan, W. A. and Pop, I. 2011 Flow and heat transfer over a continuously moving flat plate in a porous medium. ASME J. Heat Transfer 133, #054501. [4.16.5]

    Google Scholar 

  • Khan, W. A. and Pop, I. 2012a Boundary-layer stagnation-point flow toward a stretching surface in a porous nanofluid- filled medium. J. Thermophys. Heat Transfer 26, 147-153. [9.7.3]

    Article  Google Scholar 

  • Khan, W. A. and Pop, I. 2012c Heat transfer near stretching surface in porous medium using thermal nonequilibrium model. J. Thermophys. Heat Transfer 26, 681-685. [5.1.9.3]

    Article  Google Scholar 

  • Khan, W. A. and Pop, I. 2013 The Cheng-Minkowycz problem for triple-diffusive natural convection boundary layer flow past a vertical plate in a porous medium. J. Porous Media 16, 637-646. [9.2.1]

    Article  Google Scholar 

  • Khan, W. A., Imran, M. M. and Ali, Q. 2013a Effect of radiation on mixed convection along vertical cylinder with uniform surface heat flux in a porous medium. J. Porous Media 16, 757-765. [8.1.3]

    Article  Google Scholar 

  • Khan, W. A., Uddin, M. J. and Ishmail, A. I. M. 2014b Effects of melting and thermal dispersion on unsteady mixed convection with heat and mass transfer in a non-Darcy porous medium. J. Porous Media 17, 211-223. [10.1.7]

    Article  Google Scholar 

  • Khan, W. A., Uddin, M. J. and Ishmail, A. I. M. 2015a Effect of multiple slips and dissipation on boundary layer flow of nanofluid flow over a porous flat plate in porous media. J. Porous Media 18, 1-14. [9.7.3]

    Article  Google Scholar 

  • Khan, W. A., Uddin, M. J. and Ishmail, A. I. M. 2015b Bioconvective non-Newtonian nanofluid transport over a vertical plate in a porous medium containing microorganisms in a moving free stream. J. Porous Media 18, 389-399. [9.7.3]

    Article  Google Scholar 

  • Khan, W. A., Uddin, M. J. and Ishmail, A. I. M. 2015c Multiple slip effects of unsteady MHD rear stagnation point flow of nanofluids in a Darcian porous medium. J. Porous Media 18, 665-678. [9.7.4]

    Article  Google Scholar 

  • Khan, W. A., Uddin, M. J. and Ishmail, A. I. M. 2015d Non-similar solution of free convective flow of power-law nanofluids in porous medium along a vertical cone and plate with thermal and mass convective boundary conditions. Canad. J. Phys. 93, 1144-1155. [9.7.3]

    Article  Google Scholar 

  • Khan, Z. H., Culham, J. R., Khan, W. A. and Pop, I. 2015e Triple convective-diffusion boundary layer along a vertical flat plate in a porous medium saturated by a water-based nanofluid. Int. J. Therm. Sci. 90, 53-61. [9.7.3]

    Article  Google Scholar 

  • Khan, Z. H., Khan, W. A. and Pop, I. 2013c Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid with convective boundary condition. Int. J. Heat Mass Transfer 66, 603-612. [9.7.3]

    Article  Google Scholar 

  • Khanafer, K. and Vafai, K. 2002 Double-diffusive mixed convection in a lid-driven enclosure filled with a fluid-saturated porous medium. Numer. Heat Transfer A 42, 465-486. [9.6.2]

    Article  Google Scholar 

  • Khare, H. C. and Sahai, A. K. 1993 Thermosolutal convection in a heterogeneous fluid layer in porous medium in the presence of a magnetic field. Int. J. Engng Sci. 31, 1507-1517. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Kheilifa, N. B., Alloui, Z., Beji, H. and Vasseur, P. 2012 Natural convection in a vertical porous cavity filled with a non-Newtonian binary fluid. AIChE J. 58, 1704-1716. [9.2.2]

    Article  Google Scholar 

  • Khidir, A. A. and Sibanda, P. 2014a Effect of temperature-dependent viscosity on MHD mixed convective flow from an exponentially stretching surface in porous medium with cross-diffusion. Spec. Topics Rev. Porous Media 5, 157-170. [9.6.1]

    Article  Google Scholar 

  • Khidir, A. A. and Sibanda, P. 2014b Nanofluid flow over a nonlinear stretching sheet in porous media with MHD and viscous dissipation effects. J. Porous Media 17, 391-403. [9.7.3]

    Article  Google Scholar 

  • Kim, M. C. 2014c The onset of Soret-driven convection of a nanoparticles suspension confined within a Hele-Shaw cell or in a porous medium. Int. J. Non-Linear Mech. 67, 291-299. [2.5, 9.7.3]

    Article  Google Scholar 

  • Kim, M. C. and Choi, C. K. 2012 Linear stability analysis on the onset of buoyancy-driven convection in liquid-saturated porous medium. Phys. Fluids 24, 044102. [6.11.3, 9.1.6.4,11.11]

    Article  Google Scholar 

  • Kim, M. C. and Choi, C. K. 2014b Effect of first-order chemical reaction on gravitational instability in a porous medium. Phys. Rev. E 90, 053016. [9.1.6.4]

    Article  Google Scholar 

  • Kim, Y. J. 2004 Heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium. Transport Porous Media 56, 17-37. [9.2.1]

    Article  Google Scholar 

  • Kiran Kumar, R. V. M. S., Durga Prasad, P. and Varma, S. V. K. 2016 Thermo-diffusion and chemical reaction effects on free convective heat and mass transfer flow of conducting nanofluid through porous medium in a rotating frame. Global J. Pure Appl. Math. 12, 342-351. [9.7.3]

    Google Scholar 

  • Kiran, P. 2014 Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation. Ain Shams Engng. J. 7, 527–541. [9.7.2]

    Google Scholar 

  • Kiran, P. 2015b Throughflow and g-jitter effects on binary fluid saturated porous medium. Appl. Math. English ed. 36, 1285-1304.

    Article  MathSciNet  MATH  Google Scholar 

  • Kishan, N. and Jaghadha, S. 2016 Influence of thermophoresis on heat and mass transfer under non-Darcy MHD mixed convection along a vertical flat plate embedded in a porous medium in the presence of radiation. Thermophys. Aeromech. 23, 97-108. [9.6.1]

    Article  Google Scholar 

  • Kishan, N., Reddy, M. C. K. and Govardhan, K. 2009 MHD free convection heat and mass transfer in a doubly stratified Darcy porous medium considering Soret and Dufour effects with viscous dissipation. Int. J. Appl. Mech. Engng. 14, 733-745. [9.2.1]

    Google Scholar 

  • Knobloch, E. 1986 Oscillatory convection in binary mixtures. Phys. Rev. A 34, 1538-1549. [9.1.3]

    Article  Google Scholar 

  • Kothandapani, M. and Prakash, J. 2015 Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J. Magnet. Magnet. Mat. 278, 152-163. [9.7.2]

    Article  Google Scholar 

  • Kramer, J., Jecl, R. and Skerget, L. 2007 Boundary domain integral method for the study of double diffusive natural convection in porous media. Engng. Anal. Bound. Elem. 31, 897-905. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Krishna Murthy, S. V. S. S. N. V. G., Rathish Kumar, B. V., Chandar, P., Sangwan, V. and Nigam, M. 2011 A study of double diffusive free convection from a corrugated vertical surface in a Darcy porous medium under Soret and Dufour effects. ASME J. Heat Transfer 133, 092601. [9.2.1]

    Article  Google Scholar 

  • Kumar, A. and Bhadauria, B. S. 2011b Double diffusive convection in a porous layer saturated with viscoelastic fluid using a thermal non-equilibrium model. Phys. Fluids 23, #054101. [9.1.6.4]

    MATH  Google Scholar 

  • Kumar, A. and Bhadauria, B. S. 2011c Nonlinear two dimensional double-diffusive convection in a rotating porous layer saturated by a viscoelastic fluid. Transp. Porous Media 87, 229-250. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Kumar, B. R. and Sivaraj, R. 2013 MHD viscoelastic fluid non-Darcy flow over a vertical cone and a flat plate. Int. Comm. Heat Mass Transfer 40, 1-6. [9.2.1]

    Article  Google Scholar 

  • Kumar, H. 2016 Effects of chemical reaction in thermal and mass diffusion of micropolar fluid saturated in porous regime with radiation and Ohmic heating. Thermal Sci. 20, 593-602. [9.1.6.4]

    Article  Google Scholar 

  • Kumar, K., Singh, V. and Sharma, S. 2015c Linear stability analysis for ferromagnetic fluids in the presence of magnetic field, compressibility, internal heat source and rotation through a porous medium. J. Theor. Appl. Mech. 53, 1067-1081. [6.21]

    Article  Google Scholar 

  • Kumar, N., Gupta, S. and Jain, T. 2013b Combined effects of heat and mass transfer by MHD free-convective flow of micropolar and Newtonian fluids through porous medium in a vertical channel in the presence of thermal radiation. Acta Tech. CSAV 58, 295-313. [9.2.2]

    MathSciNet  Google Scholar 

  • Kumar, P. 2012b Thermosolutal magneto-rotatory convection in a couple-stress fluid through porous medium. J. Appl. Fluid Mech. 5, 33-43. [9.1.6.4]

    Google Scholar 

  • Kumar, P. and Mohan, H. 2011 Double-diffusive magneto-convection in a compressible couple-stress fluid through porous medium. Zeit. Naturforsch. A 66, 304-310. [9.1.6.4]

    Article  Google Scholar 

  • Kumar, P. and Mohan, H. 2012b Thermal instability of a heterogeneous Oldroydian viscoelastic fluid heated from below in porous medium. J. Theor. Appl. Mech. 50, 943-951. [6.23]

    Google Scholar 

  • Kumar, S., Sharma, V. and Kishor, K. 2013c Numerical and analytical investigations of thermosolutal instability in rotating Rivlin-Ericksen fluid in porous medium with Hall current. Appl. Math. Mech. – English ed. 34, 501-522. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Kumar, V., Kumar, P. and Awasthi, M. K. 2015e Hydrodynamic and hydromagnetic triple diffusive convection in a viscoelastic fluid through porous medium. Spec. Topics Rev. Porous Media 6, 297-311. [9.1.6.4]

    Article  Google Scholar 

  • Kumari, M. and Nath, G. 1989c Double diffusive unsteady free convection on two-dimensional and axisymmetric bodies in a porous medium. Int. J. Energy Res. 13, 379-391. [9.2.1]

    Article  Google Scholar 

  • Kumari, M. and Nath, G. 1989d Double diffusive unsteady mixed convection flow over a vertical plate embedded in a porous medium. Int. J. Energy Res. 13, 419-430. [9.2.1]

    Article  Google Scholar 

  • Kumari, M. and Nath, G. 1992 Simultaneous heat and mass transfer under unsteady mixed convection along a vertical slender cylinder embedded in a porous medium. Wärme-Stoffübertrag. 28, 97-105. [9.6.1]

    Article  Google Scholar 

  • Kumari, M. and Nath, G. 2009a Natural convection from a vertical cone in a porous medium due to the combined effects of heat and mass diffusion with non-uniform wall temperature/concentration or heat/mass flux and suction/injection. Int. J. Heat Mass Transfer 52, 3064-3069. [9.2.1]

    Article  MATH  Google Scholar 

  • Kumari, M., Pop, I. and Nath, G. 1988 Darcian mixed convection plumes along vertical adiabatic surfaces in a saturated porous medium. Wärme-Stoffubertrag. 22, 173-178 [8.1.1].

    Article  Google Scholar 

  • Kumari, M., Takhar, H. S. and Nath, G. 1988a Non-Darcy double-diffusive mixed convection from heated vertical and horizontal plates in saturated porous media. Wärme-Stoffübertrag. 23, 267-273. [9.4]

    Article  Google Scholar 

  • Kuznetsov, A. F. and Nield, D. A. 2013 The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model. Int. J. Heat Mass Transfer 65, 682-685. [9.7.3]

    Article  Google Scholar 

  • Kuznetsov, A. V. 2012a Nanofluid bioconvection in a horizontal fluid saturated porous layer. J. Porous Media 15, 11-27. [6.25]

    Article  Google Scholar 

  • Kuznetsov, A. V. 2012b Nanofluid bioconvection in porous media: Oxytactic microorganisms. J. Porous Media 15, 233-248. [6.25]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Bubnovich, Y. 2012 Investigation of simultaneous gyrotactic and oxytactic microorganisms on nanofluid bio-thermal convection in porous media. J. Porous Media 15, 617-631. [6.25, 9.7]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2008b The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium: double diffusive case. Transp. Porous Media 72, 157-170. [9.1.6.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2010a Forced convection in a channel partly occupied by a bidisperse porous medium: Asymmetric case. Int. J. Heat Mass Transfer 53, 5167-5175. [4.16.4]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2010b The Cheng-Minkowycz problem for cellular porous materials: Effect of temperature-dependent conductivity arising from radiative transfer. Int. J. Heat Mass Transfer 53, 2676-2679. [2.2.5, 5.1.9.9]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2010c Effect of thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 83, 425-436. [9.7.2]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2011a The onset of convection in a tridisperse porous medium. Int. J. Heat Mass Transfer 54, 3120-3127. [6.27]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2011b The effect of local thermal nonequilibrium on the onset of convection in a porous medium layer saturated by a nanofluid: Brinkman model. J. Porous Media 14, 285-293. [6.23, 9.7]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2012c The onset of double-diffusive convection in a vertical cylinder occupied by a heterogeneous porous medium with vertical throughflow. Transp. Porous Media 95, 327–336. [6.10, 6.16.1, 9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2013 The effect of strong heterogeneity on the onset of convection induced by internal heating in a porous medium: A layered model. Transp. Porous Media 99, 85-100. [6.11.2]

    Article  MathSciNet  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2013 The effect of vertical throughflow on the onset of convection induced by internal heating in a layered porous medium. Transp. Porous Media 100, 101-114. [6.11.2]

    Article  MathSciNet  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2011 The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium with vertical throughflow. Transp. Porous Media 90, 465-478. [6.13.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, A. V., Nield, D. A., Barletta, A. and Celli, M. 2015 Local thermal non-equilibrium and heterogeneity effects on the onset of double diffusive convection in an internally heated and soluted porous medium. Transp. Porous Media 109, 393-409. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Lacabanne, B., Blancher, S., Creff, R. and Montel, F. 2002 Soret effect in multicomponent flow through porous media: Local study and upscaling process. Lecture Notes in Physics 584, 448-485. [9.1.4]

    Article  MATH  Google Scholar 

  • Lai, F. C. 1990a Coupled heat and mass transfer by natural convection from a horizontal line source in saturated porous medium. Int. Comm. Heat Mass Transfer 17, 489-499. [9.3.2]

    Article  Google Scholar 

  • Lai, F. C. 1991a Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium. Int. Comm. Heat Mass Transfer 18, 93-106. [9.6.1]

    Article  Google Scholar 

  • Lai, F. C. and Kulacki, F. A. 1990a Coupled heat and mass transfer from a sphere buried in an infinite porous medium. Int. J. Heat Mass Transfer 33, 209-215. [9.2.1]

    Article  Google Scholar 

  • Lai, F. C. and Kulacki, F.A. 1991d Coupled heat and mass transfer by natural convection from vertical surfaces in porous media. Int. J. Heat Mass Transfer 34, 1189-1194. [9.2.1]

    Article  Google Scholar 

  • Lai, F. C., Choi, C. Y. and Kulacki, F. A. 1990b Coupled heat and mass transfer by natural convection from slender bodies of revolution in porous media. Int. Comm. Heat Mass Transfer 17, 609-620. [9.2.1s]

    Article  Google Scholar 

  • Larabi, M. A., Mutschler, D. and Mojtabi, A. 2016 Thermal gravitational separation of ternary mixture n-dodecane/isobutylbenzene/tetralin components in a porous medium. J. Chem. Phys. 144, 244902. [9.1.4]

    Article  Google Scholar 

  • Larson, S. E. and Poulikakos, D. 1986 Double diffusion from a horizontal line source in an infinite porous medium. Int. J. Heat Mass Transfer 29, 492-495. [9.3.2]

    Article  MATH  Google Scholar 

  • Lawson, M. L. and Yang, W. J. 1975 Thermal instability of binary gas mixtures in a porous medium. ASME J. Heat Transfer 97, 378-381. [9.1.4]

    Article  Google Scholar 

  • Lawson, M. L., Yang, W. J. and Bunditkul, S. 1976 Theory of thermal stability of binary gas mixtures in porous media. ASME J. Heat Transfer 98, 35-41. [9.1.4]

    Article  Google Scholar 

  • Lee, K. B. and Howell, J. R. 1991 Theoretical and experimental heat and mass transfer in highly porous media. Int. J. Heat Mass Transfer 34, 2123-2132. [1.8]

    Article  Google Scholar 

  • Li, C. T. and Lai, F. C. 1998 Re-examination of double diffusive natural convection from horizontal surfaces in porous media. J. Thermophys. Heat Transfer 12, 449-452. [9.2.1]

    Article  Google Scholar 

  • Li, M. C., Tian, Y. W. and Zhai, Y. C. 2006a Soret and Dufour effects in strongly endothermic chemical reaction system of porous media. Trans. Nonferrous Met. Soc. China 16, 1200-1204. [9.1.4]

    Article  Google Scholar 

  • Li, M. C., Tian, T. W. and Zhai, Y. C. 2006 Soret and Dufour effects in strongly endothermic chemical reaction system of porous media. Trans. Nonferrous Met. Soc. China 16, 1200-1204. [9.1.6.4]

    Article  Google Scholar 

  • Li, M., Wu, Y., Tian, Y. and Zhai, Y. 2007 Non-thermal equilibrium model of the coupled heat and mass transfer in strong endothermic chemical reaction system of porous media. Int. J. Heat Mass Transfer 50, 2936-2943. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Li, M.C, Wu, Y. and Zhao, Z. 2013a Effect of endothermic reaction mechanisms on the coupled heat and mass transfers in a porous packed bed with Soret and Dufour effects. Int. J. Heat Mass Transfer 67, 164-172. [9.1.6.4]

    Article  Google Scholar 

  • Li, M., Zhao, Z., Jing, Y., Liu, J. and Wu, Y. 2013b The Soret and Dufour effects in non-thermal equilibrium packed beds with forced convection and endothermic reactions Chinese J. Chem. Engn. 21, 867-875. [9.1.6.4]

    Article  Google Scholar 

  • Li, Z.W., Dong, M. Z. and Shirif, E. 2006b Transient natural convection induced by gas diffusion in liquid-saturated porous columns. Industrial Engng. Chem. Research 45, 3311-3319. [9.2.2]

    Article  Google Scholar 

  • Lin, C. H. and Payne, L. E. 2007 Structural stability for the Brinkman equations of flow in double diffusive convection. J. Math. Anal. Appl. 325, 1479-1490. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, D. K. 1992 Unsteady natural convection heat and mass transfer in a saturated porous enclosure. Wärme-Stoffübertrag. 28, 49-56.[9.1.6.4]

    Article  Google Scholar 

  • Liu, I. C. and Umavathi, J. C. 2013 Double diffusive convection of a micropolar fluid saturated in a sparsely packed porous medium. Heat Transfer Asian Res. 42, 515-529. [9.1.6.4]

    Article  Google Scholar 

  • Liu, R., Liu, Q. S. and Zhao, S. C. 2008a The influence of Rayleigh effect combined with Marangoni effect on the onset of convection in a liquid layer overlying a porous layer. Int. J. Heat Mass Transfer 51, 6328-6331. [6.19.3]

    Article  Google Scholar 

  • Lo Jacono, D., Bergeon, A. and Knobloch, E. 2013 Three-dimensional spatially localized binary fluid convection in a porous medium. J. Fluid Mech. 730, UNSP R2. [9.1.6.4]

    Google Scholar 

  • Lo Jacono, D., Burgeon, A. and Knobloch, E. 2010 Spatially localized binary fluid convection in a porous medium. Phys. Fluids 22, #s073601. [9.4]

    Article  Google Scholar 

  • Loganathan, P. and Eswari, B. 2016 Steady state analysis of natural convective flow over a moving cylinder in the presence of porous medium. J. Appl. Fluid Mech. 9, 1591-1601. [9.2.1]

    Google Scholar 

  • Loganathan, P. and Sivapoornapriya, C. 2014b Unsteady heat and mass transfer effects on impulsively started infinite vertical plate in the presence of porous medium. Int. J. Heat Tech. 33, 69–74. [9.2.1]

    Google Scholar 

  • Loganathan, P. and Sivapoornapriya, C. 2016a Ohmic heating and viscous dissipation effects over a vertical plate in the presence of porous medium. J. Appl. Fluid Mech. 9, 225-232. [9.2.1]

    Article  Google Scholar 

  • Loganathan, P. and Sivapoornapriya, C. 2016a Ohmic heating and viscous dissipation effects over a vertical plate in the presence of porous medium. J. Appl. Fluid Mech. 9, 225-232. [9.2.1]

    Article  Google Scholar 

  • Lombardo, S. and Mulone, G. 2002 Necessary and sufficient conditions of global nonlinear stability of rotating double-diffusive convection in a porous medium. Cont. Mech. Thermodyn. 14, 527-540. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardo, S., Mulone, G. and Straughan, B. 2001 Nonlinear stability in the Bénard problem for a double-diffusive mixture in a porous medium. Math. Meth. Appl. Sci. 24, 1229-1246. [9.1.3]

    Article  MATH  Google Scholar 

  • Lopez, A., Ibanez, G., Pantoja, J., Moreira, J. and Lastres, O. 2017 Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int. J. Heat Mass Transfer 107, 982–994. [9.7.2]

    Article  Google Scholar 

  • Love, A. J., Simmons, C. T. and Nield, D. A. 2007 Double-diffusive convection in groundwater wells. Water Resour. Res. 43, #W08428. [9.1.6.4]

    Article  Google Scholar 

  • Lyubimov, D. V., Lyubimova, T. P., Mojtabi, A. and Sadilov, E. S. 2008a Thermosolutal convection in a horizontal porous layer heated from below in the presence of horizontal through flow. Phys. Fluids 20, #044109. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Lyubimov, D. V., Lyubimova, T. P., Muratov, I. D. and Shishkina, E. A. 2008b Vibration effect on convection onset in a system consisting of a horizontal pure liquid layer and a layer of liquid-saturated porous medium. Fluid Dynamics 43, 789-798. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Lyubimov, D., Gavrilov, K. and Lyubimova, T. 2011 Soret-driven convection in a porous cavity with perfectly conducting boundaries. C. R. Mecanique 339, 297-302. [9.1.4]

    Article  Google Scholar 

  • Mabood, F. and Ibrahim, S. M. 2016 Effects of Soret and non-uniform heat source on MHD non-Darcian convective flow over a stretching sheet in a dissipative micropolar fluid with radiation. J. Appl. Fluid Mech. 9, 2503–2513. [9.2.1]

    Google Scholar 

  • Mabood, F., Ibrahim, S. M., Rashidi, M. M., Shadloo, M. S. and Lorenzini, G. 2016a Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int. J. Heat Mass Transfer 93, 674-682. [9.2.1]

    Article  Google Scholar 

  • Mabood, F., Khan, W. A. and Ismail, A. I. M. 2014 Analytic modelling of free convection of non-Newtonian nanofluids flow in porous media with gyrotactic microorganisms using OHAM. AIP Conf. Proc. 1635, 131-137. [9.7.3]

    Article  Google Scholar 

  • Mabood, F., Shateyi, S., Rashidi, M. M., Moniat, E. and Freidoonmehr, N. 2016b MHD stagnation point flow and heat transfer of nanofluids in porous media with radiation, viscous dissipation and chemical reaction. Adv. Powder Tech., to appear. [9.7.3]

    Google Scholar 

  • Madhava Reddy, C., Iyengar, T. K. V. and Krishna Gandhi, B. 2016 The effects of cross-diffusion and stratification in the Brinkman porous medium in unsteady natural convection currents on past started vertical plate. Global J. Pure Appl. Math. 12, 449-456. [9.2.1]

    Google Scholar 

  • Maghrebi, M. J., Nazari, M. and Armaghansi, T. 2012 Forced convection heat transfer of nanofluids in a porous channel. Transp. Porous Media 93, 401-413. [4.16.5]

    Article  MathSciNet  Google Scholar 

  • Magomedbekov, Kh. G. 1997 Free convection flow of binary mixture in thin porous ring. Fluid Dyn. 32, 841-849. [9.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Magyari, E. 2011a Note on the “Scaling transformations for boundary layer flow near the stagnation point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects.” Transp. Porous Media 87, 41-48. [5.1.9.9]

    Article  MathSciNet  Google Scholar 

  • Magyari, E. 2011c Reply on the reply on the Note : “Scaling transformations for boundary layer flow near the stagnation point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects.” Transp. Porous Media 87, 53-56. [5.1.9.9]

    Article  MathSciNet  Google Scholar 

  • Mahajan, A. and Sharma, M. K. 2014 Convection in magnetic nanofluids in porous media. J. Porous Media 17, 439-455. [9.7.2]

    Article  Google Scholar 

  • Mahanta, G. and Shaw, S. 2015 Soret and Dufour effects on unsteady MHD free convection flow of Casson fluid past a vertical plate embedded in a porous medium with convective boundary condition. Int. J. Appl. Engng. Res. 10, 24917-24936. [9.2.1]

    Google Scholar 

  • Mahdi, R. A., Mohammed, H. A., and Munisami K. M. 2013 The effect of various open cell aluminium foam geometrical shapes on combined convection heat transfer with nanofluid. Int. J. Emerg. Technol. Adv. Engng. 3, 615-629. [9.7.4]

    Google Scholar 

  • Mahdi, R. A., Mohammed, H. A., Munisami K. M. and Saied, N. H. 2014 Influence of various geometrical shapes on mixed convection through an open-cell aluminium foam filled with nanofluid. J. Comput. Theor. Nanoscience 11, 1275-1289. [9.7.4]

    Article  Google Scholar 

  • Mahdi, R. A., Mohammed, H. A., Munisami K. M. and Saied, N. H. 2015a Review of convection heat transfer and fluid flow in porous media with nanofluid. Renewable Sustainable Energy Rev. 41, 715-734. [9.7]

    Article  Google Scholar 

  • Mahdi, R. A., Mohammed, H. A., Munisami K. M. and Saied, N. H. 2015b Experimental and numerical investigation of combined convection heat transfer and fluid flow around a circular cylinder through rectangular and trapezoidal open-cell aluminum foams. Chem. Engng. Commun. 202, 674-693. [8.1.3]

    Article  Google Scholar 

  • Mahdy, A. 2010a Effect of chemical reaction and heat generation or absorption on double-diffusive convection from a vertical truncated cone in porous media with variable viscosity. Int. Comm. Heat Mass Transfer 37, 548-554. [9.6.1]

    Article  Google Scholar 

  • Mahdy, A. 2010b Soret and Dufour effect on double diffusion mixed convection from a vertical surface in a porous medium saturated with a non-Newtonian fluid. J. Non-Newtonian Fluid Mech. 165, 568-575. [9.6.1]

    Article  MATH  Google Scholar 

  • Mahdy, A. 2016 Natural convection boundary layer flow due to micro-organisms about a vertical cone in porous media saturated by a nanofluid, J. Brazilian Soc. Mech. Sci. Engng. 38, 67-75. [9.7.3]

    Article  Google Scholar 

  • Mahdy, A. and Ahmed, S. E. 2012 Laminar free convection over a vertical wavy surface embedded in a porous medium filled with a nanofluid. Transp. Porous Media 91, 423-435. [9.7.3]

    Article  MathSciNet  Google Scholar 

  • Mahdy, A. and Chamkha, A. J. 2010 Chemical reaction and viscous dissipation effects on Darcy-Forchheimer mixed convection in a fluid saturated porous media. Int. J. Numer. Meth. Heat Fluid Flow 20, 924-940. [9.6.1]

    Article  MATH  Google Scholar 

  • Mahidjiba, A., Mamou, M. and Vasseur, P. 2000a Onset of double-diffusive convection in a rectangular porous cavity subject to mixed boundary conditions. Int. J. Heat Mass Transfer 43, 1505-1522. [9.1.3]

    Article  MATH  Google Scholar 

  • Mahmoud, M. A. A. 2013 Effects of chemical reaction and heat generation on double-diffusive natural convection along a non-isothermal vertical cone in non-Newtonian fluid saturated porous medium with variable viscosity and thermal radiation. Latin Amer. Appl. Res. 43, 107-112. [9.2.1]

    Google Scholar 

  • Mahmoud, M. A. A. and Megahed, A. M. 2013 Thermal radiation effect on mixed convection heat and mass transfer of a non-Newtonian fluid over a vertical surface embedded in a porous medium in the presence of thermal diffusion and diffusion-thermo effects. J. Appl. Mech. Tech. Phys. 54, 90-99. [9.6.1]

    Article  MATH  Google Scholar 

  • Makhata, N. A. M., Saleh, H. and Hashim, I. 2015 Flow reversal of fully developed mixed convection of nanofluids in a vertical channel filled with porous medium with variable viscosity and convective surface condition. Int. J. Pure Appl. Math. 103, 81-97. [9.7.2]

    Google Scholar 

  • Makinde, O. D. 2009b Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions. Appl. Therm. Engng. 29, 1773-1777. [8.2.1]

    Article  Google Scholar 

  • Makinde, O. D. 2011a MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chem. Engng. Comm. 198, 590-608. [9.2.1]

    Article  Google Scholar 

  • Makinde, O. D. 2011b On MHD mixed convection with Soret and Dufour effects past a vertical plate embedded in a porous medium. Latin Amer. Appl. Res. 41, 63-68. [9.6.1]

    Google Scholar 

  • Makinde, O. D. 2012 Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation. Meccanica 47, 1173-1184. [9.6.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Makinde, O. D. and Sibanda, P. 2008 Magnetohydrodynamic mixed-convective flow and heat and mass transfer past a vertical plate in a porous medium with constant wall suction. ASME J. Heat Transfer 130, #112602. [9.2.1]

    Article  Google Scholar 

  • Malashetty, M. S. 1993 Anisotropic thermoconvective effects on the onset of double diffusive convection in a porous medium. Int. J. Heat Mass Transfer 36, 2397-2401. [9.1.6.2]

    Article  MATH  Google Scholar 

  • Malashetty, M. S. and Basavaraja, D. 2004 Effect of time-periodic boundary temperatures on the onset of double diffusive convection in a horizontal anisotropic porous layer. Int. J. Heat Mass Transfer 47, 2317-2327. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Malashetty, M. S. and Begum, I. 2011a The effect of rotation on the onset of double diffusive convection in a sparsely packed anisotropic porous layer. Transp. Porous Media 88, 315-345. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Malashetty, M. S. and Biradar, B. S. 2011a The onset of double diffusive reaction-convection in an anisotropic porous layer. Phys. Fluids 23, 064102. [9.1.6.2]

    Article  MATH  Google Scholar 

  • Malashetty, M. S. and Biradar, B. S. 2011b The onset of double diffusive convection in a binary Maxwell fluid saturated porous layer with cross-diffusion effects. Phys. Fluids 23, 064109. [9.1.4]

    Article  MATH  Google Scholar 

  • Malashetty, M. S. and Biradar, B. S. 2012 Linear and nonlinear double diffusive convection in a fluid-saturated porous layer with cross diffusion effects. Transp. Porous Med. 91, 649-675. [9.1.4]

    Article  MathSciNet  Google Scholar 

  • Malashetty, M. S. and Gaikwad, S. N. 2002 The effect of anisotropic thermoconvective currents on the onset of double-diffusive convection in a sparsely packed porous medium. J. Porous Media 5, 211-221. [9.1.6.2]

    Article  MATH  Google Scholar 

  • Malashetty, M. S. and Gaikwad, S. N. 2003 Onset of convective instabilities in a binary liquid mixtures with fast chemical reactions in a porous media. Heat Mass Transfer 39, 415-420. [9.1.6.4]

    Article  Google Scholar 

  • Malashetty, M. S. and Heera, R. 2008a Linear and nonlinear double diffusive convection in a rotating porous layer using a thermal nonequilibrium model. Int. J. Nonlinear Mech. 43, 600-621. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Malashetty, M. S. and Heera, R. 2008b The effect of rotation on the onset of double diffusive convection in a horizontal anisotropic porous layer. Transp. Porous Media 74, 105-127. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Malashetty, M. S. and Heera, R. 2009 The onset of double diffusive convection in a sparsely packed porous layer using a thermal non-equilibrium model. Acta Mech. 204, 1-20. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Malashetty, M. S. and Kollur, P. 2011 The onset of double diffusive convection in a couple stress fluid saturated anisotropic porous layer. Transp. Porous Media 86, 465-489. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Malashetty, M. S. and Swamy, M. 2010b The onset of convection in a binary fluid saturated anisotropic porous layer. Int. J. Therm. Sci. 49, 867-878. [9.1.6.2]

    Article  Google Scholar 

  • Malashetty, M. S. and Swamy, M. S. 2011 Effect of gravity modulation on the onset of thermal convection in rotating fluid and porous layer. Phys. Fluids 23, 064108. [6.22]

    Article  MATH  Google Scholar 

  • Malashetty, M. S., and Swamy, M. S. 2011 Double-diffusive convection in a rotating anisotropic porous layer saturated with a viscoelastic fluid. Int. J. Therm. Sci. 50, 1757-1769. [9.1.6.4]

    Article  Google Scholar 

  • Malashetty, M. S., Cheng, P. and Chao, B. H. 1994 Convective instability in a horizontal porous layer saturated with a chemically reacting fluid. Int. J. Heat Mass Transfer 37, 2901-2908. [6.11.2]

    Article  MATH  Google Scholar 

  • Malashetty, M. S., Hill, A. A. and Swamy, M. 2012a Double diffusive convection in a viscoelastic fluid-saturated porous layer using a thermal non-equilibrium model. Acta Mech. 223, 967-983. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Malashetty, M. S., Kollur, P. and Sidram, W. 2013 Effect of rotation on the onset of double diffusive convection in a Darcy porous medium saturated with a couple-stress fluid. Appl. Math. Modelling 37, 172-186. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Malashetty, M. S., Pal, D. and Kollur, P. 2010a Double-diffusive convection in a Darcy porous medium saturated with a couple-stress fluid. Fluid D yn. Res. 42, #035502.[9.1.6.4]

    MathSciNet  MATH  Google Scholar 

  • Malashetty, M. S., Pop, I. and Heera, R. 2009a Linear and nonlinear double diffusive convection in a rotating sparsely packed porous layer using a thermal non-equilibrium model. Contin. Mech. Thermodyn. 21, 317-339. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Malashetty, M. S., Pop, I., Kollur, P. and Sidram, W. 2012b Soret effect on double diffusive convection in a Darcy porous medium saturated with a couple-stress fluid. Int. J. Therm. Sci. 53, 130-140. [9.2.1]

    Article  MATH  Google Scholar 

  • Malashetty, M. S., Swamy, M. and Heera, R. 2008 Double diffusive convection in a porous layer using a thermal non-equilibrium model. Int. J. Therm. Sci. 47, 1131-1147. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Malashetty, M. S., Swamy, M. and Heera, R. 2009c The onset of convection in a binary viscoelastic fluid saturated porous layer. ZAMM 89, 356-369. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Malashetty, M. S., Swamy, M. and Sidram, W. 2010b Thermal convection in a rotating viscoelastic fluid saturated porous layer. Int. J. Heat Mass Transfer 53, 5747-5756. [6.22]

    Article  MATH  Google Scholar 

  • Malashetty, M. S., Swamy, M. and Sidram, W. 2011 Double diffusive convection in a rotating anisotropic porous layer saturated with a viscoelastic fluid. Int. J. Therm. Sci. 50, 1757-1769. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Malashetty, M. S., Tan, W. C. and Swamy, M. 2009e The onset of double diffusive convection in a binary viscoelastic fluid saturated anisotropic porous layer. Phys. Fluids 21, #084101. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Malasoma, J. M., Werny, P. and Lamarque, C. H. 1999 Chaotic behavior induced by thermal modulation in a model of the convective flow of a fluid mixture in a porous medium. Int. J. Bifurc. Chaos Appl. Sci. Engng. 9, 383-396. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Malga, B. S. and Kishan, N. 2014 Finite element analysis for unsteady MHD heat and mass transfer free convection flow of polar fluids past a vertical moving porous plate in a porous medium with heat generation and natural diffusion. J. Naval Arch. Marine Engng. 11, 69-82. [9.2.1]

    Google Scholar 

  • Mallikarjuna, B., Chamkha, A. J. and Vijaya, R. B. 2014 Soret and Dufour effects on double diffusive convective flow through a non-Darcy porous medium in a cylindrical annular region in the presence of heat sources. J. Porous Media 17, 623-636. [9.4]

    Article  Google Scholar 

  • Mallinkarjuna, B., Rashad, A. M., Chamkha, A. J. and Raju, S. H. 2016 Chemical effects on MHD convective heat and mass transfer flow past a rotating vertical cone embedded in a variable porosity regime. Afrika Matematika 27, 645-655. [9.6.1]

    Article  MathSciNet  Google Scholar 

  • Mamou, M. 2002a Stability analysis of thermosolutal convection in a vertical packed porous enclosure. Phys. Fluids 14, 4302-4314. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Mamou, M. 2002b Stability analysis of double-diffusive convection in porous enclosures. In Transport Phenomena in Porous Media II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 113-154. [9]

    Chapter  Google Scholar 

  • Mamou, M. 2003 Stability analysis of the perturbed rest state and of the finite amplitude steady double-diffusive convection in a shallow porous enclosure. Int. J. Heat Mass Transfer 46, 2263-2277. [9.1.3]

    Article  MATH  Google Scholar 

  • Mamou, M. 2004 Onset of oscillatory and stationary double-diffusive convection within a tilted porous enclosure. In Emerging Technologies and Techniques in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 209-219. [9.4].

    Chapter  Google Scholar 

  • Mamou, M. and Vasseur, P. 1999 Thermosolutal bifurcation phenomena in porous enclosures subject to vertical temperature and concentration gradients. J. Fluid Mech. 395, 61-87. [9.1.3]

    Article  MATH  Google Scholar 

  • Mamou, M., Hasnaoui, M., Amahmid, A. and Vasseur, P. 1998a Stability analysis of double diffusive convection in a vertical Brinkman porous enclosure. Int. Comm. Heat Mass Transfer 25, 491-500. [9.2.2]

    Article  Google Scholar 

  • Mamou, M., Vasseur, P. and Bilgen, E. 1995a Multiple solutions for double-diffusive convection in a vertical porous enclosure. Int. J. Heat Mass Transfer 38, 1787-1798. [9.2.4]

    Article  MATH  Google Scholar 

  • Mamou, M., Vasseur, P. and Bilgen, E. 1998c A Galerkin finite-element study of the onset of double-diffusive convection in an inclined porous enclosure. Int. J. Heat Mass Transfer 41, 1513-1529. [9.4]

    Article  MATH  Google Scholar 

  • Mamou, M., Vasseur, P. and Bilgen, E. 1998d Double-diffusive convection instability in a vertical porous enclosure. J. Fluid Mech. 368, 263-289. [9.2.4]

    Article  MATH  Google Scholar 

  • Mamou, M., Vasseur, P., Bilgen, E. and Gobin, D. 1994 Double-diffusive convection in a shallow porous layer. Heat Transfer 1994, Inst.Chem. Engrs, Rugby, vol. 5, pp. 339-344. [9.1.3]

    Google Scholar 

  • Mamou, M., Vasseur, P., Bilgen, E. and Gobin, D. 1995b Double-diffusive convection in an inclined slot filled with porous medium. Eur. J. Mech. B/Fluids 14, 629-652. [9.2.4]

    MATH  Google Scholar 

  • Mandy, A. 2010 Soret and Dufour effect on double diffusion mixed convection from a vertical surface in a porous medium saturated with a non-Newtonian fluid. J. Non_newtonian Fluid Mech. 165, 568-575. [9.6.1]

    Article  Google Scholar 

  • Mandy, A., Chamkha, A. J. and Baba, Y. 2010 Double-diffusive convection with variable viscosity from a vertical truncated cone in porous media in the presence of magnetic and radiation effects. Comput. Math. Appl. 59, 3867-3878. [9.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Manglesh, A., Gorla, M. G. and Chand, K. 2014 Soret and Hall effect on heat and mass transfer in MHD free convective flow through a porous medium in a vertical porous channel. Proc. Nat. Acad. Sci. India A 84, 63-69. [9.2.2]

    MathSciNet  MATH  Google Scholar 

  • Manole, D. M., Lage, J. L. and Nield, D. D. 1994 Convection induced by inclined thermal and solutal gradients, with horizontal mass flow, in a shallow horizontal layer of a porous medium. Int. J. Heat Mass Transfer 37, 2047-2057. [9.5]

    Article  MATH  Google Scholar 

  • Mansour, A., Amahmid, A. and Hasnaoui, M. 2008 Soret effect on thermosolutal convection developed in a horizontal shallow porous layer salted from below and subject to cross fluxes of heat. Int. J. Heat Fluid Flow 29, 306-314. [9.5]

    Article  Google Scholar 

  • Mansour, A., Amahmid, A., Hasnaoui, M. and Bourich, M. 2004 Soret effect on double-diffusive multiple solutions in a square porous cavity subject to cross gradients of temperature and concentration. Int. Comm. Heat Mass Transfer 31, 431-440. [9.5]

    Article  Google Scholar 

  • Mansour, A., Amahmid, A., Hasnaoui, M. and Bourich, M. 2006 Multiplicity of solutions induced by thermosolutal convection in a square porous cavity heated from below and submitted to a horizontal concentration gradient in the presence of the Soret effect. Numer. Heat Transfer A 49, 69-94. [9.5]

    Article  Google Scholar 

  • Mansour, A., Amahmid, A., Hasnaoui, M. and Mamou, M. 2007 Onset of thermosolutal convection in a shallow layer heated and salted from below and subject to a horizontal heat flux balanced by a Soret mass flux. Int. J. Heat Mass Transfer 50, 2148-2160. [9.5]

    Article  MATH  Google Scholar 

  • Mansour, A., Amahmid, A., Hasnaoui, M. and Mamou, M. 2007 Onset of thermosolutal convection in shallow porous layer heated and salted from below and subject to a horizontal heat flux balanced by a Soret mass flux. Int. J. Heat Mass Transfer 50, 2148-2160. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Mansour, M. A., Abd-Elaziz, M. M., Abdalla, R. and Elsayed, S. 2012 Effect of sinusoidal variations of boundary conditions on unsteady double diffusive convection in a square enclosure filled with a porous medium. Int. J. Numer. Meth. Heat Fluid Flow 22, 129-146. [9.4]

    Article  Google Scholar 

  • Mansour, M. A., Abd-Elaziz, M.M., Mohamed, R. A. and Ahmed, S. E. 2011a Unsteady natural convection, heat and mass transfer in inclined triangular porous enclosures in the presence of heat source or sink: Effect of sinusoidal variation of boundary conditions. Transp. Porous Media 87, 7-23. [9.4]

    Article  Google Scholar 

  • Mansour, M. A., Ahmed, S. E. and Bakier, M. Y. A. 2014 Free convection in H-shaped enclosures filled with a porous medium saturated with nanofluids with mounted heater on the vertical walls. Special Topics Rev. Porous Media 4, 287-297. [9.7.2]

    Article  Google Scholar 

  • Mansour, M. A., El-Anssary, N. F. and Aly, A. 2008 Effects of chemical reaction and thermal stratification on MHD free convection heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour numbers. Chem. Engng. J. 145, 340-345. [9.2.1]

    Article  Google Scholar 

  • Marcoux, M. and Charrier-Mojtabi, M. C. 1998 Etude paramétrique de la thermogravitation en milieu poreux. C. R. Acad. Sci., Paris 326, 539-546. [9.1.4]

    Article  Google Scholar 

  • Marcoux, M., Charrier-Mojtabi, M. C. and Azaiez, M. 1999b Double-diffusive convection in an annular vertical porous layer. Int. J. Heat Mass Transfer 42, 2313-2325. [9.4]

    Article  MATH  Google Scholar 

  • Marcoux, M., Karimi-Fard, M. and Charrier-Mojtabi, M. C. 1999a Onset of double-diffusive convection in a rectangular porous cavity submitted to heat and mass fluxes at the vertical walls. Int. J. Thermal Sci. 38, 258-266. [9.2.4]

    Article  Google Scholar 

  • Marneni, N., Tippa, S. and Pendyala, R. 2015 Ramp temperature and Dufour effects on transient MHD natural convection flow past an infinite vertical plate in a porous medium. European Phys. J. Plus 130 (12) 251, pp. 1-22. [9.2.1]

    Google Scholar 

  • Mashaei, P. R., and Hossainalipour, S. M. 2014 A numerical study of nanofluid forced convection in a porous channel with discrete heat sources J. Porous Media 17, 548-561. [9.7.1]

    Article  Google Scholar 

  • Mashaei, P. R., Shahryari, M. and Madani, S. 2016 Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties: Application to cylindrical heat pipes. J. Thermal Sana. Calor., to appear. [9.7.1]

    Google Scholar 

  • Masuda, Y., Yoneda, M., Ikeshoji, T., Kimura, S., Alavyoon, F., Tsukada, T. and Hozawa, M. 2002 Oscillatory double-diffusive convection in a porous enclosure due to opposing heat and mass fluxes on the vertical walls. Int. J. Heat Mass Transfer 45, 1365-1369. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Masuda, Y., Yoneda, M., Sumi, S., Kimura, S. and Alavyoon, F. 1999 Double-diffusive natural convection in a porous medium under constant heat and mass fluxes. Heat Transfer Asian Res. 28, 255-265. [9.1.6.4]

    Article  Google Scholar 

  • Masuda, Y., Yoneya, M, Suzuki, A. and Alavyoon, F. 2008 Numerical analysis of double-diffusive convection in a porous enclosure due to opposing heat and mass fluxes on the vertical walls. Why does peculiar oscillation occur? Int. J. Heat Mass Transfer 51, 383-388. [9.2.2]

    Article  Google Scholar 

  • Masuda, Y., Yoneya, M, Suzuki, A., Kimura, S. and Alavyoon, F. 2010 Numerical analysis of re-oscillation and non-centrosymmetric convection in a porous enclosure due to opposing heat and mass fluxes on the vertical walls. Int. Comm. Heat Mass Transfer 37, 250-255. [9.2.2]

    Article  Google Scholar 

  • Masuda, Y., Yoneya, M. and Kimura, S. 2013 Multiple solutions of double-diffusive convection in porous media due to opposing heat and mass fluxes on vertical walls. J. Therm. Sci. Tech. 8, 533-542. [9.2.2]

    Article  Google Scholar 

  • Masuda, Y., Yoneya, M., Sumi, S. I., Kimura, S. and Alavyoon, F. 1997 Double-diffusive natural convection in a porous medium under constant heat mass fluxes. Trans. Japan Soc. Mech. Engnrs. B. 63, 1734-1740. [9.2.2]

    Article  Google Scholar 

  • Mathew, A. and Singh, K. D. 2015 Span-wise fluctuating MHD convective heat and mass transfer flow through porous medium in a vertical channel with thermal radiation and chemical reaction. Int. J. Heat Tech. 33, 135-142. [9.2.2]

    Article  Google Scholar 

  • Matin, M. H. and Ghanbari, B. 2014 Effects of Brownian motion and thermophoresis on the mixed convection of nanofluid in a porous channel including flow reversal. Transp. Porous Media 101, 115-136. [9.7.4]

    Article  MathSciNet  Google Scholar 

  • Matin, M. H. and Hosseini, R. 2014 Solar radiation assisted mixed convection MHD flow of nanofluids over an inclined transparent plate embedded in a porous medium. J. Mech. Sci. Tech. 28, 3885-3893. Corrigendum 29 (2015) 5049. [9.7.4]

    Article  Google Scholar 

  • Matin, M. H. and Pop, I. 2013 Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall. Int. Comm. Heat Mass Transfer 46, 134-141. [9.7.1]

    Article  Google Scholar 

  • Matta, A. and Lakshmi Narayana, P. A. 2016 Effect of variable gravity on linear and nonlinear stability of double diffusive Hadley flow in porous media. J. Porous Media 19, 287-301. [9.1.6.4]

    Article  Google Scholar 

  • Matta, A., Lakshmi Narayana, P. A. and Hill, A. A. 2016a Double-diffusive Hadley-Prats flow in a porous medium subject to gravitational variation. Int. J. Therm. Sci. 102, 300-307. [9.1.6.4]

    Article  Google Scholar 

  • Matta, A., Lakshmi Narayana, P. A. and Hill, A. A. 2016b Nonlinear thermal instability in a horizontal porous layer with an internal heat source and mass flow. Acta Mech. 227, 1743-175. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Mbaye, M. and Bilgen, E. 2001 Subcritical oscillatory instability in porous beds. Int. J. Thermal Sci. 40, 595-602. [9.1.3]

    Article  Google Scholar 

  • Mchirgui, A., Hidoun, N., Magherbi, M. and Ben Brahim, A. 2014 Second law analysis in double diffusive convection through an inclined porous cavity. Comput. Fluids 96, 105-115. [9.4]

    Article  MathSciNet  Google Scholar 

  • Mchirgui, A., Hidouri, N., Magherbi, M. and Ben Brahim, A. 2012 Entropy generation in double diffusive convection in a square porous cavity using Darcy-Brinkman formulation. Transp. Porous Media 93, 223-240. [9.2.2]

    Article  MathSciNet  Google Scholar 

  • McKay, G. 1998b Onset of double-diffusive convection in a saturated porous layer with time-periodic surface heating. Cont. Mech. Thermodyn. 10, 241-251. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • McKay, G. 2000 Double-diffusive convective motions for a saturated porous layer subject to a modulated surface heating. Cont. Mech. Thermodyn. 12, 69-78. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Mehdaoui, R., Elmir, M. and Mojtabi, A. 2010 Effect of the wavy permeable interface on double diffusive natural convection in a partially porous cavity. Int. J. Multiphys. 4, 217-231. [9.2.1]

    Article  Google Scholar 

  • Mehta, K. N. and Nandakumar, K. 1987 Natural convection with combined heat and mass transfer buoyancy effects in non-homogeneous porous medium. Int. J. Heat Mass Transfer 30, 2651-2656. [9.2.2]

    Article  Google Scholar 

  • Melnikov, D. E. and Shevtsova, V. M. 2011 Separation of a binary liquid mixture in compound system: Fluid-porous-fluid. Acta Astronaut. 69, 381–386. [9.4]

    Article  Google Scholar 

  • Memari, M., Golmakani, A. and Dehkordi, A. M. 2011 Mixed convection flow of nanofluids and regular fluids in vertical porous media with viscous heating. Industr. Engng. Chem. Res. 50, 9403-9414. [9.7.4]

    Article  Google Scholar 

  • Memari, M., Golmakani, A. and Dehkordi, A. M. 2011 Mixed convection flow of nanofluids and regular fluids in vertical porous media with viscous heating. Indust. Engng. Chem Res. 50, 9403-9414. [9.7.4]

    Article  Google Scholar 

  • Mharzi, M., Daguenet, M. and Daoudi, S. 2000 Thermosolutal natural convection in a vertically layered fluid-porous medium heated from the side. Energy Conv. Management 41, 1065-1090. [9.2.2]

    Article  Google Scholar 

  • Mharzi, M., Daguenet, N. and Daoudi, S. 2002 Thermosolutal natural convection in a vertically layered fluid-porous medium heated from the side. Energy Convers. Manag. 41, 1065-1090. [9.2.2]

    Article  Google Scholar 

  • Milne, J. E. and Butler, S. L. 2007 A numerical investigation of the effects of compositional and thermal buoyancy on transient plumes in a porous layer. J. Porous Media 10, 151-173. [9.2.3]

    Article  Google Scholar 

  • Mimouni, N., Bennacer, R., Chikh, S. and Rahli, O. 2014 Limitation of parallel flow in double diffusive convection: Two- and three-dimensional transitions in a horizontal porous domain. Phys. Fluids 26, 074105. [9.2.2]

    Article  Google Scholar 

  • Mishra, S. R., Dash, G. C. and Acharya, M. 2013 Mass and heat transfer effect on MHD flow of an visco-elastic fluid through porous medium with oscillatory suction and heat source. Int. J. Heat Mass Transfer 57, 433-438. [9.2.1]

    Article  Google Scholar 

  • Misra, S., Satheesh, A., Mohan, C. G. and Padmanathan, P. 2013 The numerical simulation of double-diffusive laminar mixed convection flow in a lid-driven porous cavity. WEAS Trans. Heat Mass Transfer 8, 131-138. [9.6.2]

    Google Scholar 

  • Mittal, N., Manoj, V., Kumar, D. S. and Satheesh, A. 2013 Numerical simulation of mixed convection in a porous medium filled with water/Al2O3 nanofluid. Heat Transfer Asian Res. 42, 46-59. [9.7.4]

    Article  Google Scholar 

  • Mittal, N., Satheesh, A. and Santhos Kumar, D. 2014 Numerical simulation of mixed convection in a lid-driven porous cavity using different nanofluids. Heat Transfer Asian Res. 43, 1-16. [9.7.4]

    Article  Google Scholar 

  • Mohamad, A. A., and Sezai, I. 2002 Effect of lateral aspect ratio on three-dimensional double diffusive convection in porous enclosures with opposing temperature and concentration gradients. Heat Transfer Research 33, 318-325. [9.2.2]

    Google Scholar 

  • Mohamad, A. A. and Bennacer, R. 2001 Natural convection in a confined saturated porous medium with horizontal temperature and vertical solutal gradients. Int. J. Thermal Sci. 40, 82-93. [9.5]

    Article  Google Scholar 

  • Mohamad, A. A. and Bennacer, R. 2002 Double diffusion, natural convection in an enclosure filled with saturated porous medium subjected to cross-gradients: stably stratified fluid. Int. J. Heat Mass Transfer 45, 3725-3740. [9.5]

    Article  MATH  Google Scholar 

  • Mohamad, A. A., Bennacer, R. and Azaiez, J. 2004 Double-diffusion natural convection in a rectangular enclosure filled with binary fluid saturated porous media: the effect of lateral aspect ratio. Phys. Fluids 16, 184-199. [9.1.3]

    Article  MATH  Google Scholar 

  • Mohammadein, A. A. and Al Shear, N. A. 2011 Heat transfer in boundary layer flow past a curved surface in a saturated porous medium with variable permeability. J. Porous Media 14, 265-271. [9.2.1]

    Article  Google Scholar 

  • Mohan, C. G., and Satheesh, A. 2016 The numerical simulation of double-diffusive mixed convection flow in a lid-driven porous cavity with magnetohydrodynamic effects. Arabian J. Sci. Engng. 41, 1867-1882. [9.6.2]

    Article  Google Scholar 

  • Mohanty, B., Mishra, S. R. and Pattanayak, H. B. 2015 Numerical investigation on heat and mass transfer effect of micropolar fluid over stretching sheet through porous media. Alexandria Engng. J. 54, 223-232. [9.2.1]

    Article  Google Scholar 

  • Mohd Zin, N. A., Khan, I. and Shafie, S. 2016 The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium. J. Molecular Liquids 222, 138-150. [9.7.3]

    Article  Google Scholar 

  • Mojtabi, A. and Charrier-Mojtabi, M. C. 2000 Double-diffusive convection in porous media. In Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York., pp. 559-603. [3.3, 9]

    Google Scholar 

  • Mojtabi, A. and Charrier-Mojtabi, M. C. 2005 Double-diffusive convection in porous media. Handbook of Porous Media (K. Vafai, ed.), 2nd ed., Taylor and Francis, New York., pp. 269-320. [3.3, 9]

    Google Scholar 

  • Mojtabi, A., Charrier-Mojtabi, M. C., El Hajja, B and Pedram Razi, Y. 2015 Thermogravitational diffusion in a porous medium saturated by a binary fluid, Handbook of Porous Media, 3 rd ed. (K. Vafai, ed.), CRS Press, Boca Baton, FL, pp.713-768. [9, 9.1.4]

    Google Scholar 

  • Mondal, I. C. and Mukhopadhyay, S. 2012 MHD combined convective flow and heat transfer past a porous stretching surface embedded in a porous medium. Acta Tech. CSAV 57, 17-32. [9.6.1]

    MathSciNet  Google Scholar 

  • Mondal, S. and Sibanda, P. 2015 Effects of buoyancy ratio on unsteady double-diffusive natural convection in a cavity filled with a porous medium with non-uniform boundary conditions. Int. J. Heat Mass Transfer 85, 401-413. [9.2.2]

    Article  Google Scholar 

  • Mondal, S. and Sibanda, P. 2016 An unsteady double-diffusive natural convection in an inclined enclosure filled with a porous medium with non-uniform boundary conditions in presence of thermal radiation. Int. J. Math. Anal. 10, 469-491. [9.2.2]

    Article  Google Scholar 

  • Mondal, S. and Sibanda, P. 2016b Computational study on convective flows in presence of chemical reaction and thermal radiation in porous/non-porous cavities. Global J. Pure Appl. Math. 12, 3641–3671. [9.2.2]

    Google Scholar 

  • Moorthy, M. B. K. and Senthilvadivu, K. 2012a Effect of variable viscosity on convective heat and mass transfer by natural convection from vertical surface in porous medium. WSEAS Trans. Math 8, 751-759. [9.2.1]

    MATH  Google Scholar 

  • Moorthy, M. B. K. and Senthilvadivu, K. 2012c Soret and Dufour effects on natural convection flow past a vertical surface in a porous medium with variable viscosity. J. Appl. Math. 634806. [9.2.1]

    Google Scholar 

  • Moorthy, M. B. K., Kannon, T. and Senthilvadivu, K. 2013 Soret and Dufour effects on natural convection heat and mass transfer flow past a horizontal surface in a porous medium with variable viscosity. WSEAS Trans. Heat Mass Transfer 8, 121-130. [9.2.1]

    Google Scholar 

  • Moshizi, S. A. 2015 Forced convection heat ans mass transfer of MHD nanofluid flow inside a porous micro-channel with chemical reaction on the walls. Engineering Computations 32, 2419-2442. [9.7.1]

    Google Scholar 

  • Motsa, S. S. 2008 On the onset of convection in a porous layer in the presence of Dufour and Soret effects. SAMSA J. Pure Appl. Math. 3, 58-65. [9.1.4]

    Google Scholar 

  • Motsa, S. S. and Shateyi, S. 2012 Successive linearization analysis of unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and thermal radiation effects. Canad. J. Chem. Engng. 90, 1323-1335. [9.2.3]

    Article  Google Scholar 

  • Moukalled, F. and Darwish, M. 2013 Double diffusive natural convection in a porous rhombic annulus. Numer. Heat Transfer A 64, 378-399. [9.4]

    Article  Google Scholar 

  • Moukalled, F. and Darwish, M. 2015 Effect of buoyancy ratio on double diffusive natural convection in a porous rhombic annulus. Heat Transfer Engng. 36, 1371-1386. [9.4]

    Article  Google Scholar 

  • Muasovi, S. M. and Shahnazari, M. R. 2008 Investigation of natural convection in a vertical cavity filled with a anisotropic porous layer. Iranian J. Chem. Chem. Engng. 27, 39-45. [9.2.2]

    Google Scholar 

  • Muhaimin, I., Kandasamy, R. and Hashim, I. 2009a Thermophoresis and chemical reaction effects on non-Darcy MHD mixed convective heat and mass transfer past a porous wedge in presence of variable stream condition. Chem. Engng. Res. Design 87, 1527-1535. [9.2.1]

    Article  MATH  Google Scholar 

  • Muhaimin, I., Kandasamy, R. and Khamis, A. B. 2009b Numerical investigation of variable viscosities and thermal stratification effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of a chemical reaction. Appl. Math. Mech.—English Ed. 30, 1353-1364. [9.6.1]

    Article  MATH  Google Scholar 

  • Muhaimin, I., Kandasamy, R. and Khamis, A. B. 2010a Thermophoresis and chemical reaction effects on MHD mixed convective heat and mass transfer past a porous wedge in presence of suction. Latin Amer. Appl. Res. 40, 153-159. [9.6.1]

    Google Scholar 

  • Murray, B. T. and Chen, C. F. 1989 Double-diffusive convection in a porous medium. J. Fluid Mech. 201, 147-166. [9.1.3]

    Article  Google Scholar 

  • Murthy, P. V. S. N. 2000 Effect of double dispersion on mixed convection heat and mass transfer in non-Darcy porous medium. ASME J. Heat Transfer 122, 476-484. [9.2.1]

    Article  Google Scholar 

  • Murthy, P. V. S. N. and El-Amin, M. F. 2011 Thermo-diffusion effect on free convection heat and mass transfer in a thermally linearly stratified non-Darcy porous media. Open Transp. Phen. J. 3, 49-55. [9.2.1]

    Article  Google Scholar 

  • Murthy, P. V. S. N. and Kairi, R. R. 2009 Effect of melting and thermodiffusion on natural convection heat mass transfer in a non-Newtonian fluid saturated non-Darcy porous medium. Open Transp. Phen. J. 1, 7-14. [9.2.1]

    Article  Google Scholar 

  • Murthy, P. V. S. N. and Narayana, P. A. L. 2010 Soret and Dufour effects on free convection heat and mass transfer along a horizontal plate in non-Darcy porous medium. Int. J. Fluid Mech. Res. 37, 70-84. [9.2.1]

    Article  Google Scholar 

  • Murthy, P. V. S. N. and Singh, P. 1999 Heat and mass transfer by natural convection in a non-Darcy porous medium. Acta Mech. 138, 243-254. [9.2.1]

    Article  MATH  Google Scholar 

  • Murthy, P. V. S. N., Partha, M. K. and Sekhar, G. P. R. 2005 Mixed convection heat and mass transfer with thermal radiation in a non-Darcy porous medium. J. Porous Media 8, 541-549. [9.6.1]

    Article  Google Scholar 

  • Murthy, P. V. S. N., RamReddy, C., Chamkha, A. J. and Rashad, A. M. 2013a Magnetic effect on thermally stratified nanofluid saturated non-Darcy porous medium under convective boundary condition. Int. Comm. Heat Mass Transfer 47, 41-48. [9.7.3]

    Article  Google Scholar 

  • Murthy, P. V. S. N., Srinivasacharya, D. and Krishna, P. V. S. S. S. R. 2004b Effect of double stratification on free convection in a Darcian porous medium. ASME J. Heat Transfer 126, 297-300. [9.2.1]

    Article  Google Scholar 

  • Murthy, P. V. S. N., Sutradhar, A. and RamReddy, C. 2013b Double diffusive free convection flow past an inclined plate embedded in a non-Darcy porous medium saturated with a nanofluid. Transp. Porous Media 98, 553-564. [9.7.3]

    Article  MathSciNet  Google Scholar 

  • Murty, V. D., Clay, C. L., Camden, M. P. and Paul, D. B. 1994a Natural convection around a cylinder buried in a porous medium — non-Darcian effects. Appl. Math. Modell. 18, 134-141. [7.11]

    Article  MATH  Google Scholar 

  • Musuuza, J. L., Radu, F. A. and Attinger, S. 2012 Predicting predominant thermal convection in thermohaline flows in porous media. Adv. Water Res. 49, 23-36. [9.1.6.4]

    Article  Google Scholar 

  • Muthtamilselvan, M. and Das, M. K. 2012 Double diffusion in a porous cavity near its density maximum. J. Porous Media 15, 765-774. [9.1.6.4]

    Article  Google Scholar 

  • Muthtamilselvan, M. and Sureshkumar, S. 2016 Convective heat transfer in a nanofluid-saturated porous cavity with the effects of various aspect ratios and thermal radiation. Phys. Chem. Liquids, to appear. [9.7.2]

    Google Scholar 

  • Muthtamilselvan, M., Prakash, D. and Doh, D. H. 2014a Effect of thermal non-equilibrium on transient hydromagnetic flow over a moving surface in a nanofluid saturated porous media. J. Mech. Sci. Tech. 28, 3709-3718. [9.7.3]

    Article  Google Scholar 

  • Muthtamilselvan, M., Prakash, D. and Doh, D. H. 2014b Effect of non-uniform heat generation on unsteady MHD non-Darcian flow over a vertical stretching surface with variable properties. J. Appl. Fluid Mech. 7, 425-434. [5.1.9.9]

    MATH  Google Scholar 

  • Muthuraj, R. and Srinivas, S. 2010 Mixed convective heat and mass transfer in a vertical wavy channel with traveling thermal waves and porous medium. Comput. Math. Appl. 59, 3516-3528. [9.6.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Muthuraj, R., Srinivas, S. and Selvi, R. K. 2013 Heat and mass transfer effects on MHD flow of a couple-stress fluid in a horizontal wavy channel with viscous dissipation and porous medium. Heat Transfer Asian Res. 42, 403-421. [9.4]

    Article  Google Scholar 

  • Najafabadi, M. M. and Gorla, R. S. R. 2014 Mixed convection MHD heat and mass transfer over a nonlinear stretching vertical surface in a non-Darcian porous medium. J. Porous Media 17, 521-535. [9.6.1]

    Article  Google Scholar 

  • Nakayama, A. and Ashizawa, T. 1996 A boundary layer analysis of combined heat and mass transfer by natural convection from a concentrated source in a saturated porous medium. Appl. Sci. Res. 56, 1-11. [9.3.1, 9.3.2]

    Article  MATH  Google Scholar 

  • Nakayama, A. and Hossain, M. A. 1995 An integrated treatment for combined heat and mass transfer by natural convection in a porous medium. Int. J. Heat Mass Transfer 38, 761-765. [9.2.1]

    Article  Google Scholar 

  • Narayana, M. and Sibanda, P. 2012 Double diffusive convection due to a horizontal wavy surface in a porous medium. AIP Conf. Proc. 1453, 185-190. [9.1.6.4]

    Article  Google Scholar 

  • Narayana, M., Khider, A. M., Sidbanda, P. and Murthy, P. V. S. N. 2013b Soret effect on the natural convection from a vertical plate in a thermally stratified porous medium saturated with a non-Newtonian fluid. ASME J. Heat Transfer 135, 032501. Erratum 137, 107002. [9.2.1]

    Google Scholar 

  • Narayana, M., Sibanda, P., Motsa, S. S. and Lakshmi-Narayana, P. A. 2012a Linear and nonlinear stability analysis of binary Maxwell fluid convection in a porous medium. Heat Mass Transfer 48, 863-874. [9.1.6.4]

    Article  Google Scholar 

  • Narayana, M., Sibanda, P., Motsa, S. S. and Siddheshwar, P. G. 2012b On double-diffusive convection and cross diffusion effects on a horizontal wavy surface in a porous medium. Boundary Value Problems #88. [9.2.1]

    Google Scholar 

  • Narayana, P. A. L., Murthy, P. V. S. N. and Postelnicu, A. 2009a Soret and Dufour effects on free convection of non-Newtonian power law fluids with yield stress from a vertical flat plate in saturated porous media. J. Porous Media 12, 967-981. [9.2.1]

    Article  Google Scholar 

  • Narayana, P. A. L. and Murthy, P. V. S. N. 2006 Free convective heat and mass transfer in a doubly stratified non-Darcy porous medium. ASME J. Heat Transfer 128, 1204-1212. [9.2.1]

    Article  Google Scholar 

  • Narayana, P. A. L. and Murthy, P. V. S. N. 2007 Soret and Dufour effects on free convection heat and mass transfer in a doubly-stratified porous medium. J. Porous Media. 10, 613-623. [9.1.4]

    Article  Google Scholar 

  • Narayana, P. A. L. and Murthy, P. V. S. N. 2008 Soret and Dufour effects on free convection heat and mass transfer from a horizontal flatplate in a Darcy porous medium. ASME J. Heat Transfer 130, #104504. [9.2.1]

    Google Scholar 

  • Narayana, P. A. L. and Sibanda, P. 2010 Soret and Dufour effects on free convection along a vertical wavy surface in a fluid saturated porous medium. Int. J. Heat Mass Transfer 53, 3030–3034. [9.2.1]

    Article  MATH  Google Scholar 

  • Narayana, P. A. L., Murthy, P. V. S. N. and Gorla, R. S. R. 2008 Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium. J. Fluid Mech. 612, 1-9. [9.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Narayana, P. A. L., Murthy, P. V. S. N., Krishna, P. V. S. S. R. and Postelnicu, A. 2009b Free convective heat and mass transfer in a doubly stratified porous medium saturated with a power-law fluid. Int. J. Fluid Mech. Res. 36, 524-537. [9.2.1]

    Article  Google Scholar 

  • Narayana, P. V. S., Venkateswarlu, B. and Venkataramana, S. 2015 Thermal radiation and heat source effects on a MHD nanofluid past a vertical plate in a rotating system with porous medium. Heat Transfer Asian Res. 44, 1–19. [9.7.3]

    Article  Google Scholar 

  • Nasrin, R. and Alim, M. A. 2013 Non-Darcy assisted flow along a channel with an open cavity filled with water TiO2 nanofluid. Heat Transfer Asian Res. 42, 300-318. [9.7.1]

    Article  Google Scholar 

  • Nasrin, R., Alim, M. A. and Chamkha, A. J. 2013a Numerical simulation of non-Darcy forced convection through a channel with nonuniform heat flux in an open cavity using nanofluid. Numer. Heat Transfer A 64, 820-840. [9.7.1]

    Article  Google Scholar 

  • Nasrin, R., Alim, M. A. and Chamkha, A. J. 2013b Effect of heating wall position on forced convection along two-sided open enclosure with porous medium using nanofluid. Int. J. Energy Tech. 5, Paper 9, pp. 1-13. [9.7.1]

    Google Scholar 

  • Nath, P. R., Prasad, P. M. V. and Rao, D. R. V. P. 2010 Computational hydrodynamic mixed convective heat and mass transfer through a porous medium in a non-uniformly heated vertical channel with heat sources and dissipation. Comput. Math. Appl. 59, 803-811. [9.6.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Nayak, A., Panda, S. and Phukan, D. K. 2014b Soret and Dufour effects on mixed convection unsteady MHD boundary layer flow over stretching sheet in porous medium with chemically reactive species. Appl. Math. Mech. (English ed.) 35, 849-862. [9.6.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Nazar, R., Tham, L., Pop, I. and Ingham, D. B. 2011 Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Transp. Porous Media 86, 517-536. [9.7.4]

    Article  Google Scholar 

  • Nazari, M., Ashouri, M., Kayhani, M. H. and Tamayol, A. 2014a Experimental study of convective heat transfer of a nanofluid through a pipe filled with metallic foam. Int. J. Therm. Sci. 88, 33-39. [9.7.1]

    Article  Google Scholar 

  • Nazari, M., Maghrebi, M. J., Armaghani, T. and Chamkha, A. J. 2014b New models for heat flux spitting at the boundary of a porous medium: Three energy equations for nanofluid flow under local thermal non-equilibrium condition. Canad. J. Phys. 92, 1312-1319. [2.2.3]

    Article  Google Scholar 

  • Nazari, S. and Toghraie, D. 2017 Numerical simulation of heat transfer and fluid flow of water-CuO nanofluid in a sinusoidal channel with porous medium. Physica E 87, 134–140. [9.7.1]

    Article  Google Scholar 

  • Neagu, M. 2011 Free convective heat and mass transfer induced by a constant heat and mass fluxes vertical wavy wall in a non-Darcy double stratified porous medium. Int. J. Heat Mass Transfer 54, 2310-2318. [9.2.1]

    Article  MATH  Google Scholar 

  • Nejad, M., Saghar, M. Z. and Islam, M. R. 2001 Role of thermal diffusion on heat and mass transfer in porous media. Int. J. Comput. Fluid Dyn. 15, 157-168. [9.1.4]

    Article  MATH  Google Scholar 

  • Nguyen, H. D., Paik, S. and Douglass, R. W 1997a Double-diffusive convection in a porous trapezoidal enclosure with oblique principal axes. AAIA J. Thermophysics Heat Transfer 11, 309-312. [9.4]

    Article  Google Scholar 

  • Nguyen, H. D., Paik, S. and Douglass, R. W. 1994 Study of double-diffusive convection in layered anisotropic porous media. Numer. Heat Transfer B 26, 489-505. [9.1.6.2]

    Article  Google Scholar 

  • Nguyen, M. T., Aly, A. M., Abdelraheem M. and Lee, S. K. 2015 Natural convection in a non-Darcy porous cavity filled with Cu-water nanofluid using the characteristic-based split procedure in finite-element method. Numer. Heat Transfer A 67, 224-247. [9.7.2]

    Article  Google Scholar 

  • Nield, D. A. 1968 Onset of thermohaline convection in a porous medium. Water Resources Res. 4, 553-560. [6.2, 9.1.1, 11.4]

    Article  Google Scholar 

  • Nield, D. A. 1995b Comments on “A numerical study of the stability of thermohaline convection in a rectangular box containing a porous medium” by V. D. Murthy, C.L. Clay, M. P. Camden and E. R. Anselmo, ICMHT 21 (1994). Int. Comm. Heat Mass Transfer 22, 317-318. [9.1.1]

    Google Scholar 

  • Nield, D. A. 2011a A note on convection patterns in an inclined porous layer. Transp. Porous Media 86, 23-25. [7.8]

    Article  Google Scholar 

  • Nield, D. A. 2011b A note on the onset of convection in a layer of a porous medium saturated by a non-Newtonian nanofluid of power-law type. Transp. Porous Media 87, 121-123. [6.23]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009b The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792-5795. [9.7.3]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009c The effect of a transition layer between a fluid and a porous medium: shear flow in a channel. Transp. Porous Media 78, 477-487. [1.6]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2011a The Cheng-Minkowycz problem for the double-diffusive natural convection boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 54, 374-378. [9.7.3]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2011b A three-velocity three-temperature model for a tridisperse porous medium. Forced convection in a channel. Int. J. Heat Mass Transfer 54, 2490-2498. [4.16.4]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2011d Effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid. Transp. Porous Media 87, 765–775. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2012a The onset of convection in a layer of a porous medium saturated by a nanofluid: Effects of conductivity and viscosity variation and cross-diffusion. Transp. Porous Media 92, 837-846. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2012b The onset of strong heterogeneity and strong throughflow on the onset of convection in a porous medium: Non-periodic global variation. Transp. Porous Media 91, 927-938. [6.13.6]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013b Onset of convection with internal heating in a weakly heterogeneous porous medium. Transp. Porous Media 98, 543-552. [6.11.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013c Onset of convection with internal heating in a porous medium saturated by a nanofluid. Transp. Porous Media 99, 73-83. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013e The effect of heterogeneity on the onset of double-diffusive convection induced by internal heating in a porous medium: A layered model. Transp. Porous Media 100, 83-99. [9.1.6.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2014b Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 70, 430-433. Erratum 76, 534. [9.7.1]

    Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2014c Thermal instability in a porous layer saturated by a nanofluid: A revised model. Int. J. Heat Mass Transfer 68, 211-214. [9.7.2]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2015b The effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid: A revised model. ASME J. Heat Transfer 137, 052601. [9.7.2]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2015c Local thermal non-equilibrium and heterogeneity in a layered porous medium with vertical throughflow. J. Porous Media 18, 125-136. [6.13.6]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2016c Do isoflux boundary conditions inhibit oscillatory double-diffusive convection? Transp. Porous Media, to appear. [9.1.1]

    Google Scholar 

  • Nield, D. A., Kuznetsov, A. V. and Simmons, C. T. 2013 Deep saline fluids in geologic basins: The possible role of Soret effect. Transp. Porous Media 99, 297-305. [9.1.4]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A., Kuznetsov, A. V., Barletta, A. and Celli, M. 2015 The effects of double diffusion and local thermal non-equilibrium on the onset of convection in a layered porous medium: Non-oscillatory instability. Transp. Porous Media 107, 261-279. [9.1.6.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A., Manole, D. M. and Lage, J. L. 1993 Convection induced by inclined thermal and solutal gradients in a shallow layer of a porous medium. J. Fluid Mech. 257, 559-574. [9.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Nik-Ghazali, N., Badruddin, I. A., Badrudin, A. and Tababataeika., S. 2014 Dufour and Soret effects on square porous annulus. Adv. Mech. Engng. 209753. [9.1.4]

    Google Scholar 

  • Nithiarasu, P. 1999 Finite element modeling of a leaky third component migration from a heat source buried into a fluid saturated porous medium. Math. Comput. Model. 29, 27-39. [9.3.1]

    Article  MATH  Google Scholar 

  • Nithiarasu, P., Seetharamu, K. N. and Sundararjan, T. 1997a Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transfer 40, 3955-3957. [7.6.2]

    Article  MATH  Google Scholar 

  • Nithiarasu, P., Seetharamu, K.N. and Sundararajan, T. 1996 Double-diffusive natural convection in an enclosure filled with a fluid-saturated porous medium: a generalized non-Darcy approach. Numer. Heat Transfer A 30, 413-426. [9.2.2]

    Article  Google Scholar 

  • Nithiarasu, P., Sujatha, K. S., Ravindran, K., Sundararajan, T. and Seetharamu, K. N. 1997c Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall. Int. Comm. Heat Mass Transfer 24, 1121-1130. [9.2.2]

    Article  Google Scholar 

  • Nithyadevi, N. and Rajarathinam, M. 2015 Non-Darcy double diffusive mixed convection for nanofluid with Soret and Dufour effects in a lid-driven cavity. Int. J. Nanoparticles 8, 218-240. [9.7.4]

    Article  Google Scholar 

  • Nithyadevi, N. and Rajarathinam, M. 2016a Convection of Cu-water nanofluid in a partially active porous cavity with internal heat generation. J. Appl. Sci. Engng 19, 313–319. [9.7.2]

    Google Scholar 

  • Nithyadevi, N. and Rajarathinam, M. 2016b Natural convection of heat transfer for nanofluid in a partially open cavity with internal heating; Non-Darcy effect. J. Porous Media 19, 783–797. [9.7.2]

    Article  Google Scholar 

  • Nithyadevi, N., Begum, A. S., Oztop, H. F. and Al-Salem, K. 2017 Effects of inclination angle and non-uniform heating on mixed convection of a nanofluid filled porous enclosure with active mid-horizontal moving. Int. J. Heat Mass Transfer 104, 1217–1228. [9.7.4]

    Article  Google Scholar 

  • Noghrehabadi, A. Ghakambaz, M. and Ghanbarzedeh, A. 2014 Effects of variable viscosity and thermal conductivity on natural convection past a vertical plate in porous media. J. Mech. 30, 265-275. [9.7.3]

    Article  Google Scholar 

  • Noghrehabadi, A., and Behseresht, A. 2013 Flow and heat transfer affected by variable properties of nanofluids in natural-convection over a vertical cone in porous media. Comput. Fluids 88, 313-325. [9.7.3]

    Article  MathSciNet  Google Scholar 

  • Noghrehabadi, A., Behseresht, A., Ghalambaz, M. and Behseresht, J. 2013a Natural convection flow of nanofluids over vertical cone embedded in non-Darcy porous media. J. Thermophys. Heat Transfer 27, 334-341. [9.7.3]

    Article  Google Scholar 

  • Noghrehabadi, A., Ghalambaz, M. and Ghanbarzadeh, A. 2014 Effects of variable viscosity and thermal conductivity on natural convection of nanofluids past a vertical plate in porous media. J. Mech. 30, 266-275. [9.7.3]

    Article  Google Scholar 

  • Noghrehabadi, A., Rees, D. A. S. and Bassom, A. P. 2013b Linear stability of a thermally developing front induced by a constant heat flux. Transp. Porous Media 99, 493-513. [6.11.3]

    Article  MathSciNet  Google Scholar 

  • Nojoomizadeh, M. and Karimpour, A. 2016 The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nanotubes suspended in oil (MWCNT/oil nanofluid) in a microchannel filled with a porous medium. Physica E. 84, 423–433. [9.7.1]

    Article  Google Scholar 

  • Noreen, S. and Saleem, M. 2016 Soret and Dufour effects on the MHD peristaltic flow in a porous medium with thermal radiation and chemical reaction. Heat Transfer Res. 47, 1-28. [9.2.2]

    Article  Google Scholar 

  • Ojjela, O. and Naresh Kumar, N. 2014 Hall and ion slip effects on free convection heat and mass transfer of chemically reacting couple stress fluid in a porous expanding or contracting walls with Soret and Dufour effects. Frontiers Heat Mass Transfer 5 (1). [9.2.1]

    Google Scholar 

  • Ojjela, O. and Naresh Kumar, N. 2016 Unsteady MHD mixed convective flow of chemically reacting and radiating couple stress fluid in a porous medium between parallel plates with Soret and Dufour effects. Arabian J. Sci. Engng. 41, 1941-1953. [9.2.2]

    Article  Google Scholar 

  • Olali, P. B. 2013 Double-diffusive convection induced by selective absorption of radiation in a fluid overlying a porous layer. Meccanica 48, 201-210. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Osman, A. A., Abo-Dahab, S. M. and Mohamed, R. A. 2011 Analytical solution of thermal radiation and chemical reaction effects on unsteady MHD convection through porous media with heat source/sink. Math. Probl. Engng. [9.2.1]

    MATH  Google Scholar 

  • Osman, A. N. A., Abo-Dahab, S. M. and Mohamed, R. A. 2011 Analytical solution of thermal radiation and chemical reaction effects on unsteady MHD convection through porous media with heat source/sink. Math. Prob. Engng. 205181. [5.1.9.10]

    Google Scholar 

  • Ouarzazi, M. N. and Bois, P. A. 1994 Convective instability of a fluid mixture in a porous medium with time-dependent temperature gradient. Eur. J. Mech. B/Fluids 13, 275-295. [9.1.6.4]

    MathSciNet  MATH  Google Scholar 

  • Ouarzazi, M. N., Bois, P. A. and Taki, M. 1994 Nonlinear interaction of convective instabilities and temporal chaos of a fluid mixture in a porous medium. Eur. J. Mech. B/Fluids 13, 423-438. [9.1.6.4]

    MathSciNet  MATH  Google Scholar 

  • Ouarzazi, M. N., Joulin, A., Bois, P. A. and Platten, J. K. 2002 Soret effect and mixed convection in porous media. Lecture Notes in Physics, 584, 428-447. [9.1.4]

    Article  Google Scholar 

  • Ouattara, B., Khouzam, A., Mojtabi, A. and Charrier-Mojtabi, M. C. 2012 Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer: the effect of conducting boundary plates. Fluid Dyn. Res. 44, 031415. [9.1]

    Google Scholar 

  • Oueslati, F., Sammouda, H., Bennacer, R. and Belgith, A. 2006 Numerical study of thermosolutal convection in anisotropic porous media subject to cross-fluxes of heat and mass. J. Porous Med. 9, 69-81. [9.5]

    Article  Google Scholar 

  • Pal, D. and Chatterjee, S. 2010 Heat and mass transfer in MHD non-Darcian flow of a micropolar fluid over a stretching sheet embedded in a porous media with non-uniform heat source and thermal radiation. Comm. Nonlinear Sci. Numer. Simul. 15, 1843-1857. [9.2.1]

    Article  MATH  Google Scholar 

  • Pal, D. and Chatterjee, S. 2011 Mixed convection magnetohydrodynamic heat and mass transfer past a stretching surface in a micropolar fluid-saturated porous medium under the influence of Ohmic heating, Soret and Dufour effects. Comm. Nonlinear Sci. Numer. Simul. 16, 1329-1346. [9.6.1]

    Google Scholar 

  • Pal, D., and Chatterjee, S. 2013 Soret and Dufour effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable thermal conductivity in a porous medium. Appl. Math. Comput. 219, 7556-7574. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, D. and Chatterjee, S. 2014 MHD mixed convective heat and mass transfer in a viscoelastic fluid in a porous medium towards a stretching sheet with viscous-ohmic heating and chemical reaction. Canad. J. Chem. Engng 92, 168-175. [9.6.1]

    Article  Google Scholar 

  • Pal, D. and Mondal, G. 2015 Mixed convection-radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation. J. Petrol. Sci. Engng. 126, 16-25. [9.7.4]

    Article  Google Scholar 

  • Pal, D. and Mondal, H. 2010a Effect of variable viscosity on MHD non-Darcy mixed convection heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink. Comm. Nonlinear Sci. Numer. Simul. 15, 1553-1564. [8.1.1]

    Article  MATH  Google Scholar 

  • Pal, D. and Mondal, H. 2010b Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and ohmic dissipation. Comm. Nonlinear Sci. Numer. Simul. 15, 1197-1209. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, D. and Mondal, H. 2012 Influence of chemical reaction and thermal radiation on mixed convection heat and mass transfer over a stretching sheet in a Darcian porous medium with Soret and Dufour effects. Energy Conv. Manag. 62, 102-108. [9.6.1]

    Article  Google Scholar 

  • Pal, D. and Mondal, H. 2012 Soret and Dufour effects on MHD non-Darcian mixed convection heat and mass transfer over a stretching sheet with non-uniform heat source/sink.Physica B 407, 642-651. [9.6.1]

    Article  Google Scholar 

  • Pal, D. and Mondal, H. 2012a MHD non-Darcy mixed convective diffusion of species over a stretching sheet embedded in a porous medium with non-uniform heat source/sink, variable viscosity and Soret effect. Comm. Nonlinear Sci. Numer. Simul. 17, 672-684. [9.2.1]

    Article  MathSciNet  Google Scholar 

  • Pal, D. and Mondal, H. 2013 Influence of Soret and Dufour on MHD buoyancy-driven heat and mass transfer over a stretching sheet in the presence of heat generation/absorption and partial slip. Nuclear Engng. Design 256, 350-357. [9.6.1]

    Article  Google Scholar 

  • Pal, D. and Mondal, H. 2014a Influence of thermal radiation on mixed convection heat and mass transfer stagnation-point flow in nanofluids over stretching/shrinking sheet in a porous medium with chemical reaction. Nuclear Engng. Design 273, 644-652. [9.7.4]

    Article  Google Scholar 

  • Pal, D. and Mondal, H. 2014c Soret-Dufour effects on hydromagnetic non-Darcy convective-radiative heat and mass transfer over a stretching sheet in porous medium with viscous dissipation and Ohmic heating. J. Appl. Fluid Mech. 7, 513–523. [9.2.1]

    Google Scholar 

  • Pal, D. and Mondal, M. 2012b Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int. Comm. Heat Mass Transfer 39, 913-917. [9.2.1]

    Article  Google Scholar 

  • Pal, D. and Talukdar, B. 2010 Buoyancy and chemical reaction effects on MHD mixed convection heat and mass transfer in a porous medium with thermal radiation and Ohmic heating. Comm. Nonlinear Sci. Numer. Simul. 15, 2878-2893. [9.6.1]

    Article  MATH  Google Scholar 

  • Pal, D. and Talukdar, B. 2012a Influence of fluctuating thermal and mass diffusion on unsteady MHD buoyancy driven convection past a vertical surface with chemical reaction and Soret effects. Comm. Nonlinear Sci. Numer. Simul. 17, 1597-1614. [9.2.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, D., Mandal, G. and Vajravelu, K. 2014 Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation. Appl. Math. Comp. 238, 208-224. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Pandey, A. K. and Kumar, M. 2016 Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge. Alexandria Engng. J., to appear. [9.7.3]

    Google Scholar 

  • Partha, M. K. 2008 Thermophoresis particle deposition in a non-Darcy porous medium under the influence of Soret, Dufour effects. Heat Mass Transfer 44, 969-977. [9.2.1]

    Article  Google Scholar 

  • Partha, M. K. 2009 Suction/injection effects on thermophoresis particle deposition in a non-Darcy porous medium under the influence of Soret, Dufour effects. Int. J. Heat Mass Transfer 52, 1971-1979. [9.2.1]

    Article  MATH  Google Scholar 

  • Partha, M. K. 2010 Nonlinear convection in a non-Darcy porous medium. Appl. Math. Mech. English Edition 31, 565-574. [9.1.4]

    MATH  Google Scholar 

  • Partha, M. K., Murthy, P. V. S. N. and Raja Sekhar, G. P. 2006 Soret and Dufour effects in a non-Darcy porous medium. ASME J. Heat Transfer 128, 605–610. [9.2.1]

    Article  Google Scholar 

  • Parthiban, C. and Patil, P. R. 1994 Effect of inclined gradients on thermohaline convection in porous medium. Wärme-Stoffübertrag. 29, 291-297. [9.5]

    Article  Google Scholar 

  • Parvathy, C. P. and Patil, P. R. 1989 Effect of thermal diffusion on thermohaline interleaving in a porous medium due to horizontal gradients. Indian J. Pure Appl. Math. 20, 716-727. [9.5]

    MATH  Google Scholar 

  • Patil, P. M. and Chamkha, A. J. 2012 Heat and mass transfer from mixed convection flow of polar fluid along a plate in porous media with chemical reaction. Int. J. Numer. Meth. Heat Fluid Flow 23, 899–926. [9.6.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Patil, P. M. and Kulkarni, P. S. 2008 Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation. Int. J. Therm. Sci. 47, 1043-1054. [9.2.1]

    Article  Google Scholar 

  • Patil, P. M., Chamkha, A. J. and Roy, S. 2012 Effects of chemical reaction on mixed convection flow of a polar fluid through a porous medium in the presence of internal heat generation. Meccanica 47, 483-499. [8.1.1, 9.6]

    Article  MathSciNet  MATH  Google Scholar 

  • Patil, P. R. 1982a Soret driven instability of a reacting fluid in a porous medium. Israel J. Tech. 19, 193-196. [9.1.6.4]

    MATH  Google Scholar 

  • Patil, P. R. and Parvathy, C. P. 1989 Thermohaline convection with cross-diffusion in an anisotropic porous medium. Proc. Indian Acad. Sci. Math. Sci. 99, 93-101. [9.1.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Patil, P. R. and Rudraiah, N. 1980 Linear convective stability and thermal diffusion of a horizontal quiescent layer of a two-component fluid in a porous medium. Int. J. Engng. Sci. 18, 1055-1059. [9.1.4]

    Article  MATH  Google Scholar 

  • Patil, P. R. and Vaidyanathan, G. 1982 Effect of variable viscosity on thermohaline convection in a porous medium. J. Hydrol. 57, 147-161. [9.1.6.2]

    Article  Google Scholar 

  • Patil, P. R., Parvathy, C. P. and Venkatakrishnan, K. S. 1990 Effect of rotation on the stability of a doubly diffusive layer in a porous medium. Int. J. Heat Mass Transfer 33, 1073-1080. [9.1.6.4]

    Article  Google Scholar 

  • Patil, P. R., Parvathy, C.P. and Venkatakrishnan, K. S. 1989 Thermohaline instability in a rotating anisotropic porous medium. Appl. Sci. Res. 46, 73-88. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Pattnaik, J. R., Dash, G. C. and Singh, S. 2015 Radiation and mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature. Ain Shams Engng. J., to appear. [9.2.1]

    Google Scholar 

  • Peterson, J. W., Murray, B. T. and Carey, G. F. 2010 Multi-resolution simulation of double-diffusive convection in porous media. Int. J. Numer. Meth. Heat Fluid Flow 20, 37-65. [9.1.3]

    Article  Google Scholar 

  • Pieters, G. J. M. and Schuttlelaars, H. M. 2008 On the nonlinear dynamics of a saline boundary layer formed by throughflow near the surface of a porous medium. Physcia D 237, 3075-3088. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Pop, I. 2011 Reply to the Paper TIPM1512: Note on the “Scaling transformations for boundary layer flow near the stagnation point on a heated permeable stretching surface in a porous medium saturated with a nanofluid and heat generation/absorption effects.” by E. Magyari. Transp. Porous Media 87, 49-51. [5.1.9.9]

    Google Scholar 

  • Pop, I. and Herwig, H. 1990 Transient mass transfer from an isothermal vertical flat plate embedded in a porous medium. Int. Comm. Heat Mass Transfer 17, 813-821. [9.5]

    Article  Google Scholar 

  • Pop, I., Ghalambaz, M. and Sheremet, M. 2016 Free convection in a square porous cavity filled with a nanofluid using thermal nonequilibrium and Buongiorno models. Int. J. Numer. Meth. Heat Fluid Flow 26, 671-693. [9.7.2]

    Article  MATH  Google Scholar 

  • Postelnicu, A. 2004 Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Int. J. Heat Mass Transfer 47, 1467-1472. [9.2.1]

    Article  MATH  Google Scholar 

  • Postelnicu, A. 2006 Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transfer 34, 3121-3133. [9.2.1]

    Google Scholar 

  • Postelnicu, A. 2007c Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Heat Mass Transfer 43, 595-602. [9.2.1]

    Article  Google Scholar 

  • Postelnicu, A. 2009 Onset of convection in a horizontal porous layer driven by catalytic surface reaction on the lower wall. Int. J. Heat Mass Transfer 52, 2466-2470. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Postelnicu, A. 2010a Heat and mass transfer by natural convection at a stagnation point in a porous medium considering Soret and Dufour effects. Heat Mass Transfer 46, 831-840. [9.2.1]

    Article  Google Scholar 

  • Poulikakos, D. 1985d Departure from the Darcy model in boundary layer natural convection in a vertical porous layer with uniform heat flux from the side. ASME J. Heat Transfer 107, 716-720. [7.2]

    Article  Google Scholar 

  • Poulikakos, D. 1985b Onset of convection in a horizontal porous layer saturated with cold water. Int. J. Heat Mass Transfer 28, 1899-1905. [6.20]

    Article  MathSciNet  Google Scholar 

  • Poulikakos, D. 1986 Double diffusive convection in a horizontally sparsely packed porous layer. Int. Comm. Heat Mass Transfer 13, 587-598. [9.1.6.3]

    Article  Google Scholar 

  • Prakash, D., Muthtamilselvan, M. and Niu, X. D. 2016a Unsteady MHD non-Darcian flow over a vertical stretching plate embedded in a porous medium with thermal non-equilibrium model. Adv. Appl. Math. Mech. 8, 52-66. [5.1.9.10]

    Article  MathSciNet  Google Scholar 

  • Prakash, J. and Gupta, S. K. 2016 On nonexistence of oscillatory motions in magnetothermohaline convection in porous medium. J. Porous Media 19, 567–581. [9.1.6.4]

    Article  Google Scholar 

  • Prakash, J., Bhanumathi, D., Kumar, A. C. V. and Varma S. V. K. 2013 Diffusion-thermo and radiation effects on unsteady MHD flow through porous medium past an impulsively started infinite vertical plate via variable temperature and mass diffusion. Transp. Porous Media 96, 135-151. [9.2.1]

    Google Scholar 

  • Prakash, J., Durga Prasad, P., Kiran Kumar R. V. M. S. S. and Varma, S. V. K. 2016b Diffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate. J. Comp. Appl. Res. Mech. Engng. 5, 111-126. [9.2.1]

    Google Scholar 

  • Prakash, J., Kumari, K. and Kumar, R. 2016d Triple diffusion convection in a cylindrical porous layer saturated with larger viscosity variation liquid. J. Porous Media 19, 723–735. [9.1.6.4]

    Article  Google Scholar 

  • Prakash, J., Singh, V. and Manan, S. 2016c On the limitations of linear growth rates in triply diffusive convection in porous medium. J. Assoc. Arab Univ. Basic Appl. Sci., to appear. [9.1.6.4]

    Google Scholar 

  • Prakash, K. and Manchanda, S. 1994 Effects of finite Larmor radius and Hall currents on thermosolutal instability in a partially ionized plasma in a porous medium. Z. Naturforsch. A. 49, 469-474. [9.1.6.4]

    Article  Google Scholar 

  • Prasad, V. R. and Reddy, N. B. 2008 Radiation and mass transfer effects on an unsteady MHD convection flow past a semi-infinite vertical permeable plate embedded in a porous medium with viscous dissipation. Indian J. Pure Appl. Phys 46, 81-92. [9.2.1]

    Google Scholar 

  • Prasad, V. R., Rao, V. R., Rao, A. S., Reddy, N. B. and Bég, O. A. 2013a Modelling laminar transport phenomena in a Casson rheological fluid from an isothermal sphere with partial slip in a non-Darcy porous medium. J. Theor. Appl. Mech. 40, 469-510. [5.6.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Prasad, V. R., Vasu, B., Bég, O. A. and Parshad, R. D. 2012b Thermal radiation effects on magnetohydrodynamic heat and mass transfer from a horizontal cylinder in a variable porosity regime. J. Porous Media 15, 261-281. [9.2.1]

    Article  Google Scholar 

  • Prasad, V. R., Vasu, B., Bég, O. A. and Parshad, R. D. 2012a Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime. Comm. Nonlinear Sci. Numer. Simul. 17, 654-671. [9.2.1]

    Article  MathSciNet  Google Scholar 

  • Prichard, D. and Richardson, C. N. 2007 The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer. J. Fluid Mech. 571, 59-95. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Pringle, S. E. and Glass, R. J. 2002 Double-diffusive finger convection: influence of concentration at fixed buoyancy ratio. J. Fluid Mech. 462, 161-183. [9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Pringle, S. E., Glass, R. J. and Cooper, C. A. 2002 Double-diffusive finger convection in a Hele-Shaw cell: An experiment exploring the evolution of concentration fields, length scales and mass transfer. Transport Porous Media 47, 195-214. [9.1.6.4]

    Article  Google Scholar 

  • Prud’homme, M. and Jasmin, S. 2003 Determination of a heat source in porous medium with convective mass diffusion by an inverse method. Int. J. Heat Mass Transfer 46, 2065-2075. [9.3.1]

    Article  MATH  Google Scholar 

  • Prud’homme, M. and Jiang, H. 2003 Inverse determination of concentration in porous medium with thermosolutal convection. Int. Comm. Heat Mass Transfer 30, 303-312. [9.2.3]

    Article  Google Scholar 

  • Rahman, M. M. 2012 Combined effects of internal heat generation and higher-order chemical reaction on the non-Darcian forced convective flow of a viscous incompressible fluid with variable viscosity and thermal conductivity over a stretching surface embedded in a porous medium. Canad. J. Chem. Engng. 90, 1632-1645. [9.2.1]

    Article  Google Scholar 

  • Rahman, M. M. and Al-Lawatia, M. 2010 Effects of higher order chemical reaction on micropolar fluid flow on a power law, permeable stretched sheet with variable concentration in a porous medium. Canad. J. Chem. Engng. 88, 23-32. [9.2.1]

    Article  Google Scholar 

  • Raju, M. C, and Varma, S. V. K. 2014 Soret effects due to natural convection in a non-Newtonian fluid flow in porous medium with heat and mass transfer. J. Naval Arch. Marine Engng. 11, 147-156. [9.2.1]

    Google Scholar 

  • Ramachandra Prasad V., Vasu, B. and Bég, O. A. 2011 Thermo-diffusion and diffusion-thermo effects on MHD free convection past a vertical porous plate embedded in a non-Darcian porous medium. Chem. Engng. J. 173, 598-606. [9.2.1]

    Article  Google Scholar 

  • Ramana Reddy, G. V., Ramana Murthy, C. V. and Reddy, N. B. 2010 Mass transfer and radiation effects on unsteady MHD free convective flow embedded in a porous medium with heat generation/absorption. J. Appl. Fluid Mech. 2, 85-98. [9.2.1]

    Google Scholar 

  • Ramanbason D. S. R. and Vasseur, P. 2007 Influence of a magnetic field on natural convection in a shallow porous enclosure saturated with a binary fluid. Acta Mech. 191, 21-35. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Ramaprasad, J. L. and Varma, B. V. K. 2014 Thermal radiation and radiation absorption effects on unsteady MHD double diffusive free convection flow of Kuvshinski fluid past a moving porous plate embedded in a porous medium with chemical reaction and heat generation. Far East J. Math. Sci. 91, 211-231. [9.2.1]

    MATH  Google Scholar 

  • Ramazanov, M. M. 2001 Influence of the skin –effect of the convective stability of a binary mixture in a porous layer with modulation of the boundary temperature. Fluid Dyn. 36, 279-284. [9.1.6.4]

    Article  MATH  Google Scholar 

  • RamReddy, C., Murthy, P. V. S. N., Rashad, A. and Chamkha, A. J. 2014 Numerical study of thermally stratified nanofluid flow in a saturated non-Darcy porous medium. European Phys. J. Plus 129, #25, 1-11. [9.7.3]

    Google Scholar 

  • RamReddy, C., Murthy, P. V. S. N., Chamkha, A. J. and Rashad, A. 2013a Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int. J. Heat Mass Transfer 64, 384-392. [9.7.4]

    Article  Google Scholar 

  • RamReddy, C., Murthy, P. V. S. N., Chamkha, A. J. and Rashad, A. M. 2013b Influence of viscous dissipation on free convection in a non-Darcy porous medium saturated with nanofluid in the presence of magnetic field. Open Transp. Phenom. J. 5, 20-29. [9.7.3]

    Article  Google Scholar 

  • RamReddy, R. S. and Chamkha, A. J. 2013 Free convection past a vertical plate embedded in a porous medium saturated with a non-Newtonian nanofluid. J. Nanofluids 2, 1–6. [9.7.3]

    Article  Google Scholar 

  • Rana, G. C. 2013 Thermosolutal convection in Walters’ (Model B’) rotating fluid permeated with suspended particles and variable gravity field in porous medium in hydromagnetics. J. Appl. Fluid Mech. 6, 87-93. [9.1.6.4]

    Google Scholar 

  • Rana, G. C. 2014 The onset of thermal convection in couple-stress fluid in hydromagnetics saturating a porous medium. Bull. Polish Acad. Sci. Tech. Sci. 62, 357-362. [6.21]

    Google Scholar 

  • Rana, G. C. and Chand, R. 2015 Stability analysis of double-diffusive convection of Rivlin-Ericksen elastico-viscous nanofluid saturating a porous medium: A revised model. Forsch. Ingen. 79, 87-95. [9.7.2]

    Article  Google Scholar 

  • Rana, G. C. and Thakur, R. C. 2013a Combined effect of suspended particles and rotation on double-diffusive convection in a viscoelastic fluid saturated by a Darcy-Brinkman porous medium. J. Comp. Multiphase Flows 5, 101-113. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Rana, G. C. and Thakur, R. C. 2013b Necessary condition on the onset of double-diffusive convection in couple-stress fluid in hydromagnetics saturated by a porous medium. Latin Amer. Appl. Res. 43, 307-311. [9.1.6.4]

    Google Scholar 

  • Rana, G. C., Chand, R. and Sharma, V. 2016 Thermal instability of a Rivlin-Ericksen nanofluid saturated by a Darcy-Brinkman porous medium: A more realistic model. Engng. Trans. 64, 271–286. [9.7.2]

    Google Scholar 

  • Rana, G. C., Thakur, R. C. and Kango, S. K. 2014a On the onset of double-diffusive convection in a layer of nanofluid under rotation saturating a porous medium. J. Porous Media 17, 657-667. [9.7.2]

    Article  Google Scholar 

  • Rana, G. C., Thakur, R. C. and Kango, S. K. 2014b On the onset of thermosolutal instability in a layer of elastic-viscous nanofluid in porous medium. FME Trans. 42, 1-9. [9.7.2]

    Article  Google Scholar 

  • Rana, P., Bhargavi, R. and Bég, O. A. 2012b Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Comput. Math. Appl. 64, 2816-2832, corrigendum 69, 1518-1518 (2015). [9.7.4]

    Google Scholar 

  • Ramzan, M., Yousaf, F., Farooq, M. and Chung, J. D. 2016 Mixed convective viscoelastic nanofluid flow past a porous media with Soret-Dufour effects. Comm. Theor. Phys. 66, 133–142. [9.7.4]

    Google Scholar 

  • Rana, R., Thakur, R. and Kumar, S. 2012c Thermosolutal convection in compressible Walters’ (model B’) fluid permeated with suspended particles in a Brinkman porous medium. J. Comp. Multiphase Flows 4, 211-223. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Raptis, A. 1983a Mass transfer and free convection through a porous medium by the presence of a rotating fluid. Int. Comm. Heat Mass Transfer 10, 141-146. [9.1.6.4]

    Article  Google Scholar 

  • Raptis, A. A. 1983c Unsteady free convective flow and mass transfer through a porous medium bounded by an infinite vertical limiting surface with constant suction and time-dependent temperature. Int. J. Energy Res. 7, 385-389. [9.2.1]

    Article  Google Scholar 

  • Raptis, A. and Tzivanidis, G. 1984 Unsteady flow through a porous medium with the presence of mass transfer. Int. Comm. Heat Mass Transfer 11, 97-102. [9.2.1]

    Article  Google Scholar 

  • Raptis, A., Perdikis, C. and Tzivanidis, G. 1981b Free convection flow through a porous medium bounded by a vertical surface. J. Phys. D 14, (7) 001 L99-L102. [5.1.2]

    Google Scholar 

  • Raptis, A., Tzivanidis, G. and Kafousias, N. 1981a Free convection and mass transfer flow through a porous medium bounded by an infinite vertical limiting surface with constant suction. Lett. Heat Mass Transfer 8, 417-424. [9.2.1]

    Article  Google Scholar 

  • Rasekh, A. and Ganji, D. D. 2013 Analytical approximate solutions of mixed convection about an inclined flat plate embedded in a porous medium filled with nanofluids. Int. J. Comput. Meth. Engng. Sci. Mech. 14, 440-451. [9.7.4]

    Article  Google Scholar 

  • Rasekh, A., Ganji, D. D. and Tavakoli, S. 2013 Analytical solution for natural convection heat transfer about a vertical cone in porous media filled with a non-Newtonian Al2O3-water nanofluid. Comput. Thermal Sci. 5, 73-82. [9.7.3]

    Article  Google Scholar 

  • Rashad, A. and Chamkha, A. 2014 Heat and mass transfer by natural convection flow about a truncated cone in porous media with Soret and Dufour effects. Int. J. Numer. Meth. Heat Fluid Flow 24, 595-612. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Rashad, A. M. and El-Khabeir, S. M. M. 2010 Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species. J. Porous Media 13, 75-85. [9.6.1]

    Article  Google Scholar 

  • Rashad, A. M., Abbasbandy, S. and Chamkha, A. J. 2014c Non-Darcy natural convection from a vertical cylinder embedded in a thermally stratified and nanofluid-saturated porous media. ASME J. Heat Transfer 136, 022503. [9.7.3]

    Article  Google Scholar 

  • Rashad, A. M., Abdou, M. M. M. and Chamkha, A. 2011a MHD free convective heat and mass transfer of a chemically-reacting fluid from radiate stretching surface embedded in a saturated porous medium. Int. J. Chem. Reactor Engng. 9, 466. [9.2.1]

    Google Scholar 

  • Rashad, A. M., Chamkha, A. J. and Abdou, M. M. M. 2013a Mixed convection flow of non-Newtonian fluid from vertical surface saturated in porous medium filled with a nanofluid. J. Appl. Fluid Mech. 6, 301-309. [9.7.4]

    Google Scholar 

  • Rashad, A. M., Chamkha, A. J. and El-Kabeir, S. M. M. 2011b Effect of chemical reaction on heat and mass transfer by mixed convection flow about a sphere in a saturated porous media. Int. J. Numer. Meth. Heat Fluid Flow 21, 418-433. [9.6.1]

    Article  Google Scholar 

  • Rashad, A. M., Chamkha, A. J. and El-Kabeir, S. M. M. 2014a Effects of radiation and chemical reaction on heat and mass transfer by natural convection in a micropolar fluid-saturated porous medium with streamwise temperature and species concentration variations. Heat Transfer Res. 45, 795-815. [9.2.1]

    Article  Google Scholar 

  • Rashad, A. M., Chamkha, A. J. and Modather, M. 2013b Mixed convection boundary-layer flow of a nanofluid from a horizontal circular cylinder embedded in a porous medium under convective boundary condition. Comput. Fluids 86, 380-386. [9.7.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rashad, A. M., Chamkha, A. J., Ramreddy, C. and Murthy, P. V. S. N. 2014b Influence of viscous dissipation on mixed convection in a non-Darcy porous medium saturated with a nanofluid. Heat Transfer Asian Res., 43, 397-411. [9.7.4]

    Article  Google Scholar 

  • Rashad, A. M., Chamkha, A. J., RamReddy, C. and Murthy, P. V. S. N. 2015 Effect of visous dissipation on mixed convection in a nanofluid saturated non-Darcy porous medium under convective boundary conditions. J. Nanofluids 4, 548–559. [9.7.4]

    Article  Google Scholar 

  • Rashad, A. M., El-Hakiem, M. A. and Abdou, M. M. M. 2011c Natural convective boundary layer of a non-Newtonian fluid about a permeable vertical cone embedded in a porous medium saturated with a nanofluid. Comput. Math. Appl. 62, 3140-3151. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Rashad, A. M., Rashidi, M. M., Lorenzini, G., Ahmed, S. E. and Aly, A. M. 2017 Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with a Cu-water nanofluid. Int. J. Heat Mass Transfer 104, 878-889. [9.7.2]

    Article  Google Scholar 

  • Rashidi, M. M., Rajvanshi, S. C., Kavyani, N., Keimanesh, M. and Pop, I. 2014c Investigation of heat transfer in a porous annulus with pulsating pressure gradient by homotopy analysis method. Arabian J. Sci. Engng. 39, 5113-5128. [4.16.2]

    Article  MathSciNet  Google Scholar 

  • Rashidi, S., Dehghan, M., Ellahi, R., Riaz, M. and Jamal-Abad, M. T. 2015a Study of streamwise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. J. Magnet. Magnet. Mat. 378, 128-137. [5.1.9.10]

    Article  Google Scholar 

  • Rastogi, S. K. and Poulikakos, D. 1993 Double diffusion in a liquid layer under a permeable solid region saturated with a non-Newtonian fluid. Numer. Heat Transfer A 24, 427-449. [9.4]

    Article  Google Scholar 

  • Rastogi, S. K. and Poulikakos, D. 1995 Double diffusion from a vertical surface in a porous region saturated with a non-Newtonian fluid. Int. J. Heat Mass Transfer 38, 935-946. [9.2.1]

    Article  MATH  Google Scholar 

  • Rastogi, S. K. and Poulikakos, D. 1997 Experiments on double-diffusion in a composite system comprised of a packed layer of spheres and an underlying layer. Heat Mass Transfer 32, 181-191. [9.4]

    Article  Google Scholar 

  • Rath, P. K., Dash, G. C. and Patra, A. K. 2013 Three-dimensional MHD free convective flow with heat and mass transfer through a porous medium with periodic permeability and chemical reaction. Proc. Nat. Acad. Sci. India A 83, 105-114. [9.2.1]

    MathSciNet  MATH  Google Scholar 

  • Rathish Kumar, B. V. and Krishna Murthy S. V. S. S. N. V. G. 2012a A finite element study of double diffusive mixed convection in a concentration stratified Darcian fluid saturated porous enclosure with injection/suction effect. J. Appl. Math. 594701. [9.6.2]

    Google Scholar 

  • Rathish Kumar, B. V. and Krishna Murthy, S. V. S. S. N. V. G. 2010b Soret and Dufour effects on double-diffusive free convection from a corrugated surface in a non-Darcy porous medium. Transp. Porous Media 85, 117-130. [9.2.1]

    Article  Google Scholar 

  • Rathish Kumar, B. V. and Shalini 2004b Double-diffusive natural convection in a stratified porous medium. J. Porous Media 7, 279-288. [9.2.1]

    Article  MATH  Google Scholar 

  • Rathish Kumar, B. V. and Shalini 2005 Combined influence of mass and thermal stratification on double-diffusion on non-Darcian natural convection from a wavy vertical wall to porous media. ASME J. Heat Transfer 127, 637-674. [9.4]

    Article  Google Scholar 

  • Rathish Kumar, B. V. and Shalini 2005 Double diffusive natural convection in a doubly stratified wavy porous enclosure. Appl. Math. Comput. 171, 180-202. [9.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Rathish Kumar, B. V., Singh, P. and Bansod, V. J. 2002 Effect of thermal stratification on double diffusive natural convection in a vertical porous enclosure. Numer. Heat Transfer A 41, 421-447. [9.2.2]

    Article  Google Scholar 

  • Rauf, A., Shahzad, S. A., Siddiq, M. K., Raza, J. and Meraj, M. A. 2016 Mixed convective thermally radiative micro nanofluid flow in a stretchable channel with porous medium and magnetic field. AIP Advances 6, 035126. [9.7.4]

    Article  Google Scholar 

  • Rawat, S. and Bhargava, R. 2009 Finite element study of natural convection heat and mass transfer in a micropolar fluid-saturated porous medium with Soret Dufour effects. Int. J. Appl. Math. Mech. 5, 58-71. [9.1.4]

    Google Scholar 

  • Rawat, S., Bhargava, R., Bhargava, R. and Bég, O.A. 2009 Transient magneto-micropolar free convection heat and mass transfer through a non-Darcy porous medium channel with variable thermal conductivity and heat source effects. IME J. Mech. Engrg Sci. 223, 2341-2355. [9.2.2]

    Article  Google Scholar 

  • Rebhi, R., Mamou, M., Vasseur, P. and Alliche, M. 2016a Form drag effect on the onset of nonlinear convection and Hopf bifurcation in binary fluid saturating a tall porous cavity. Int, J. Heat Mass Transfer 100, 178-190. [9.1.3]

    Article  Google Scholar 

  • Rebhi, R., Mamou, M. and Vasseur, P. 2016b Bistability and hysteresis induced by form drag in nonlinear subcritical and supercritical double-diffusive convection in porous enclosures. J. Fluid Mech., to appear. [9.1.3]

    Google Scholar 

  • Reddy, C. R., Kaladhar, K., Srinivasacharya, D. and Pradeepa, T. 2016a Influence of Soret, Hall and Joule effects on mixed convection flow saturated porous medium in a vertical channel by Adomian Decomposition Method. Open Engineering 6, 10-21. [9.6.2]

    Article  Google Scholar 

  • Reddy, J. V. R., Sugunamma, V. and Sandeep, N. 2016b Effect of aligned magnetic field on Casson fluid flow past a vertical oscillating plate in porous medium. J. Adv. Phys. 5, 295-301. [5.1.9.10]

    Article  Google Scholar 

  • Reddy, L. R., Raju, M. C., Raju, G. S. S. and Reddy, N. A. 2016 Thermal diffusion and rotational effects on magneto hydrodynamic mixed convection flow of heat absorbing/generating visco-elastic fluid through a porous channel. Frontiers Heat Mass Transfer 7, 20. [9.2.2]

    Google Scholar 

  • Reddy, M. G. 2014b Thermal radiation effects on MHD convection flow along a vertical cylinder embedded in a porous medium. Acta Tech. CSAV 59, 321-338. [5.7]

    MathSciNet  Google Scholar 

  • Reddy, M. G. and Reddy, N. B. 2011 Mass transfer and heat generation effects on MHD free convection flow past an inclined vertical surface in a porous medium. J. Appl. Fluid Mech. 4, 7–11. [9.2.1]

    Google Scholar 

  • Reddy, P. S. and Chamkha, A. J. 2016 Soret and Dufour effects on MHD convective flow of Al2O3-water and TiO2-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Advanced Powder Tech., to appear. [9.7.3]

    Google Scholar 

  • Reddy, P. S. and Rao, V. P. 2012 Thermo-diffusion and diffusion-thermo effects on convective heat and mass transfer through a porous medium in a circular cylindrical annulus with quadratic density variation – finite element study. J. Appl. Fluid Mech. 5, 139-144. [9.4]

    Google Scholar 

  • Reena, Rana, U. S. 2009 Thermosolutal convection of micropolar rotating fluids saturating a porous medium. Int. J. Engng. Trans. A 22. 379-404. [9.1.6.4]

    Google Scholar 

  • Rees, D. A. S. 2009a Comment on “Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation” by Patil and Kulkarni, Int. J. Therm. Sci. 47 (2008)1043-1054. Int. J. Therm. Sci. 48, 847-848. [9.2.1]

    Article  Google Scholar 

  • Rehberg, I. and Ahlers, G. 1985 Experimental observation of a codimension-two bifurcation in a binary fluid mixture. Phys. Rev. Lett. 55, 500-503. [9.1.3]

    Article  Google Scholar 

  • Rionero, S. 2007 A new approach to nonlinear L-2-stability of double diffusive convection in porous media: Necessary and sufficient conditions for global stability via a linearization principle. J. Math. Ana. Appl. 333, 1036-1057. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2010 Long-time behaviour of multicomponent fluid mixtures in porous media Int. J. Engng. Sci. 48, 1519-1533. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2011c Stability of ternary-diffusion dynamical systems. Rendiconti Lincei Matematica Applicazioni 22, 245–268. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2012a Absence of subcritical instabilities and global nonlinear stability for porous ternary diffusive-convective fluid mixtures. Phys. Fluids 24, 104101. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Rionero, S. 2012b Global nonlinear stability for triply diffusive convection in a porous layer. Cont. Mech. Thermodyn. 24, 629-641. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2012 c Onset of convection in porous layers salted from above and below. Note di Mathematica 32, 159-173. [9.1.6.4]

    MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2012d Symmetries and skew-symmetries against onset of convection in porous layers salted from above and below. Int. J. Nonlinear Mech 47, 61-67. [9.1.3]

    Google Scholar 

  • Rionero, S. 2013a Multiple diffusive-convective fluid motions in porous layers: Ultimately boundedness, absence of subcritical instabilities and global nonlinear stability for any number of salts. Phys. Fluids 25, 054104. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Rionero, S. 2013b Soret effects on the onset of convection in rotating porous layers via the “auxiliary system method”. Ric. Matem. 52¸183-208. [9.1.4]

    Google Scholar 

  • Rionero, S. 2013c Triple diffusive convection in porous media. Acta Mech. 224, 447-458. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2014a “Cold convection” in porous layers salted from above. Meccanica 49, 2061-2068. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2014b Instability in porous layers with depth-dependent viscosity and permeability. Acta Appl. Math. 132, 493-504. [9.1.6.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2014d Onset of convection in rotating porous layers via a new approach. Discrete Contin. Dyn. Syst. B 19, 2279-2296. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rionero, S. 2015 Influence of depth-dependent Brinkman viscosity on the onset of convection in ternary porous layers Transp. Porous Media 106, 221-236. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Rionero, S. and Vergori, L. 2010 Long-time behavior of fluid motions in porous media according to the Brinkman model. Acta Mech. 210, 221-240. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Robillard, L., Bahloul, A. and Vasseur, P. 2006 Hydromagnetic natural convection of a binary fluid in a vertical porous enclosure. Chem. Engng. Comm. 193, 1431-1444. [9.2.2]

    Article  Google Scholar 

  • Rohni, A. M., Ahmad, S., Merkin, J. H. and Pop, I. 2013 Mixed convection boundary-layer flow along a vertical cylinder embedded in a porous medium filled by a nanofluid. Transp. Porous Media 96, 237-253. [9.7.4]

    Article  Google Scholar 

  • Rosca, A. V., Rosca, N. C., Grosan, T. and Pop, I. 2012 Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous medium. Int. Comm. Heat Mass Transfer 39, 1080-1085. [8.1.2, 9.7]

    Article  MATH  Google Scholar 

  • Rosca, A. V., Rosca, N. C. and Pop, I. 2015 Mixed convection heat and mass transfer from a vertical surface embedded in a porous medium. Transp. Porous Media 109, 279-295. [9.6.1]

    Article  Google Scholar 

  • Rosca, N. C., Rosca, A. V., Grosan, T. and Pop, I. 2014 Mixed convection boundary layer flow past a vertical flat plate embedded in a non-Darcy porous medium saturated by a nanofluid. Int. J. Numer. Meth. Heat Fluid Flow 24, 970-987. [9.7.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenberg, N. D. and Spera, F. J. 1992 Thermohaline convection in a porous medium heated from below. Int. J. Heat Mass Transfer 35, 1261-1273. [9.1.1, 9.1.5]

    Article  Google Scholar 

  • Rosmila, A. B., Kandasamy, R. and Muhaimin, I. 2012 Lie symmetry group transformation for MHD natural convection flow of nanofluid over linearly porous stretching sheet in presence of thermal stratification. Appl. Math. Mech. (English ed.) 33, 593-604. [5.1.9.10]

    Article  MathSciNet  Google Scholar 

  • Roy, K. and Murthy, P. V. S. N. 2015 Soret effect on the double-diffusive convection instability due to viscous dissipation in a horizontal porous channel. Int. J. Heat Mass Transfer 91, 700-710. [9.1.6.4]

    Article  Google Scholar 

  • Rtibi, A., Hasnaoui, H. and Ahahmid, A. 2013 Soret driven thermosolutal convection in an inclined porous layer: Search of optimum conditions of separation and validity of the boundary layer theory. Fluid Dyn. Mater. Process. 9, 183-207. [9.4]

    MathSciNet  Google Scholar 

  • Rtibi, A., Hasnaoui, H. and Ahahmid, A. 2014 Analytico-numerical study of optimal separation of species in an inclined Darcy-Brinkman porous cavity saturated with a binary mixture. Acta Astronautica 98, 71-85. [9.4]

    Article  Google Scholar 

  • Rubin, H. 1975b Effect of solute dispersion on thermal convection in a porous medium layer. 2. Water Resources Res. 11, 154-158. [9.1.6.1]

    Article  Google Scholar 

  • Rubin, H. 1976 Onset of thermohaline convection in a cavernous aquifer. Water Resources Res. 12, 141-147. [9.1.6.1]

    Article  Google Scholar 

  • Rubin, H. 1981 Onset of thermohaline convection in heterogeneous porous media. Israel J. Tech. 19, 110-117. [6.13.1, 9.1.6.2]

    MATH  Google Scholar 

  • Rubin, H. 1982a Thermohaline convection in a nonhomogeneous aquifer. J. Hydrol. 57, 307-320. [9.1.6.2]

    Article  Google Scholar 

  • Rubin, H. 1982b Application of the aquifer's average characteristics for determining the onset of thermohaline convection in a heterogeneous aquifer. J. Hydrol. 57, 321-336. [9.1.6.2]

    Article  Google Scholar 

  • Rubin, H. and Roth, C. 1978 Instability of horizontal thermohaline flow in a porous medium layer. Israel J. Tech. 16, 216-223. [9.1.6.1]

    MATH  Google Scholar 

  • Rubin, H. and Roth, C. 1983 Thermohaline convection in flowing groundwater. Adv. Water Resources 6, 146-156. [9.1.6.1]

    Article  Google Scholar 

  • Rubio Hernandez, V. and Zueco, J. 2013 Network numerical analysis of radiation absorption and chemical effects on unsteady MHD free convection through a porous medium. Int. J. Heat Mass Transfer 64, 375–383. [5.1.9.10]

    Article  Google Scholar 

  • Rudraiah, N. and Siddheshwar, P. G. 1998 A weak nonlinear stability analysis of double-diffusive convection with cross-diffusion in a fluid-saturated porous medium. Heat Mass Transfer 33, 287-293. [9.1.4]

    Article  Google Scholar 

  • Rudraiah, N. and Vortmeyer, D. 1982 The influence of permeability and of a third diffusing component upon the onset of convection in a porous medium. Int. J. Heat Mass Transfer 25, 457-464. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Rudraiah, N., Sheela, R. and Srimani, P. K. 1987 Mixed thermohaline convection in an inclined porous layer. ASME HTD 84, 97-101. [9.6.1]

    Google Scholar 

  • Rudraiah, N., Shivakumara, I. S. and Friedrich, R. 1986 The effect of rotation on linear and nonlinear double-diffusive convection in a sparsely packed, porous medium. Int. J. Heat Mass Transfer 29, 1301-1317. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Rudraiah, N., Srimani, P. K. and Friedrich, R. 1982a Finite amplitude convection in a two-component fluid saturated porous layer. Int. J. Heat Mass Transfer 25, 715-722. [9.1.3]

    Article  MATH  Google Scholar 

  • Saberi, A. and Nikbakhti, R. 2016 Numerical investigation of double-diffusive natural convection in a rectangular porous enclosure with partially active thermal walls. J. Porous Media 19, 259-276. [9.2.2]

    Article  Google Scholar 

  • Sabour, M. and Ghalambaz, M. 2016 Natural convection in a triangular cavity filled with a nanofluid-saturated porous medium using three heat equations model. Canad. J. Phys. 94, 604-615. [9.7.2]

    Article  Google Scholar 

  • Saghir, M. Z. 1998 Heat and mass transfer in a multiporous cavity. Int. Comm. Heat Mass Transfer 25, 1019-1030. [9.4]

    Article  Google Scholar 

  • Saghir, M. Z. and Islam, M. R. 1999 Double diffusive convection in dual-permeability dual-porosity porous media. Int. J. Heat Mass Transfer 42, 437-454. [9.4]

    Article  MATH  Google Scholar 

  • Saghir, M. Z., Jiang, C. G., Chacha, M., Khawaja, M. and Pan, S. 2005a Thermodiffusion in porous media. In Transport Phenomena in Porous Media III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 227-260. [9.1.4]

    Google Scholar 

  • Sahoo, S. N., and Dash, G. C. 2012 Heat and mass transfer of MHD convective boundary layer flow past a porous wall embedded in a porous medium. J. Engng. Thermophys. 21, 181-192.

    Article  Google Scholar 

  • Salama, F. A. 2011b Lie group analysis for thermophoretic and radiative augmentation of heat and mass transfer in a Brinkman-Darcy flow over a flat surface with heat generation. Acta Mech. Sinica 27, 531–540. [9.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Saleh, H. and Hashim. I. 2015 Natural convection from a cylinder in square porous enclosure filled with nanofluids. J. Porous Media 18, 559-567. [9.7.3]

    Google Scholar 

  • Salem, A. M. 2006a Coupled heat and mass transfer in Darcy-Forchheimer mixed convection from a vertical flat plate embedded in a fluid-saturated porous medium under the effects of radiation and viscous dissipation. J. Korean Phys. Soc. 48, 409-413. [9.6.1]

    Google Scholar 

  • Salem, A. M. 2006b Thermal-diffusion and diffusion-thermal effects on convection heat transfer in a visco-elastic fluid flow through a porous medium over a stretching sheet. Commun. Numer. Meth. Engng. 22, 955-966. [9.2.1]

    Article  MATH  Google Scholar 

  • Salem, A. M. 2013 The effects of variable viscosity, viscous dissipation and chemical reaction on heat and mass transfer flow of MHD micropolar fluid along a permeable stretching sheet in a non-Darcian porous medium. Math. Prob. Engng. 185074. [9.2.1]

    Google Scholar 

  • Salem, A. M. and Fathy, R. 2012 Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation. Chinese Physics B 21, 054701. [9.2.1]

    Article  Google Scholar 

  • Sallam, S. N. 2010 Thermal diffusion and diffusion-thermo effects on mixed convection heat and mass transfer in a porous medium. J. Porous Media 13, 331-345 [9.6.1]

    Article  Google Scholar 

  • Sammouda, M., Gueraoui, K., Driouich, M., Ghouli, A. and Dhivi, A. 2013 Double diffusive natural convection in non-Darcy porous media with non-uniform porosity. Int. Rev. Mech. Engng. 7, 1021-1030. [9.1.6.2]

    Google Scholar 

  • Sandner, H. 1986 Double diffusion effects in a cylindrical porous bed filled with salt water. Heat Transfer 1986, Hemisphere, Washington, DC, vol. 5, pp. 2623-2627. [9.4]

    Google Scholar 

  • Sankar, M., Kim, B., Lopez, J. M. and Do, Y. 2012b Thermosolutal convection from a discrete heat and solute source in a vertical porous annulus. Int. J. Heat Mass Transfer 55, 4116-4128. [9.4]

    Article  Google Scholar 

  • Sankar, M., Park, Y., Lopez, J. M. and Do, Y. 2012a Double diffusive convection from a discrete heat and solute source in a vertical porous annulus. Transp. Porous Media 91, 753-775. [9.2.2]

    Article  Google Scholar 

  • Saravanan, S. and Jegajoth, R. 2010 Stationary fingering instability in a non-equilibrium porous medium with coupled molecular diffusion. Transp. Porous Media 84, 755-771. [9.1.4]

    Article  Google Scholar 

  • Saravanan, S. and Keerthana, S. 2012 Effect of double diffusion on centrifugal filtration convection. J. Porous Media 15, 495-500. [9.1.6.4]

    Article  Google Scholar 

  • Sarkar, A. and Phillips, O. M. 1992a Effects of horizontal gradients on thermohaline instabilities in infinite porous media. J. Fluid Mech. 242, 79-98. [9.5]

    Article  MATH  Google Scholar 

  • Sarkar, A. and Phillips, O. M. 1992b Effects of horizontal gradients on thermohaline instabilities in a thick porous layer. Phys. Fluids A 4, 1165-1175. [9.5]

    Article  MATH  Google Scholar 

  • Sarkar, B. C., Jana, R. N. and Das, S. 2015 Magnetohydrodynamic peristaltic flow of nanofluids in a vertical asymmetric channel filled with porous medium in presence of thermal radiation. Spec. Topics Rev. Porous Media 6, 313-331. [9.7.4]

    Article  Google Scholar 

  • Sarma, D. and Pandit, K. K. 2016 Effects of Hall current, rotation and Soret effects on MHD free convection heat and mass transfer flow past an accelerated vertical plate through a porous medium. Ain Shams Engng. J. to appear. [9.2.1]

    Google Scholar 

  • Sarma, D., Pandit, K. K. and Ahmed, N. 2014 Soret effects in a MHD free convective flow through a porous medium bounded by an infinite vertical plate with constant heat flux. Int. J. Heat Tech. 32, 65-70. [9.2.1]

    Google Scholar 

  • Satheesh, A. and Raj, S. A. 2016 Elucidating the effects of Cu-nanoparticles in a porous medium vis-à-vis heat transfer phenomena. Heat Transfer Asian Res. 45, 405-423. [9.7.2]

    Article  Google Scholar 

  • Satya Narayana, P. V., Venkateswarlu, B. and Venkataramana, S. 2014 Thermal radiation and heat source effects on a MHD nanofluid past a vertical plate in a rotating system with porous medium. Heat Transfer Asian Res. 44, 1-19. [9.7.3]

    Article  Google Scholar 

  • Schoofs, S. and Spera, F. J. 2002 Transition to chaos in double-advective convection in porous media. Devel. Water Sci. 47, 531-538. [9.1.5]

    Article  Google Scholar 

  • Schoofs, S. and Spera, F. J. 2003 Transition to chaos and flow dynamics of thermochemical porous medium convection. Transport Porous Media 50, 179-195. [9.1.3]

    Article  MathSciNet  Google Scholar 

  • Schoofs, S., Spera, F. J. and Hansen, U. 1999 Chaotic thermohaline convection in low-porosity hydrothermal systems. Earth Planet. Sci. Lett. 174, 213-229. [9.1.3]

    Article  Google Scholar 

  • Scott, N. L. 2012a Convection in a horizontal layer of high porosity with a exothermic surface reaction on the lower boundary. Int. J. Therm. Sci. 56, 70-76. [9.1.6.4]

    Article  Google Scholar 

  • Scott, N. L. 2012b Convection in saturated porous medium with an exothermic chemical surface reaction and Soret effect. Int. Comm. Heat Mass Transfer, 1331-1335. [9.1.6.4]

    Google Scholar 

  • Scott, N. L. 2013a Continuous dependence on boundary reaction terms in a porous medium of Darcy type. J. Math. Anal. Appl. 399, 667-675. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, N. L. 2013b Non-linear stability bounds for a horizontal layer of a porous medium with an exothermic reaction on the lower boundary. Int. J. Nonlinear Mech. 57, 163-167. [9.1.6.4]

    Article  Google Scholar 

  • Scott, N. L. and Straughan, B. 2011 Convection in a porous layer with a surface reaction. Int. J. Heat Mass Transfer. 54, 5653-5657. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Scott, N. L. and Straughan, B. 2013b Continuous dependence on the reaction terms in porous convection with surface reactions. Quart. Appl. Math. 71, 501-508. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Seddeek, M. A., Darwish, A. A. and Abdelmeguid, M. S. 2007 Effects of chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media with radiation. Comm. Nonlinear Sci. Numer. Simul. 12, 195-213. [5.8]

    Article  MathSciNet  MATH  Google Scholar 

  • Sekar, R. and Raju, K. 2014 Effect of magnetic field dependent viscosity on Soret-driven ferrohaline convection saturating an anisotropic porous medium of sparse particle suspension. World J. Engng. 11, 213-228. [9.1.4]

    Article  Google Scholar 

  • Sekar, R. and Raju, K. 2015 Effect of spare distribution pores in thermohaline convection in a micropolar ferromagnetic fluid. J. Appl. Fluid Mech. 8, 899-910. [9.1.6.4]

    Article  Google Scholar 

  • Sekar, R., Ramanathan, A. and Vaidyanathan, G. 1998 Effect of rotation on ferrothermohaline convection saturating a porous medium. Indian J. Eng. Mater. Sci. 5, 445-452. [9.1.6.4]

    Google Scholar 

  • Sekar, R., Vaidyanathan, G., Hemalatha, R. and Sendhilnathan, S. 2006 Effect of sparse distribution pores in a Soret-driven ferro thermohaline convection. J. Magnet. Magnet. Mater. 302, 20-28. [9.1.6.4]

    Article  Google Scholar 

  • Selimos, B. and Poulikakos, D. 1985 On double diffusion in a Brinkman heat generating porous layer. Int. Comm. Heat Mass Transfer 12, 149-158. [9.1.6.4]

    Article  Google Scholar 

  • Servati V, A. A., Javaherde, K. and Ashorynejad, H. R. 2014 Magnetic field effects on forced convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Adv. Powder Tech. 25, 666-675. [9.7.1]

    Article  Google Scholar 

  • Seth, G. S. and Sarkar, S. 2015 MHD natural convection heat and mass transfer flow past a time dependent moving vertical plate with ramped temperature in a rotating medium with Hall effects, radiation and chemical reaction. J. Mech. 31, 91-104. [5.1.9.10]

    Article  Google Scholar 

  • Seth, G. S., Kumbahaka, B. and Sharma, R. 2015a Unsteady hydrodynamic convection flow of a heat absorbing fluid within a rotating vertical channel in porous medium with Hall effects. J. Appl. Fluid Mech. 8, 767-779. [7.5]

    Article  Google Scholar 

  • Seth, G. S., Sarkar, S. and Nandkeolyar, R. 2015b Unsteady hydromagnetic natural convection flow past an impulsively moving plate with Newtonian heating in a rotating system. J. Appl. Fluid Mech. 8, 623-633. [5.1.9.10]

    Article  Google Scholar 

  • Seth, G. S., Sarkar, S., Hussain, S. M. and Mahato, G. K. 2015c Effects of Hall current and rotation on hydromagnetic natural convection flow with heat and mass transfer of a heat absorbing fluid past an impulsively moving vertical plate with ramped temperature. J. Appl. Fluid Mech 8, 159-171. [9.2.1]

    Google Scholar 

  • Seth, G. S., Sharma, R. and Kumbhakar, B. 2016b Natural convection heat and mass transfer flow with Hall current, rotation, radiation and heat absorption past an accelerated moving vertical plate with ramped temperature. J. Appl. Fluid Mech 8, 7-20. [9.2.1]

    Google Scholar 

  • Seth, G. S., Sharma, R. and Kumbhakar, B. 2016c Effect of Hall current on unsteady MHD convective Couette flow on heat absorbing fluid due to accelerated movement of one of the plates of a channel in a porous medium. J. Porous Media 19, 13-30. [8.4.3]

    Article  Google Scholar 

  • Sezai, I and Mohamad, A. A. 1999 Three-dimensional double-diffusive convection in a porous cubic enclosure due to opposing gradients of temperature and concentration. J. Fluid Mech. 400, 333-353. [9.2.2]

    Article  MATH  Google Scholar 

  • Sezai, I. 2002 Flow transitions in three-dimensional double-diffusive fingering convection in a porous cavity. J. Fluid Mech. 464, 311-344. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Shafie, S., Gul, A. and Khan, I. 2016 Molybdenum disulphide nanoparticles suspended in water-based nanofluids with mixed convection and flow inside a channel filled with a saturated porous medium. AIP Conf. Proc. 1775, 030042. [9.7.4]

    Article  Google Scholar 

  • Shao, Q., Fahs, M., Youne, A. and Makradi, A. 2016 A high-accurate solution for Darcy-Brinkman double-diffusive convection in saturated porous media. Numer. Heat Transfer B 69, 26-47. [9.2.2]

    Article  Google Scholar 

  • Sharma, J., Gupta, U. and Wanchoo, R. K. 2016 Magneto binary nanofluid convection in a porous medium. Int. J. Chem. Engrg. 9424936. [9.7.2]

    Google Scholar 

  • Sharma, P., Kumar, N. K. and Sharma, T. 2016 Entropy analysis in MHD forced convective flow through a circular channel filled with porous medium in the presence of thermal radiation. Int. J. Heat Tech. 34, 311-318. [4.16.5]

    Article  Google Scholar 

  • Sharma, P. K. 2005 Simultaneous thermal and mass diffusion on a three-dimensional mixed convection flow through a porous medium. J. Porous Media 8, 409-417. [9.6.1]

    Article  Google Scholar 

  • Sharma, R. C. and Bhardwaj, V. K. 1993 Thermosolutal convection in a rotating fluid in hydrodynamics in porous medium. Acta Phys. Hungar. 73, 59-66. [9.1.6.4]

    Google Scholar 

  • Sharma, R. C. and Kumar, P. 1996 Hall effect on thermosolutal instability in a Maxwellian viscoelastic fluid in porous medium. Arch. Mech. 48, 199-209. [9.1.6.4]

    MATH  Google Scholar 

  • Sharma, R. C. and Kumari, M. 1992 Effect of magnetic field and rotation on thermosolutal convection in porous medium. Japan J. Industr. Appl. Math. 9, 79-90. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma, R. C. and Kumari, V. 1993 Thermosolutal convection in a Maxwellian viscoelastic fluid in porous medium. Czech. J. Phys. 43, 31-42. [9.1.6.4]

    Article  Google Scholar 

  • Sharma, R. C. and Sharma, K. N. 1980 Magneto-thermohaline convection through porous medium. Acta Phys. Acad. Sci. Hungar. 48, 269-279. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Sharma, R. C. and Sharma, M. 2004 On couple-stress fluid permeated with suspended particles heated and soluted from below in porous medium. Indian J. Phys. B 78, 189-194. [9.1.6.4]

    MATH  Google Scholar 

  • Sharma, R. C. and Sharma, Y. D. 1990 Magneto-thermosolutal convection in a viscoelastic fluid in a porous medium. Acta Phys. Hungar. 67, 203-209. [9.1.6.4]

    Google Scholar 

  • Sharma, R. C. and Thakur, K. D. 2000 On couple-stress fluid heated from below in porous medium in hydromagnetics. Czech. J. Phys. 50, 753-758. [9.1.6.4]

    Article  Google Scholar 

  • Sharma, R. C., Sunil and Chand, S. 1998 Thermosolutal instability of Rivlin-Ericksen rotating fluid in porous medium. Indian J. Pure Appl. Math. 29, 433-440. [9.1.6.4]

    MATH  Google Scholar 

  • Sharma, R. C., Sunil, and Chand, S. 1999a Thermosolutal instability of Walters rotating fluid (model B´) in porous medium. Arch. Mech. 51, 181-191. [9.1.6.4]

    MATH  Google Scholar 

  • Sharma, R. C., Sunil, and Chandel, R. S. 1999b Thermal convection in Walters viscoelastic fluid B´ permeated with suspended particles through porous medium. Stud. Geotech. Mech. 21, 3-14. [9.1.6.4]

    Google Scholar 

  • Sharma, R. C., Sunil, and Pal, M. 2001 Thermosolutal convection in Rivlin-Ericksen rotating fluid in porous medium in hydromagnetics. Indian J. Pure Appl. Math. 32, 143-156. [9.1.6.4]

    MATH  Google Scholar 

  • Sharma, R., Bhargava, R. and Bhargava, P. 2010 A numerical solution of unsteady MHD convection heat and mass transfer past a semi-infinite vertical porous plate using element free Galerkin method. Comput. Mater. Sci. 48, 537-543. [9.2.1]

    Article  Google Scholar 

  • Sharma, V. and Kishor, K. 2001 Hall effect on thermosolutal instability of Rivlin-Erikson fluid with varying gravity field in porous medium. Indian J. Pure Appl. Math. 32, 1643-1657. [9.1.6.4]

    MathSciNet  MATH  Google Scholar 

  • Sharma, V. and Rana, G. C. 2001 Thermal instability of a Walters (model B´) elastico-viscous fluid in the presence of a variable gravity field and rotation in porous medium. J. Non-Equil. Thermodyn. 26, 31-40. [9.1.6.4]

    MATH  Google Scholar 

  • Sharma, V. and Rana, G. C. 2002 Thermosolutal instability of Walters (model B´) visco-elastic rotating fluid permeated with suspended particles and variable gravity field in porous medium. Indian J. Pure Appl. Math. 33, 97-109. [9.1.6.4]

    MATH  Google Scholar 

  • Sharma, V. and Sharma, S. 2000 Thermosolutal convection of micropolar fluids in hydromagnetics in porous medium. Indian J. Pure Appl. Math. 31, 1353-1367. [9.1.6.4]

    MATH  Google Scholar 

  • Shateyi, S. and Motsa, S. S. 2011 Hydromagnetic non-Darcy flow, heat and mass transfer over a stretching sheet in the presence of thermal radiation and ohmic dissipation. Canad. J. Chem. Engng. 89, 1388-1400. [9.6.1]

    Article  Google Scholar 

  • Shateyi, S. and Motsa, S. S. 2012a Effects of chemical reaction and Soret effect on mixed heat and mass transfer for Hiemenz flow through porous medium with heat source. Appl. Mech. Mater. 197, 712-716. [9.6.1]

    Article  Google Scholar 

  • Shateyi, S. and Motsa, S. S. 2012b Unsteady magneto hydrodynamic convective heat and mass transfer past an infinite vertical plate in a porous medium with thermal radiation, heat generation/absorption and chemical reaction. Adv. Topics Mass Transfer 2011, 45-62. [9.2.1]

    Google Scholar 

  • Shateyi, S., Motsa, S. S. and Sibanda, P. 2010 The effects of thermal radiation, Hall currents, Soret and Dufour on MHD flow by mixed convection over a vertical surface in porous media. Math. Prob. Engng. #627475. [9.6.1]

    Google Scholar 

  • Shaw, S. and Sibanda, P. 2013 Thermal instability in a non-Darcy porous medium saturated with a nanofluid and with a convective boundary condition. Boundary Value Problems 186. [9.7.2]

    Google Scholar 

  • Shaw, S., Kameswaran, P. K., Narayana, M. and Sibanda, P. 2014a Bioconvection in a non-Darcy porous medium saturated with a nanofluid and oxytactic micro-organisms. Int. J. Biomath. 7, 1450005. [9.7.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Shaw, S., RamReddy, C. H., Murthy, P. V. S. N. and Sibanda, P. 2016 Dual solutions for homogeneous-heterogeneous reactions on stagnation point flow over a stretching/shrinking sheet in a non-Darcy porous medium saturated by a nanofluid. XXXXXXXXXX [9.7.3]

    Google Scholar 

  • Shaw, S., Sibanda, P., Sutradhar, A. and Murthy, P. V. S. N. 2014b Magnetohydrodynamics and Soret effects on bioconvection in a porous medium saturated with a nanofluid containing gyrotactic microorganisms. ASME J. Heat Transfer 136, 052601. [9.7.2]

    Article  Google Scholar 

  • Shawky, H. M. 2012 Magnetohydrodynamic Casson fluid flow with heat and mass transfer through a porous medium over a stretching sheet. J. Porous Media 15, 393-401. [9.2.1]

    Article  Google Scholar 

  • Sheikholeslami, M. 2016 CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. European Phys. J. Plus 131 (11) 413. [9.7.2]

    Google Scholar 

  • Sheikholeslami, M. and Shezad, S. A. 2017 Magnetohydrodynamics nanofluid convection in a porous enclosure considering heat flux boundary condition. Int. J. Heat Mass Transfer 106, 1261–1269. [9.7.2]

    Article  Google Scholar 

  • Sheikholeslami, M., and Ganji, D. D. 2014 Heated permeable stretching surface in a porous medium using nanofluids. J. Appl. Fluid Mech. 7, 513-523. [9.7.3]

    Google Scholar 

  • Sheikholeslami, M., Eliahi, R., Ashorgnejad, H. R., Domairry, G. and Hayat, T. 2014 Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J. Comput. Theor. Nanoscience 11, 486-496. [9.7.3]

    Article  Google Scholar 

  • Sheikhzadeh, G. A. and Nazari, S. 2013 Numerical study of natural convection in a square cavity filled with a porous medium saturated with nanofluid. Transp. Phen. Nano Micro Scales 1, 138-146. [9.7.2]

    Google Scholar 

  • Shekar, B. C. and Kishan, N. 2016 Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation. J. Phys. Conf. Ser. 662 (1) 012017. [9.7.2]

    Google Scholar 

  • Sheremet, M. A. and Pop, I. 2014a Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transfer 79, 137-145. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A. and Pop, I. 2014b Natural convection in a square porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. Transp. Porous Media 105, 411-429. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Sheremet, M. A. and Pop, I. 2015a Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model. ASME J. Heat Transfer 137, 072601. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A. and Pop, I. 2015b Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model. European Phys. J. Plus 130(6), 107. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A. and Pop, I. 2015c Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model. Computers Fluids 116, 182-190. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Sheremet, M. A. and Pop, I. 2015d Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid: Buongiorno’s mathematical model. Int. J. Numer. Meth. Heat Fluid Flow 25, 1139-1161. [9.7.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Sheremet, M. A. and Pop, I. 2016 Free convection in wavy porous enclosures with non-uniform temperature boundary conditions filled with a nanofluid: Buongiorno’s mathematical model. Thermal Science, to appear. [9.7.2]

    Google Scholar 

  • Sheremet, M. A., Dinarvand, S. and Pop, I. 2015a Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das nanofluid model. Physica E 69, 332-341. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Grosan, T. and Pop, I. 2014 Free convection in shallow and slender porous cavities filled by a nanofluid using Buongiorno’s model. ASME J. Heat Transfer 136, 082501. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Grosan, T. and Pop, I. 2015b Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das model. Transp. Porous Media 106, 595-610. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Grosan, T. and Pop, I. 2015d Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. European J. Mech. B 53, 241-250. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Sheremet, M. A., Grosan, T. and Pop, I. 2015e Natural convection in a cubical porous cavity saturated with nanofluid using Tiwari and Das nanofluid model. J. Porous Media 18, 585-596. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Oztop, H. F., Pop, I. and Al-Salem, K. 2016b MHD free convection in a wavy open porous tall cavity filled with nanofluids under effect of corner heater. Int. J. Heat Mass Transfer 103, 955-964. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Pop, I. and Bachok, N. 2016 Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. European Phys. J. Plus 131, art. #62. [9.7.2]

    Google Scholar 

  • Sheremet, M. A., Pop, I. and Ishak, A. 2015c Double-diffusive mixed convection in a porous open cavity filled with a nanofluid using Buongiorno’s model. Transp. Porous Media 109, 131-145. [9.7.4]

    Article  MathSciNet  Google Scholar 

  • Sheremet, M. A., Pop, I. and Nazar, R. 2015f Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312-321. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Pop, I. and Rahman, M. M. 2015d Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int. J. Heat Mass Transfer 82, 396-405. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Pop, I. and Shenoy, A. 2015g Unsteady free convection in a porous open wavy cavity filled with a nanofluid using Buongiorno’s mathematical model. Int. Comm. Heat Mass Transfer 67, 66-72. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Pop, I. and Shenoy, A. 2016a Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Int. J. Heat Mass Transfer 92. 1053-1060. [9.7.2]

    Article  Google Scholar 

  • Sheremet, M. A., Revnic, C. and Pop, I. 2017 Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno’s mathematical model with thermal dispersion effect. Appl. Math. Comput. 299, 1–15. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Sheridan, J., Williams, A. and Close, D. J. 1992 Experimental study of natural convection with coupled heat and mass transfer in porous media. Int. J. Heat Mass Transfer 35, 2131-2143. [9.1.5]

    Article  Google Scholar 

  • Sheu, L. J. 2011 Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid. Transp. Porous Media 88, 461-477. [6.23, 9.7.2]

    Article  MathSciNet  Google Scholar 

  • Shihari, K. and Rao, J. A. 2008 MHD three dimensional free convective flow with heat and mass transfer through a porous medium with periodic permeability. J. Inst. Engrs. (India) Mech. Engrg. Div. 89, 23-30. [9.1.6.4]

    Google Scholar 

  • Shivakumara, I. S. and Dhananjaya, M. 2015 Penetrative Brinkman convection in an anisotropic porous layer saturated by a nanofluid. Ain Shams Engng. J 6, 703-713. [9.7.2]

    Article  Google Scholar 

  • Shivakumara, I. S. and Khalili, A. 2001 On the stability of double diffusive convection in a porous layer with throughflow. Acta Mech. 152, 1-8. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Shivakumara, I. S. and Nanjundappa, C. E. 2006 Effects of quadratic drag and throughflow on double diffusive convection in a porous layer. Int. Comm. Heat Mass Transfer 33, 357-363. [9.1.6.4]

    Article  Google Scholar 

  • Shivakumara, I. S. and Sumithra, R. 1999 Non-Darcian effects of double diffusive convection in a sparsely packed porous medium. Acta Mech. 132, 113-127. [9.1.6.3]

    Article  MATH  Google Scholar 

  • Shivakumara, I. S., Dhananjaya, M. and Ng, C. O. 2015a Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer. Int. J. Heat Mass Transfer 84, 167-177. [9.7.2]

    Article  Google Scholar 

  • Shivakumara, I. S., Lee, J. Nanjundappa, C. E. and Ravisha, M. 2010a Brinkman-Bénard-Marangoni convection in a magnetized ferrofluid saturated porous layer. Int. J. Heat Mass Transfer 53, 5835-5846. [6.19.3]

    Article  MATH  Google Scholar 

  • Shivakumara, I. S., Lee, J., Nanjundappa, C., Ravisha, M. and Lee, D. H. 2013b Linear and nonlinear stability of double diffusive convection in a couple stress fluid-saturated porous layer. Arch. Appl. Mech. 81, 1697-1715. [9.1.6.4]

    Article  Google Scholar 

  • Shivakumara, I. S., Mamatha, A. L. and Ravisha, M. 2010b Boundary and thermal non-equilibrium effects on the onset of Darcy-Brinkman convection in a porous layer. J. Engng. Math. 67, 317-328. [6.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Shivakumara, I. S., Mamatha, A. L. and Ravisha, M. 2010c Effects of variable viscosity and density maximum on the onset of Darcy-Bénard convection using a thermal nonequilibrium model. J. Porous Media 13, 613-622. [6.5]

    Article  MATH  Google Scholar 

  • Shivakumara, I. S., Nanjundappa, C. E and Ravisha, M. 2010d Thermomagnetic convection in a magnetic nanofluid saturated porous medium. Int. J. Appl. Math. Engng. Sci. 2, 157-170. [9.7.2]

    MATH  Google Scholar 

  • Shivakumara, I. S., Ng, C. O. and Ravish, M. 2011k Ferromagnetic convection in a heterogeneous Darcy porous medium using a local thermal non-equilibrium (LTNE) model. Transp. Porous Media 90, 529-544. [6.21]

    Article  MathSciNet  Google Scholar 

  • Siavashi, M., Bordbar, V. and Rahnama, P. 2017 Heat and entropy generation study of non-Darcy double-diffusive natural convection in inclined porous enclosures with different source configurations. Appl. Therm. Engng. 110, 1462-1475. [9.4]

    Article  Google Scholar 

  • Siddheswar, P. G., Bhadauria, B. S. and Srivastava, A. 2012b An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation. Transp. Porous Media 91, 585-604. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Simmons, C. T., Narayan, K. A. and Wooding, R. A. 1999 On a test case for density-dependent groundwater flow and solute transport models: The salt lake problem. Water Resources Res. 35, 3607-3620. [9.1.6.4]

    Article  Google Scholar 

  • Singh, A. K. 2005 Three-dimensional flow of a viscous fluid with heat and mass transfer. Int. Comm. Heat Mass Transfer 32, 1420-1429. [9.2.1]

    Article  Google Scholar 

  • Singh, A. K. 2010 Heat and mass-transfer flow past a vertical porous wall with variable heat and mass flux. J. Porous Media 13, 827-837. [9.6.1]

    Article  Google Scholar 

  • Singh, A. K., Paul, T. and Thorpe, G. R. 1999 Natural convection due to heat and mass transfer in a composite system. Heat Mass Transfer 35, 39-48. [9.4]

    Article  Google Scholar 

  • Singh, B. B. 2007 An integral treatment for heat and mass transfer along a vertical wall by natural convection in a porous media. WIT Trans. Engng. Sci. 56, 143-151. [9.2.1]

    MathSciNet  Google Scholar 

  • Singh, B. B. and Chandarki, I. M. 2009 Integral treatment of coupled heat and mass transfer by natural convection from a cylinder in porous media. Int. Comm. Heat Mass Transfer 36, 269-273. [9.2.1]

    Article  Google Scholar 

  • Singh, J. K., Joshi, N., Begum, S. G. and Srinivasa, C. T. 2016 Unsteady hydromagnetic heat and mass transfer natural convection flow past an exponentially accelerated vertical plate with Hall current and rotation in the presence of thermal and mass diffusion. Frontiers Heat Mass Transfer 7(1). [9.2.1]

    Google Scholar 

  • Singh, K. and Kumar M. 2015 The effect of chemical reaction and double stratification on MHD free convection in a micropolar fluid with heat generation and Ohmic heating. Jordan J. Mech. Indust. Engng. 9. 279-288. [9.2.1]

    Google Scholar 

  • Singh, K. D. and Kumar, R. 2010 Effects of chemical reactions on unsteady MHD free convection and mass transfer for flow past a hot vertical porous plate with heat generation/absorption through porous medium. Indian J. Phys. 84, 93-106. [9.2.1]

    Article  Google Scholar 

  • Singh, P. and Queeny 1997 Free convection heat and mass transfer along a vertical surface in a porous medium. Acta Mech. 123, 69-73. [9.2.1]

    Article  MATH  Google Scholar 

  • Singh, P., Queeny and Sharma, R. N. 2002 Influence of lateral mass flux on mixed convection heat and mass transfer over inclined surfaces in porous media. Heat Mass Transfer 38, 233-242. [9.6.1]

    Google Scholar 

  • Singh, S., Krushna Ojha, B. and Dash, G. C. 2007 Three-dimensional free convective flow of mass and heat transfer through a porous medium with periodic permeability and variable suction. Modell. Meas. Control B 76, (3-4) 75-92. [9.2.1]

    Google Scholar 

  • Singh, T. P., Agrawal, A. K., Agrawal, H. L. and Raptis, A. 1991 Unsteady free convective flow and mass transfer in a rotating porous medium with Hall current. J. Astrophys. Space Sci. 181, 171-181. [9.2.1]

    Google Scholar 

  • Sivaraj, R. and Benazir, A. J. 2016 Unsteady magnetohydrodynamic mixed oscillatory flow of Casson fluid in a porous asymmetric wavy channel. Spec. Topics Rev. Porous Media 6, 267-281. [9.6.1]

    Article  Google Scholar 

  • Sivasankaran, S., Kandaswamy, P. and Ng, C. O. 2008 Double-diffusive convection of anomalous density fluids in a porous cavity. Transp. Porous Media 71, 133-145. [9.2.2]

    Article  MathSciNet  Google Scholar 

  • Sivasankaran, S., Mansour M. A., Rashad, A. M. and Bhuvaneswari, M. 2016 MHD mixed convection of Cu-water nanofluid in a two-sided lid-driven porous cavity with a partial slip. Numer. Heat Transfer A 70, 1356–1370. [9.7.4]

    Article  Google Scholar 

  • Sovran, O., Bardan, G., Mojtabi, A. and Charrier-Mojtabi, M. C. 2000 Finite frequency external modulation in doubly diffusive convection. Numer. Heat Transfer A 37, 877-896. [9.1.6.4]

    Article  Google Scholar 

  • Sovran, O., Charrier-Mojtabi, M. C. and Mojtabi, A. 2001 Onset of Soret-driven convection in an infinite porous layer. C. R. Acad. Sci. IIB 329, 287-293. [9.1.4]

    MATH  Google Scholar 

  • Sovran, O., Charrier-Mojtabi, M. C., Azaiez, M. and Mojtabi, A. 2002 Onset of Soret-driven convection in porous medium under vibration. Heat Transfer 2002, Proc. 12 th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 839-844. [9.1.6.4]

    Google Scholar 

  • Srinivas, S. and Muthuraj, R. 2011 Effects of chemical reaction and space porosity on MHD mixed convective flow in a vertical asymmetric channel with peristalsis. Math. Comp. Mod. 54, 1213-1227. [9.6.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivas, S., Malathy, T. and Subramanyan Reddy, A. 2014 Analysis of heat and mass transfer on pulsatile flow in an inclined porous channel with thermal-diffusion and chemical reaction. JP J. Heat Mass Transfer 9, 57-100. [9.6.2]

    Google Scholar 

  • Srinivasacharya, D. and Kaladhar, K. 2012 Mixed convection flow of couple stress fluid in a non-Darcy porous medium with Soret and Dufour effects. J. Appl. Sci. Engng. 15, 415-422. [9.6.1]

    Google Scholar 

  • Srinivasacharya, D. and Kaladhar, K. 2014 Soret and Dufour effects on mixed convective flow of a couple-stress fluid in a non-Darcy porous medium with heat and mass fluxes. J. Porous Media 17, 93-101. [9.6.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and RamReddy C. 2010 Heat and mass transfer by natural convection in a doubly-stratified non-Darcy micropolar fluid. Int. Comm. Heat Mass Transfer 37, 873-880. [9.6.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and RamReddy, C. 2011a Free convective heat and mass transfer in a doubly stratified non-Darcy micropolar fluid. Korean J. Chem. Engng. 28, 1824-1832. [9.4]

    Article  Google Scholar 

  • Srinivasacharya, D. and RamReddy, C. 2012 Mixed convection in a doubly stratified micropolar fluid saturated non-Darcy porous medium. Canad. J. Chem. Engng. 90, 1311-1322. [9.6.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and Ramreddy, C. 2013a Cross-diffusion effects on mixed convection from an exponentially stretching surface in a non-Darcy porous medium. Heat Transfer Asian Res. 42, 111-124. [9.6.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and Ramreddy, C. 2013b Mixed convection heat and mass transfer over a vertical plate in a power law fluid-saturated porous medium with radiation and chemical reaction effects. Heat Transfer Asian Res. 42, 485-499. 9.6.1

    Article  Google Scholar 

  • Srinivasacharya, D. and Surenda, O. 2014a Mixed convection boundary layer flow of a nanofluid past a vertical plate in a doubly stratified porous medium. J. Comp. Theor. Nanoscience 11, 1853-1862. [9.7.4]

    Article  Google Scholar 

  • Srinivasacharya, D. and Surenda, O. 2014b Mixed convection over a vertical plate in a doubly stratified fluid-saturated non-Darcy porous medium with cross-diffusion effects. Heat Transfer Asian Res. 43, 667-690. [9.6.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and Surenda, O. 2014c Non-Darcy mixed convection induced by a vertical plate in a doubly stratified porous medium. J. Porous Media 17, 197-209. [9.6.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and Surenda, O. 2014d Non-similar solution for natural convective boundary layer flow of a nanofluid past a vertical plate embedded in a doubly stratified porous medium. Int. J. Heat Mass Transfer 71, 431-438. [9.7.3]

    Article  Google Scholar 

  • Srinivasacharya, D. and Surenda, O. 2016 Natural convection in a non-Darcy porous medium with double stratification and cross diffusion effects. Heat Transfer Res. 47, 29-40. [9.2.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and Swamy Reddy, G. 2012a Double diffusive natural convection in power-law fluid saturated porous medium with Soret and Dufour effects. J. Braziian Soc. Mech. Sci. Engng. 34, 525-530. [9.2.1]

    Article  MATH  Google Scholar 

  • Srinivasacharya, D. and Swamy Reddy, G. 2012b Chemical reaction and radiation effects on natural convection in porous medium saturated with power-law fluid. Frontiers Heat Mass Transfer 3 (4). [9.2.1]

    Google Scholar 

  • Srinivasacharya, D. and Swamy Reddy, G. 2012c Soret and Dufour effects on natural convection in power law fluid saturated porous medium. Int. Rev. Mech. Engng. 12, 32-40. [9.6.1]

    Google Scholar 

  • Srinivasacharya, D. and Swamy Reddy, G. 2013a Free convection in a non-Newtonian power-law fluid saturated porous medium with chemical reaction and radiation effects. Spec. Top. Rev. Porous Media 4, 223-236. [9.2.1]

    Article  Google Scholar 

  • Srinivasacharya, D. and Swamy Reddy, G. 2013b Mixed convection heat and mass heat and mass transfer over a vertical plate in a power-law fluid-saturated porous medium with radiation and chemical reaction effects. Heat Transfer Asian Res. 42, 485-499. [9.6.1]

    Article  MATH  Google Scholar 

  • Srinivasacharya, D. and Swamy Reddy, G. 2013c Effect of double stratification on free convection in a power-law fluid saturated porous medium. Fluid Dyn. Mater. Process. 9, 291-305. [9.2.1]

    MathSciNet  Google Scholar 

  • Srinivasacharya, D. and Vijay Kumar, P. 2015a Radiation effect on natural convection over an inclined wavy surface embedded in a non-Darcy porous medium saturated with a nanofluid. J. Porous Media 18, 777-789. [9.7.3]

    Article  Google Scholar 

  • Srinivasacharya, D. and Vijay Kumar, P. 2015b Mixed convection over an inclined wavy surface in a nanofluid saturated non-Darcy porous medium with radiation effect. Int. J. Chem. Engng. 927508. [9.7.4]

    Google Scholar 

  • Srinivasacharya, D. and Vijay Kumar, P. 2015c Mixed convection over an inclined wavy surface embedded in a nanofluid saturated porous medium. Int. J. Numer. Meth. Heat Fluid Flow 25, 1774-1792. [9.7.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasacharya, D., Chamkha, A. J., Surender, O. and Rashad, A. M. 2015d Natural convection on a porous vertical plate in a doubly stratified non-Darcy porous medium. Front. Heat Mass Transfer 6 (1). [9.2.1]

    Google Scholar 

  • Srinivasacharya, D., Mallikarjuna, B. and Bhuvanavijaya, R. 2015a Soret and Dufour effects on mixed convection along a vertical wavy surface in a porous medium with variable properties Ain Shams Engng. J., 6, 553-564. [9.6.1]

    Article  Google Scholar 

  • Srinivasacharya, D., Mallikarjuna, B. and Bhuvanavijaya, R. 2015b Radiation effect on mixed convection over a vertical wavy surface in Darcy porous medium with variable properties. J. Appl. Sci. Engng. 18, 265-274. [8.1.4]

    Google Scholar 

  • Srinivasacharya, D., Mallikarjuna, B. and Bhuvanavijaya, R. 2015e Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium. Alexandrian Engng. J. 6, 553-564. [9.7.4]

    Google Scholar 

  • Srinivasacharya, D., Motsa, S. S. and Surenda, O. 2015c Numerical study of free convection in a doubly-stratified non-Darcy porous medium using spectral quasilinearization method. Int. J. Nonlinear Sci. Numer. Simul. 16, 173-183. [9.2.1]

    Article  MathSciNet  Google Scholar 

  • Srinivasacharya, D., Pranitha, J. and RamReddy C. 2011 Magnetic effect on free convection in a non-Darcy porous medium saturated with doubly stratified power law fluid. J. Brazil Soc. Mech. Sci. Engng. 33, 8-14. [9.2.1]

    Article  Google Scholar 

  • Srinivasacharya, D., Pranitha, J. and Ramreddy, C. 2012 Magnetic and double dispersion effects on free convection in a non-Darcy porous medium saturated with power-law fluid. Int. J. Comp. Meth. Engng. Sci. Mech. 13, 210-218. [9.2.1]

    Article  MathSciNet  Google Scholar 

  • Srinivasacharya, D., Ramreddy, C., Pranitha, J. and Postelnicu, A. 2014 Soret and Dufour effects on non-Darcy free convection in a power-law fluid in the presence of a magnetic field and stratification. Heat Transfer Asian Res. 43, 592–606. [9.2.1]

    Article  Google Scholar 

  • Srinivasacharya, D., Vijay Kumar, P. and Sibanda 2016 Numerical solution of natural convection over an inclined wavy surface in a porous medium saturated with a nanofluid. Meccanica, to appear. [9.7.3]

    Google Scholar 

  • Srivastava, A. K. and Bera, P. 2013 Influence of chemical reaction on stability of thermo-solutal convection of couple stress fluid in a horizontal porous layer. Transp. Porous Media 97, 161-184. [9.1.6.4]

    Google Scholar 

  • Srivastava, A. K., Bhadauria, B. S. and Gupta, V. K. 2012 Magneto-convection in an anisotropic porous layer with Soret effect. Int. J. Nonlinear Mech. 47, 426-438. [9.1.6.4]

    Article  Google Scholar 

  • Steinberg, V. and Brand, H. 1983 Convective instabilities of binary mixtures with fast chemical reaction in a porous medium. J. Chem. Phys. 78, 2655-2660. [9.1.6.4]

    Article  Google Scholar 

  • Steinberg, V. and Brand, H. R. 1984 Amplitude equations for the onset of convection in a reactive mixture in a porous medium. J. Chem. Phys. 80, 431-435. [9.1.6.4]

    Article  Google Scholar 

  • Straughan, B. 2011b Tipping points in Cattaneo-Christov thermohaline convection. Proc Roy. Soc. Lond. A 467, 7-18. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. 2014a Anisotropic inertia effect in microfluidic porous thermosolutal convection. Microfluids Nanofluids 16, 361-368. [9.1.6.4]

    Article  Google Scholar 

  • Straughan, B. 2014b Bidisperse poroacoustic waves. Int. J. Engng. Sci. 77, 30-38. [4.16.4]

    Article  Google Scholar 

  • Straughan, B. 2014c Nonlinear stability in microfluidic porous convection problems. Ric. Mat. 63. 265-288. [6.23]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. 2014d Nonlinear stability of convection in a porous layer with solid partitions. J. Math. Fluid Mech. 16, 727-736. [6.13.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. 2015b Dependence on the reaction in porous convection. Boll. Unione Math. Ital. 113-120. [9.1.6.4]

    Google Scholar 

  • Straughan, B. and Al Sulaimi, B. 2014 Structural stability for Brinkman convection with reaction. Boll. Unione Mat. Ital. 7, 243-251. [6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. and Hutter, K. 1999 A priori bounds and structural stability for double-diffusive convection incorporating the Soret effect. Proc. Roy. Soc. Lond. A 445, 767-777. [9.1.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Strong, N. 2008a Double-diffusive convection in a porous layer in the presence of vibration. SIAM J. Appl. Math. 69, 1263-1276. [6.24]

    Article  MathSciNet  MATH  Google Scholar 

  • Strong, N. 2009 Double-diffusive convection in a porous layer in the presence of vibration. SIAM J. Appl. Math. 69, 1263-1276. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Subramanian, L. and Patil, P. R. 1991 Thermohaline convection with coupled molecular diffusion in an anisotropic porous medium. Indian J. Pure Appl. Math. 22, 169-193. [9.1.6.2]

    MATH  Google Scholar 

  • Subramanian, S. 1994 Convective instabilities induced by exothermic reactions occurring in a porous medium. Phys. Fluids 6, 2907-2922. [9.1.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Sudarsana Reddy, P. and Chamkha, A. J. 2016 Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alexandria Engng. J., to appear. [9.7.3]

    Google Scholar 

  • Sudarsana Reddy, P. and Chamkha, A. J. 2016b Heat and mass transfer characteristics of nanofluid over horizontal circular cylinder. Ain Shams Engng. J., to appear. [9.7.3]

    Google Scholar 

  • Sudheer Babu, M. and Satya Narajana, P. V. 2009 Effects of the chemical reaction and radiation absorption on free convective flow through porous medium with variable suction in the presence of uniform magnetic field. J. Heat Mass Transfer 3, 219–234. [9.2.1]

    Google Scholar 

  • Sulochana, C., Sandeep, N. Sugunamma, V. and Kumar, B. R. 2016 Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in a porous medium. Appl. Nanoscience 6, 737-746. [9.7.3]

    Article  Google Scholar 

  • Sulochansa, C. and Sandeep, N. 2015 Dual solutions for radiative MHD forced convective flow of a nanofluid over a slendering stretching sheet in porous medium. J. Naval Arch. Marine Engng. 12, 115-124. [9.7.1]

    Article  Google Scholar 

  • Sun, Q. and Pop, I. 2011 Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on wall. Int. J. Therm. Sci. 50, 2141-2153. [5.12.3]

    Article  Google Scholar 

  • Sun, Q. and Pop, I. 2014 Free convection in a tilted triangle porous cavity filled with Cu-water nanofluid with flush mounted heater on the wall. Int. J. Numer. Meth. Heat Fluid Flow 24, 17102893, 2-20. [9.7.2]

    MathSciNet  MATH  Google Scholar 

  • Sunil 1994 Thermosolutal hydromagnetic instability of a compressible and partially ionized plasma in a porous medium. Arch. Mech. 46, 819-828. [9.1.6.4]

    MATH  Google Scholar 

  • Sunil 1999 Finite Larmor radius effect on thermosolutal instability of a Hall plasma in a porous medium. Phys. Plasmas 6, 50-56.[9.1.6.4]

    Article  Google Scholar 

  • Sunil 2001 Thermosolutal instability of a compressible finite Larmor radius, Hall plasma in a porous medium. J. Porous Media 4, 55-67. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Sunil and Mahajan, A. 2008a A nonlinear stability analysis in a double-diffusive magnetized ferrofluid layer saturating a porous medium. J. Geophys. Engng. 5, 311-322. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Sunil and Mahajan, A. 2009a A nonlinear stability analysis for rotating magnetized ferrofluid heated from below saturating a porous medium. ZAMP 60, 344-362. [6.21]

    Google Scholar 

  • Sunil and Mahajan, A. 2009c A nonlinear stability analysis in a double-diffusive magnetized ferrofluid with magnetic-field-dependent viscosity saturating a porous medium. Canad. J. Phys. 87, 659-673. [9.1.6.4]

    Google Scholar 

  • Sunil and Sharma, A. 2005 Effect of dust particles on a layer of rotating ferromagnetic fluid heated and soluted from below saturating a porous medium. Indian J. Phys. 79, 1285-1292. [9.7.2]

    MATH  Google Scholar 

  • Sunil, Divya and Sharma, R. C. 2005a Effect of dust particles on a ferromagnetic fluid heated and soluted from below saturating a porous medium. Appl. Math. Comput. 169, 832-853. [9.1.6.4]

    Google Scholar 

  • Sunil, Divya and Sharma, R. C. 2005b Effect of magnetic-field dependent viscosity on a rotating ferromagnetic fluid heated and soluted from below, saturating a porous medium. J. Porous Media 8, 569-588. [9.1.6.4]

    Google Scholar 

  • Sunil, Divya and Sharma, R. C. 2005b The effect of rotation on ferromagnetic fluid heated and salted from below saturating a porous medium. J. Geophys. Engng. 1, 116-127. [9.1.6.4]

    Google Scholar 

  • Sunil, Divya and Sharma, R. C. 2005d Thermosolutal convection in a ferromagnetic fluid saturating a porous medium. J. Porous Media 8, 393-408. [9.1.6.4]

    Google Scholar 

  • Sunil, Divya and Sharma, V. 2005c Effect of dust particles on a rotating ferromagnetic fluid heated from below saturating a porous medium. J. Colloid Interface Sci. 291, 152-161. [6.21]

    Google Scholar 

  • Sunil, Divya, and Sharma, R. C. 2005a The effect of magnetic-field-dependent viscosity on thermo-solutal convection in a ferromagnetic fluid saturating a porous medium. Transport Porous Media 60, 251-274. [9.1.6.4]

    Google Scholar 

  • Sunil, Divya, Sharma, R. C. and Sharma, V. 2003b Compressible couple-stress fluid permeated with suspended particles heated and soluted from below in porous medium. Indian J. Pure Appl. Phys. 41, 602–611. [9.1.6.4]

    Google Scholar 

  • Sunil, Sharma P. and Mahajan, A. 2010b Onset of Darcy-Brinkman double-diffusive convection in a magnetized ferrofluid layer using a non-equilibrium model: a nonlinear stability analysis. J. Geophys. Engng. 7, 417–430. [9.1.6.4]

    Google Scholar 

  • Sunil, Sharma, A., Bharti, P. K. and Shandil, R. G. 2007 Linear stability of double-diffusive convection in a micropolar ferromagnetic fluid saturating a porous medium. Int. J. Mech. Sci. 49, 1047-1059. [9.1.6.4]

    Google Scholar 

  • Sunil, Sharma, A., Kumar, P. and Gupta, U. 2005c The effect of magnetic-field-dependent viscosity and rotation on ferromagnetic convection saturating a porous medium in the presence of dust particles. J. Geophys. Engng. 2, 238-251. [9.1.6.4]

    Google Scholar 

  • Sunil, Sharma, D. and Sharma, R. C. 2005b Effect of dust particles on thermal convection in ferromagnetic fluid saturating a porous medium J. Magnet. Magnet. Mater. 288, 183-195. [6.21]

    Google Scholar 

  • Sunil, Sharma, P. and Mahajan, A. 2009a A nonlinear stability analysis of a rotating double-diffusive magnetized ferrofluid saturating a porous medium. Heat Transfer Res, 40, 351-378. [9.1.6.4]

    Google Scholar 

  • Sunil, Sharma, R. C. and Chandel, R. S. 2004d Effect of suspended particles on couple-stress fluid heated and soluted from below in porous medium. J. Porous Media 7, 9-18. [9.1.6.4]

    Google Scholar 

  • Sunil, Sharma, R. C. and Pal, M. 2001 Hall effect on thermosolutal instability of a Rivlin-Ericksen fluid in a porous medium. Non-Equil. Thermodyn. 26, 373-386. [9.1.6.4]

    Google Scholar 

  • Surenda, O. 2014 Non-similar solution for natural convective boundary layer flow of a nanofluid past a vertical plate embedded in a doubly stratified porous medium. Int. J. Heat Mass Transfer 71, 431-438. [9.7.3]

    Article  Google Scholar 

  • Sureshkumar, S. and Muthtamilselvan, S. 2016 A slanted porous enclosure filled with Cu-water nanofluid. European Phys. J. Plus 131 (4) 95. [9.7.4]

    Google Scholar 

  • Suthar, O. P., Bhadauria, B. S. and Khan, A. 2012 Effect of g-jitter on the onset of thermosolutal viscoelastic convection in the absence of local thermal equilibrium. Spec. Top. Rev. Porous Media 3, 239-246. [9.1.6.4]

    Article  Google Scholar 

  • Swain, B. K. and Senapati, N. 2015 The effect of mass transfer on MHD free convective radiating flow over an impulsively started vertical plate embedded in a porous medium. J. Appl. Anal. Comput. 5, 18-27. [9.2.1]

    MathSciNet  MATH  Google Scholar 

  • Swamy, M. S. 2014a Effect of g-jitter on the onset of double diffusive convection in a fluid/porous layer. J. Porous Media 17, 117-128. [9.1.6.4]

    Article  Google Scholar 

  • Swamy, M. S., Naduvinamani, N. B. and Sidram, W. 2012 The onset of Darcy-Brinkman convection in a binary viscoelastic fluid saturated porous layer. Transp. Porous Media 94, 339-357. [9.1.6.4]

    Article  MathSciNet  Google Scholar 

  • Syakila, A. and Pop, I. 2010 Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium with nanofluids. Int. Comm. Heat Mass Transfer 37, 987-991. [9.7.4]

    Article  Google Scholar 

  • Tagare, S. G. and Babu, A. B. 2007 Nonlinear convection due to compositional and thermal buoyancy. J. Porous Media 10, 823-839. [9.1.4]

    Article  Google Scholar 

  • Tai, B. C. and Char, M. I. 2010 Soret and Dufour effects on free convection flow of non-Newtonian fluids along a vertical plate embedded in a porous medium with thermal radiation. Int. Comm. Heat Mass Transfer 37, 480-483. [9.2.1]

    Article  Google Scholar 

  • Tak, S. S., Mathur, R., Gehlot, R. K. and Khan, A. 2010 MHD free convection-radiation interaction along a vertical surface embedded in Darcian porous medium in presence of Soret and Dufour’s effects. Thermal Science 14, 137-145. [9.2.1]

    Article  Google Scholar 

  • Tak, S. S., Mathur, R., Gehiot, R. K. and Khan, A. 2010 MHD free convection-radiation interaction along a vertical surface embedded in Darcian porous medium in presence of Soret and Dufour effects. Thermal Science 14, 137-145. [9.2.1]

    Article  Google Scholar 

  • Takahashi, F. 2014 Double diffusive convection in the Earth’s core and the morphology of the geomagnetic field. Phys. Earth Planet. Int. 226, 83-87. [9.4]

    Article  Google Scholar 

  • Takhar, H. S., Chamkha, A. J. and Nath G. 2003 Effects of non-uniform temperature or mass transfer in finite sections of an inclined plate on the MHD natural convection flow in a temperature stratified high-porosity porous medium. Int. J. Thermal Sci. 42, 829-836. [5.3]

    Article  Google Scholar 

  • Takhar, H. S., Roy, S. and Nath, G. 2003 Unsteady free convection flow over an infinite vertical porous plate due to the combined effects of thermal and mass diffusion, magnetic field and Hall currents. Heat Mass Transfer 39, 825-834. [9.2.1]

    Article  Google Scholar 

  • Taslim, M. E. and Narusawa, U. 1986 Binary fluid convection and double-diffusive convection. ASME J. Heat Transfer 108, 221-224. [9.1.4]

    Article  Google Scholar 

  • Taunton, J. W., Lightfoot, E. N. and Green, T. 1972 Thermohaline instability and salt fingers in a porous medium. Phys. Fluids 15, 748-753. [2.5, 9.1.3]

    Article  Google Scholar 

  • Tavakoli, S., Ganji, D. D., Rasekh, A., Haghighi, B. and Jahani, H. 2013 Natural convection from a vertical wall embedded in a non-Darcy porous medium filled with nanofluids. Int. J. Numer. Meth. Heat Fluid Flow 23, 1304-1319. [9.7.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Telles, R. S. and Trevisan, O.V. 1993 Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media. Int. J. Heat Mass Transfer 36, 1357-1365. [9.2.1]

    Article  Google Scholar 

  • Tham, L. and Nazar, R. 2012a Mixed convection flow about a solid sphere embedded in a porous medium filled with a nanofluid. Sains Malaysiana 41, 1643-1649. [9.7.4]

    MATH  Google Scholar 

  • Tham, L. and Nazar, R. 2012b Numerical solution of mixed convection flow about a sphere in a porous medium saturated by a nanofluid: Brinkman model. J. Sci. Tech. 4, 35-46. [9.7.4]

    Google Scholar 

  • Tham, L. and Nazar, R. 2013 Mixed convection flow about a solid sphere with a constant surface heat flux embedded in a porous medium filled with a nanofluid. AIP. Conf. Proc. 1557, 291-295. [9.7.4]

    Article  Google Scholar 

  • Tham, L., Nazar, R. and Pop, I. 2013a Mixed convection boundary layer flow past a horizontal circular cylinder embedded in a porous medium saturated by a nanofluid: Brinkman model. J. Porous Media 16, 445-457. [9.7.4]

    Article  Google Scholar 

  • Tham, L., Nazar, R. and Pop, I. 2013b Mixed convection flow over a solid sphere embedded in a porous medium containing gyrotactic microorganisms. Int. J. Heat Mass Transfer 62, 647-660. [9.7.4]

    Article  Google Scholar 

  • Tham, L., Nazar, R. and Pop, I. 2013c Steady mixed convection flow on a horizontal circular cylinder embedded in a porous medium filled by a nanofluid containing gyrotactic micro-organisms. ASME J. Heat Transfer 135,102601. [9.7.4]

    Article  Google Scholar 

  • Tham, L., Nazar, R. and Pop, I. 2014a Mixed convection flow about a solid sphere with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model. AIP Conf. Proc. 1602, 139-145. [9.7.4]

    Article  Google Scholar 

  • Tham, L., Nazar, R. and Pop, I. 2014b Mixed convection flow from a horizontal circular cylinder embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model. Int. J. Therm. Sci. 84, 21-33. [9.7.4]

    Article  Google Scholar 

  • Tham, L., Nazar, R. and Pop, I. 2016 Mixed convection flow over a horizontal circular cylinder with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model. Heat Mass Transfer, to appear. [9.7.4]

    Google Scholar 

  • Thirumurugan, K. and Vasanthakumari, R. 2016 Double-diffusive convection of non-Newtonian Walter”s (MODEL B) viscoelastic fluid through Brinkman porous medium with suspended particles. Appl. Therm. Engnrg. 108, 1158–1167. [9.1.6.4]

    Article  Google Scholar 

  • Ting, T, W,, Hung, Y. M. and Guo, N. 2015c Viscous dissipative nanofluid convection in asymmetrically heated porous microchannels with solid-phase heat generation. Int. Comm. Heat Mass Transfer 68, 236-247. [9.7.1]

    Google Scholar 

  • Ting, T, W., Hung, Y. M. and Guo, N. Q. 2015a Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels. Int. J. Heat Mass Transfer 81, 862-877. [9.7.1]

    Google Scholar 

  • Ting, T, W., Hung, Y. M. and Guo, N. Q. 2015b Entropy generation of viscous dissipation nanofluid convection in asymmetrically heated porous microchannels with solid-phase heat generation. Energy Convers. Manag. 105, 731-745. [9.7.1]

    Google Scholar 

  • Ting, T. W., Hung, Y. M. and Guo, N. Q. 2014 Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels. Int. Comm. Heat Mass Transfer 57, 309-318. [9.7.1]

    Article  Google Scholar 

  • Tobbal, T. and Bennacer, R. 1998 Heat and mass transfer in anisotropic porous layer. Trends in Heat, Mass and Momentum Transfer 3, 129-137. [9.2.2]

    Google Scholar 

  • Torabi, M., Dickson, C. and Karimi, N. 2016a Theoretical investigation of entropy generation and heat transfer by forced convection of copper-water nanofluid in a porous channel—local thermal non-equilibrium and partial filling effects. Powder tech. 301, 234-254. [9.7.1]

    Article  Google Scholar 

  • Tracey, J. 1996 Multi-component convection-diffusion in a porous medium. Cont. Mech. Thermodyn. 8, 361-381. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Tracey, J. 1998 Penetrative convection and multi-component diffusion in a porous medium. Adv. Water Res. 22, 399-412. [9.1.6.4]

    Article  Google Scholar 

  • Trevisan, O. V. and Bejan, A. 1985 Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transfer 28, 1597-1611. [9.2.2]

    Article  Google Scholar 

  • Trevisan, O. V. and Bejan, A. 1986 Mass and heat transfer by natural convection in a vertical slot filled with porous medium. Int. J. Heat Mass Transfer 29, 403-415. [9.2.2]

    Article  MATH  Google Scholar 

  • Trevisan, O. V. and Bejan, A. 1987b Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below. Int. J. Heat Mass Transfer 30, 2341-2356. [9.1.5]

    Article  Google Scholar 

  • Trevisan, O. V. and Bejan, A. 1989 Mass and heat transfer by natural convection above a concentrated source buried at the base of a shallow porous layer. ASME HTD 127, 47-54. [9.4]

    Google Scholar 

  • Trevisan, O. V. and Bejan, A. 1990 Combined heat and mass transfer by natural convection in a porous medium. Adv. Heat Transfer 20, 315-352. [9]

    Article  Google Scholar 

  • Tsai, R. and Huang, J. S. 2009a Numerical study of Soret and Dufour effects on heat and mass transfer from natural convection flow over a vertical porous medium with variable wall heat fluxes. Comput. Mater. Sci. 47, 23-30. [9.2.1]

    Article  Google Scholar 

  • Tsai, R. and Huang, J. S. 2009b Heat and mass transfer for Soret and Dufour effects on Hiemenz flow through a porous medium onto a stretching surface. Int. J. Heat Mass Transfer 52, 2399-2406. [9.6.1]

    Article  MATH  Google Scholar 

  • Tyvand, P. A. 1980 Thermohaline instability in anisotropic porous media. Water Resources Res. 16, 325-330. [9.1.6.2]

    Article  Google Scholar 

  • Uddin, M. J. and Enamul Karim, M. 2013 Effects of Dufour and modified Forchheimer for hydromagnetic free convective heat and mass transfer flow along a permeable inclined porous plate with heat generation and thermophoresis. Res. J. Appl. Sci. Engng. Tech. 6, 668-680. [9.2.1]

    Google Scholar 

  • Uddin, M. J., Beg, O. A. and Beg, T. A. 2016e Stefan blowing, Navier slip, and radiation effects on thermo-solutal convection from a spinning cone in an anisotropic porous medium. J. Porous Media 19, 617–633. [9.2.1]

    Article  Google Scholar 

  • Uddin, M. J., Bég, O. A. and Ismail, A. I. M. 2014a Mathematical modelling of radiative hydromagnetic thermosolutal nanofluid convection slip flow in saturated porous media. Math. Prob. Engng. 179172. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Bég, O. A., Khan, W. A. and Ismail, A. I. M. 2015a Effect of Newtonian heating and thermal radiation on heat and mass transfer of nanofluids over a stretching sheet in porous media. Heat Transfer Asian Res. 44, 681-695. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Bég, A. and Ismail, I. M. 2016 Symmetry group and numerical study of non-Newtonian transport in a porous medium with multiple convective boundary and nonlinear radiation. Int. J. Numer. Meth. Heat Fluid Flow 26, 1526-1547. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Bég, O. and Uddin, M. N. 2016 Multiple slips and variable transport property effect on magnetohydrodynamic dissipative thermosolutal convection in a porous medium. J. Aerospace Engng. 29, 04016024. [9.2.1]

    Google Scholar 

  • Uddin, M. J., Ferdows, M., Rashidi, M. M. and Parsa, A. B. 2016a Group analysis and numerical solution of slip flow of a nanofluid in porous media with heat transfer. Prog. Comput. Fluid. Dyn. 19, 190-200. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Kabir, M. N. and Alginahi, Y. 2015b Computational investigation of hydromagnetic thermo-solutal nanofluid slip flow in a Darcian porous medium with zero mass flux boundary condition using stretching group transformations. J. Porous Media 18, 1187-1200. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Khan, W. A. and Amin, N. S. 2014b G-jitter mixed convection slip flow of nanofluid past a permeable stretching sheet embedded in a Darcian porous media with variable viscosity. PLoS ONE 9, (6) e99384. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Khan, W. A. and Ishmail, A. I. M. 2012b Free convection boundary layer flow from a heated upward facing horizontal flat plate embedded in a porous medium filled by a nanofluid with convective boundary condition. Transp. Porous Media 92, 867-881. [9.7.3]

    Article  MathSciNet  Google Scholar 

  • Uddin, M. J., Khan, W. A. and Ismail, A. I. 2013a Effect of dissipation on free convective flow of a non-Newtonian nanofluid in a porous medium with gyrotactic microorganisms. IME J. Nanoengng. Nanosys. 227, 11-18. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Khan, W. A. and Ismail, A. I. M. 2012a Lie group analysis of natural convective flow from a convectively heated upward facing radiating permeable horizontal plate in porous media filled with nanofluid. J. Appl. Math. 648675. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Khan, W. A. and Ismail, A. I. M. 2016b Scaling group transformation for MHD double-diffusive flow past a stretching sheet with variable transport properties taking into account velocity slip and thermal slip boundary conditions. Perlanika J. Sci. Tech. 24, 53-70. [9.2.1]

    Google Scholar 

  • Uddin, M. J., Rana, P., Anwar Bég, O. and Ismail, A. I. M. 2016g Finite element simulation of magnetohydrodynamic convective nanofluid slip flow in porous media with nonlinear radiation. Alexandria Engng. J., to appear. [9.7.3]

    Google Scholar 

  • Uddin, M. J., Rostami, B., Rashid, M. M. and Rostami, P. 2016c Similarity and analytical solutions of free convective flow of dilatant nanofluid in a Darcian porous medium with multiple convective boundary conditions. Alexandria Engng. J. 55, 263-274. [9.7.3]

    Article  Google Scholar 

  • Uddin, M. J., Yusoff, N. H. M., Bég, O. A. and Ismail, A. I. 2013c Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. Phys. Scripta 87, 025401. [9.7.3]

    Article  MATH  Google Scholar 

  • Uddin, Z. and Harmand, S. 2013 Nanoscale convection heat transfer of nanofluids along a vertical plate embedded in porous medium. Nanoscale Res. Lett. 8, #64. [9.7.3]

    Article  Google Scholar 

  • Uddin, Z. and Kumari, M. 2011 MHD heat and mass transfer free convection flow near the lower stagnation point of an isothermal cylinder embedded in a porous domain with the presence of radiation. Jordan J. Mech. Indust. Engng. 5, 419-423. [9.2.1]

    Google Scholar 

  • Ullah, I., Khan, I. and Shafie, S. 2016b MHD natural convection flow of Casson nanofluid over nonlinearly stretching sheet through porous medium with chemical reaction and thermal radiation. Nanoscale Res. Lett. 11 (1), 527. [9.7.3]

    Google Scholar 

  • Umavathi, J. C. 2013b Effect of thermal modulation on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 98, 59-79. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Umavathi, J. C. 2015a Combined effect of variable viscosity and variable thermal conductivity on double diffusive convection of a permeable fluid in a vertical channel. Transp. Porous Media 108, 659-678. [9.2.2]

    Article  MathSciNet  Google Scholar 

  • Umavathi, J. C. 2015b Rayleigh-Bénard convection subject to time dependent wall temperature in a porous medium layer saturated by a nanofluid. Meccanica 50, 981-994. [9.7.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Umavathi, J. C. 2015c Free convective flow in a vertical rectangular duct filled with porous matrix for viscosity and conductivity variable properties. Int. J. Heat Mass Transfer 81, 383-403. [7.1.7]

    Article  Google Scholar 

  • Umavathi, J. C. and Mohite, M. B. 2014a Double-diffusive convective transport in a nanofluid-saturated porous layer with cross diffusion and variation of viscosity and conductivity. Heat Transfer Asian Res. 43, 592-606. [9.7.2]

    Article  MATH  Google Scholar 

  • Umavathi, J. C. and Mohite, M. B. 2014b The onset of convection in a nanofluid saturated porous layer using Darcy model with cross diffusion. Meccanica 49, 1159-1175. [9.7.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Umavathi, J. C. and Prathap Kumar, J. 2017 Onset of convection in a porous medium layer saturated with an Oldroyd-B nanofluid. ASME J. Heat Transfer 139, 012401. [9.7.2]

    Article  Google Scholar 

  • Umavathi, J. C. and Shekar, M. 2013 Unsteady mixed convective flow and heat transfer in a vertical corrugated channel with composite media. J. Engng. Phys. Thermophys. 86, 754-765.[9.6.2]

    Article  Google Scholar 

  • Umavathi, J. C., Chamkha, A. J. and Mohite, M. B. 2015b Convective transport in a nanofluid saturated porous layer with cross diffusion and variation of viscosity and conductivity. Spec. Topics Rev. Porous Media 6, 11-27. [9.7.2]

    Article  Google Scholar 

  • Umavathi, J. C., Ojjela, O and Vajravelu, K. 2017 Numerical analysis of natural convection flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forcheimer-Brinkman model. Int. J. Therm. Sci. 111, 511–524. [9.7.2]

    Article  Google Scholar 

  • Umla, R. Augustin, M., Huke, B. and Lücke, M. 2010 Roll convection of binary fluid mixtures in porous media. J. Fluid Mech. 649, 165-186. [9.1.3]

    Article  MATH  Google Scholar 

  • Umla, R., Augustin, M., Huke, B. and Lücke, M. 2011 Three-dimensional convection of binary mixtures in porous media. Phys. Rev. E. 84, 0563326. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Usman, H., Mabood, F. and Lorenzini, G. 2016 Heat and mass transfer along vertical channel in porous medium with radiation effect and slip condition. Int. J. Heat Tech. 34, 129-136. [9.2.2]

    Article  Google Scholar 

  • Vaidyanathan, G., Sekar, R. and Ramanathan, A. 1995 Ferro thermohaline convection in a porous medium. J. Magnet. Magnet. Mater. 149, 137-142. [9.1.6.4]

    Article  Google Scholar 

  • Vasu, B., Prasad, V. R. and Bég, O. A. 2012 Thermo-diffusion and diffusion-thermo effects on MHD free convective heat and mass transfer from a sphere embedded in a non-Darcian porous medium. J. Thermodyn. 1, 725142. [9.2.1]

    Google Scholar 

  • Vishnu Ganesh, N., Abdul Hakeem, A. K. and Ganga, B. 2016 Darcy-Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second-order slip, viscous and Ohmic dissipation effects. Ain Shams Engng. J., to appear. [9.7.3]

    Google Scholar 

  • Waheed, S. E., Abu Alnaja, K. L. M. and Mady, A. A. M. 2015 Influence of chemical reaction and thermal radiation on heat and mass transfer for Soret and Dufour’s effects on MHD mixed convection Hiemenz flow of a micropolar fluid embedded in a porous medium with slip. J. Comput. Theor. Nanoscience 12, 3395-3403. [9.6.2]

    Article  Google Scholar 

  • Wang, C., Liao, S. J. and Zhu, J. M. 2003a An explicit solution for the combined heat and mass transfer by natural convection from a vertical wall in a non-Darcy porous medium. Int. J. Heat Mass Transfer 46, 4813-4822. [9.2.1]

    Article  MATH  Google Scholar 

  • Wang, C., Liao, S. J. and Zhu, J. M. 2003b An explicit analytic solution for non-Darcy natural convection over horizontal plate with surface mass and thermal dispersion effects. Acta Mech. 165, 139-150. [9.2.1]

    Article  MATH  Google Scholar 

  • Wang, J., Yang, M. and Zhang, Y. 2014a Onset of double-diffusive convection in horizontal cavity with Soret and Dufour effects. Int. J. Heat Mass Transfer 78, 1023-1031. [9.1.4]

    Article  Google Scholar 

  • Wang, P., Vafai, K., and Liu, D. Y. 2014b Analysis of radiative effect under local thermal non-equilibrium conditions in porous media – Applications to a solar air receiver. Numer. Heat Transfer A 65, 931-948. [4.10]

    Article  Google Scholar 

  • Wang, S. W. and Tan, W. C. 2008c Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Phys. Lett. A 372, 3046-3050. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Wang, S. W. and Tan, W. C. 2009 The onset of Darcy-Brinkman thermosolutal convection in a horizontal porous layer. Phys. Lett. A 373, 776-780. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Wooding, R. A. 1959 The stability of a viscous liquid in a vertical tube containing porous material. Proc. Roy. Soc. London Ser. A 252, 120-134. [6.16.1, 11.3].

    Article  MathSciNet  MATH  Google Scholar 

  • Wooding, R. A. 1960a Instability of a viscous liquid of variable density in a vertical Hele-Shaw cell. J. Fluid Mech. 7, 501-515. [ 9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Wooding, R. A. 1962a Free convection in a vertical tube filled with porous material. J. Fluid Mech. 13, 129-144. [ 9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Wooding, R. A. 1962b Stability of an interface between miscible fluids in a porous medium. Z. Angew. Math. Phys. 13, 255-266. [ 9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Wooding, R. A. 1964 Mixing layer flows in a saturated porous medium. J. Fluid Mech. 19, 103-112. [2.5, 9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Wooding, R. A. 1969 Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell. J. Fluid Mech. 39, 477-495. [ 9.1.3]

    Article  Google Scholar 

  • Wooding, R. A. 2007 Variable-density saturated flow with modified Darcy’s law: The salt lake problem and circulation. Water Resources Res. 43, W02429. [1.3, 9.1.6.4]

    Article  Google Scholar 

  • Wooding, R. A., Tyler, S. W. and White, I. 1997a Convection in groundwater below an evaporating salt lake: 1. Onset of instability. Water Resources Res. 33, 11999-1217. [6.10, 9.1.6.4]

    Google Scholar 

  • Wooding, R. A., Tyler, S. W., White, I. and Anderson, P. A. 1997b Convection in groundwater below an evaporating salt lake: 2. Evolution of fingers or plumes. Water Resources Res. 33, 1219-1228. [6.10, 9.1.6.4]

    Article  Google Scholar 

  • Xie, Y. Q., Simmons, C. T., Werner, A. D. and Diersch, H. J. G. 2012 Prediction and uncertainty of free convection phenomena in porous media. Water Resour. Res. 48, W02535. [9.1.3]

    Article  Google Scholar 

  • Xu, H., Gong, L., Huang, S. and Xu, M. 2015b Flow and heat transfer characteristics of nanofluid flowing through metal foams. Int. J. Heat Mass Transfer 83, 399-407. [9.7.1]

    Article  Google Scholar 

  • Yacine, L., Mojtabi, A., Bennacer, R. and Khouzam, A. 2016 Soret-driven convection and separation of binary mixtures in a horizontal porous cavity submitted to cross heat fluxes. Int. J. Therm. Sci. 104, 29-38. [9.1.4]

    Article  Google Scholar 

  • Yadav, D. and Kim, M. C. 2014a The effect of rotation on the onset of transient Soret-driven buoyancy convection in a porous layer saturated by a nanofluid. Microfluidics Nanofluidics 17, 1085-1093. [9.7.2]

    Article  Google Scholar 

  • Yadav, D. and Kim, M. C. 2015a The onset of transient Soret-driven convection in nanoparticle suspensions with particle-concentration-dependent viscosity in a porous medium. J. Porous Media 18, 369-378. [9.7.2]

    Article  Google Scholar 

  • Yadav, D., Agrawal, G. S. and Bhargava, R. 2013a Onset of double-diffusive nanofluid convection in a layer of saturated porous medium with thermal conductivity and viscosity variation. J. Porous Media 16, 105-121. [9.7.2]

    Article  Google Scholar 

  • Yadav, D., Bhargava, R. and Agrawal, G. S. 2012 Boundary and internal source effects on the onset of Darcy-Brinkman convection in a porous layer saturated by nanofluid. Int. J. Therm. Sci. 60, 244-254. [9.7.2]

    Article  Google Scholar 

  • Yadav, D., Bhargava, R. and Agrawal, G. S. 2013b Numerical solution of a thermal instability problem in a rotating nanofluid layer. Int. J. Heat Mass Transfer 63, 313-322. [9.7.2]

    Article  Google Scholar 

  • Yadav, D., Bhargava, R., Agrawal, G. S., Yadav, N., Lee, J. and Kim, M. C. 2014 Thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluidics Nanofluidics 16, 425-440. [9.7.2]

    Article  Google Scholar 

  • Yadav, D., Lee, J. H. and Cho, H. H. 2015 Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid. Powder Technology 286, 592-601. [9.7.2]

    Google Scholar 

  • Yang, Z., Wang, S., Zhao, M., Li, S. and Zhong Q. 2013 The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model. PLoS ONE 8, (11) e79956. [9.1.6.4]

    Article  Google Scholar 

  • Yasin, M. H. M., Arifin, M. N., Nazar, R., Ishmail, F. and Pop, I. 2012 Mixed convection boundary layer with internal heat generation in a porous medium filled with a nanofluid. Adv. Sci. Lett. 13, 833-835. [9.7.4]

    Article  Google Scholar 

  • Yasin, M. H. M., Arifin, N. M., Nazar, R., Ismail, F. and Pop, I. 2013a Mixed convection boundary layer flow embedded in a thermally stratified porous medium saturated by nanofluid. Adv. Mech. Engng. 121943. [9.7.4]

    Google Scholar 

  • Yasin, M. H. M., Arifin, N. M., Nazar, R., Ismail, F. and Pop, I. 2013b Mixed convection boundary layer flow on a vertical surface in a porous medium saturated by a nanofluid with suction or injection. J. Math. Stat. 9, 119-128. [9.7.4]

    Article  Google Scholar 

  • Yasin, M. H. M., Ishak, A. and Pop, I. 2016 Steady double-diffusive mixed convection boundary layer flow past a vertical flat plate embedded in a porous medium filled by nanofluid using Buongiorno’s model. J. Porous Media 19, 331-338. [9.7.4]

    Article  Google Scholar 

  • Yazdi, M. E., Moradi, A. and Dinarvand, S. 2014 MHD mixed convection stagnation point flow over a stretching vertical plate in porous medium filled with a nanofluid in the presence of thermal radiation. Arabian J. Sci. Engng 39, 2251-2261. [9.7.4]

    Article  MathSciNet  Google Scholar 

  • Yekani Motlagh, S., Taghizadeh, S. and Soltanipour, H. 2016 Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by a nanofluid using Buongiorno’s mathematical model. Advanced Powder Tech. 27, 2526–2540. [9.7.2]

    Article  Google Scholar 

  • Yih, K. A. 1997a The effect of transpiration on coupled heat and mass transfer in mixed convection over a vertical plate embedded in a saturated porous medium. Int. Comm. Heat Mass Transfer 24, 265-275. [9.6.1]

    Article  Google Scholar 

  • Yih, K. A. 1997b The effect of uniform lateral mass flux on free convection about a vertical cone embedded in a saturated porous medium. Int. Comm. Heat Mass Transfer 24, 1195-1205. [5.8]

    Article  Google Scholar 

  • Yih, K. A. 1998f Coupled heat and mass transfer in mixed convection over a vertical flat plate embedded in saturated porous media: PST/PSC or PHF/PMF. Heat Mass Transfer 34, 55-61. [9.6.1]

    Article  Google Scholar 

  • Yih, K. A. 1998g Coupled heat and mass transfer in mixed convection about a vertical cylinder in a porous medium: the entire regime. Mech. Res. Commun. 25, 623-630. [9.6.1]

    Article  MATH  Google Scholar 

  • Yih, K. A. 1999j Blowing/suction effect on combined convection in stagnation flow over a vertical plate embedded in a porous medium. J. Mech. 15, 41-45. [8.1.1]

    Article  Google Scholar 

  • Yih, K. A. 1999k Coupled heat and mass transfer in mixed convection about a vertical cylinder in a porous medium: The entire regime. Mech. Res. Comm. 25, 623-630. [9.6.1]

    Article  MATH  Google Scholar 

  • Yih, K. A. 1999a Uniform transpiration effect on combined heat and mass transfer by natural convection over a cone in saturated porous media: uniform wall temperature, concentration or heat flux. Int. J. Heat Mass Transfer 42, 3533-3537. [9.2.1]

    Article  MATH  Google Scholar 

  • Yih, K. A. 1999b Uniform transpiration effect of coupled heat and mass transfer, in mixed convection about inclined surfaces in porous media: the entire regime. Acta Mech. 132, 229-240. [9.6.1,10.3.2]

    Article  MATH  Google Scholar 

  • Yih, K. A. 1999d Coupled heat and mass transfer by free convection over a truncated cone in porous media: VWT-VWC or VHF-VMF. Acta Mech. 137, 83-97. [9.2.1]

    Article  MATH  Google Scholar 

  • Yih, K. A. 1999f Coupled heat and mass transfer by natural convection adjacent to a permeable horizontal cylinder in a saturated porous medium. Int. Comm. Heat Mass Transfer 26, 431-440. [9.2.1]

    Article  Google Scholar 

  • Yih, K. A. 1999h Uniform transpiration effect on coupled heat and mass transfer in mixed convection about a vertical cylinder in porous media: the entire regime. J. Chinese Soc. Mech. Engrs. 20, 81-86. [9.6.1]

    Google Scholar 

  • Yih, K. A. 2000b Combined heat and mass transfer in mixed convection adjacent to a VWT/VWC or VHF/VMF cone in a porous medium: The entire regime. J. Porous Media 3, 185-191. [9.6.1]

    Article  MATH  Google Scholar 

  • Yih, K. A. and Huang, C. J. 2015 Effect of internal heat generation on free convection heat and mass transfer of non-Newtonian fluids flow over a vertical plate in porous media VWT/VWC. J. Aeronautics Astronautics Aviation A 47, 115-122. [9.2.1]

    Google Scholar 

  • Yirga, Y. and Shankar, B. 2015 MHD flow and heat transfer of nanofluids through a porous media due to a stretching sheet with viscous dissipation and chemical reaction effects. Int. J. Comput. Meth. Engng. Sci. Mech. 16, 275–284. [9.7.3]

    Article  Google Scholar 

  • Yoon, D. Y., Kim, M. C. and Choi, C. K. 2001 Transport correlation of double-diffusive convection in Darcy-extended porous layer. J. Chem. Engng. Japan, 34, 287-291. [9.1.6.4].

    Article  Google Scholar 

  • Younsi, R. 2009 Computational analysis of MHD flow, heat and mass transfer in trapezoidal porous cavity. Thermal Science 13, 13-22. [9.4]

    Article  Google Scholar 

  • Younsi, R., Harkati, A. and Kalache, D. 2001 Heat and mass transfer in composite fluid-porous layer: effect of permeability. Arab J. Sci. Engng. 26, 145-155. [9.4]

    MATH  Google Scholar 

  • Younsi, R., Harkati, A. and Kalache, D. 2002a Numerical simulation of double-diffusive natural convection in a porous cavity: opposing flow. Arab J. Sci. Engng. 27, 181-194. [9.1.6.4, 9.6.2]

    MATH  Google Scholar 

  • Younsi, R., Harkati, A. and Kalache, D. 2002b Numerical simulation of thermal and concentration natural convection in a porous cavity in the presence of an opposing flow. Fluid Dyn. 37, 854-864. [9.1.6.4,9.6.2]

    Article  MATH  Google Scholar 

  • Yücel, A. 1990 Natural convection heat and mass transfer along a vertical cylinder in a porous medium. Int. J. Heat Mass Transfer 33, 2265-2274. [9.2.1]

    Article  Google Scholar 

  • Yücel, A. 1993 Mixed convective heat and mass transfer along a vertical surface in a porous medium. ASME HTD 240, 49-57. [9.6.1]

    Google Scholar 

  • Zafariyan, S., Fanaee, A. and Mohammadzadeh, A. 2013 Investigation of a thermal and solutal secondary effects on MHD convective transfer past a vertical surface in a porous medium. Arabian J. Sci. Engrg. 38, 3211-3220. [9.2.1]

    Article  MathSciNet  Google Scholar 

  • Zargartalebi, H., Ghalambaz, M., Nogrehabadi, A. and Chamkha, A. J. 2016 Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model. Numer. Heat Transfer A 70, 432-445. [9.7.2]

    Article  Google Scholar 

  • Zargartalebi, H. Noghrehabadi, A., Ghalambaz, M. and Pop, I. 2015 Natural convection boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid: Case of variable thermophysical properties. Transp. Porous Media 107, 153-170. [9.7.3]

    Article  Google Scholar 

  • Zeeshan, A., Ellahi, R. and Hassan, M. 2014 Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through a porous medium. European Phys. J. Plus 129, 2-10. [9.7.3]

    Article  Google Scholar 

  • Zhang, C. L., Zheng, L. C., Zhang, X. X. and Chen, G. 2015a MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Modell. 39, 165-181. [9.7.3]

    Article  MathSciNet  Google Scholar 

  • Zhang, F., Wang, J., You, X., Liu, W. and Yang, K. 2015b Stability analysis of natural convection in porous channel with heat generation. CIESC Journal 66, 146-153. [9.1.6.4]

    Google Scholar 

  • Zhang, W., Li, W. and Nakayama, A. 2015c An analytical consideration of steady-state forced convection within a nanofluid-saturated metal foam. J. Fluid Mech. 769, 590-620. [3.8, 9.7.1]

    Article  MATH  Google Scholar 

  • Zhang, Z. and Bejan, A. 1987 The horizontal spreading of thermal and chemical deposits in a porous medium. Int. J. Heat Mass Transfer 30, 2289-2303. [9.2.3]

    Article  Google Scholar 

  • Zhao, C. B., Hobbs, B. E. and Ord, A. 2008a Convective and Advective Heat Transfer in Geological Systems, Springer, Berlin. [11.8]

    MATH  Google Scholar 

  • Zhao, C.B., Schaubs, P. and Hobbs, B. E. 2016a Computational simulation of seepage instability in fluid-saturated porous rocks: Potential dynamic mechanism for controlling mineralization patterns. Ore Geology Reviews 79, 180-188. [11.8]

    Article  Google Scholar 

  • Zhao, F. Y., Liu, D. and Tang, G. F. 2007b Free convection from one thermal and solute source in a confined porous medium. Transp. Porous Media 70, 407-452. [9.2.2]

    Article  Google Scholar 

  • Zhao, F. Y., Liu, D. and Tang, G. F. 2008b Natural convection in a porous enclosure with a partial heating and salting element. Int. J. Therm. Sci. 47, 569-583. [9.1.6.4]

    Article  Google Scholar 

  • Zhao, J., Zheng, L., Zhang, X., Liu, F. and Chen, X. 2017 Unsteady natural convection heat transfer past a vertical flat plate embedded in a porous medium saturated with fractional Oldroyd-B nanofluid. ASME J. Heat Transfer 139, 012501. [9.7.3]

    Article  Google Scholar 

  • Zhao, J. H., Zheng, L. C., Zhang, X. X. and Liu, F. W. 2016 Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects. Int. J. Heat Mass Transfer 103, 203-230. [9.2.1]

    Article  Google Scholar 

  • Zhao, M., Zhang, Q. and Wang, S. 2014b Linear and nonlinear stability analysis of double diffusive convection in a Maxwell fluid saturated porous layer with internal heat source. J. Appl. Math. 489279. [9.1.6.4]

    Google Scholar 

  • Zhao, P. and Chen, C. F. 2001 Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model. Int. J. Heat Mass Transfer 44, 4625-4633. [9.4]

    Article  MATH  Google Scholar 

  • Zheng, L., Jiao, C., Lin, Y. and Ma, L. 2016 Marangoni convection heat and mass transport of power-law fluid in porous medium with heat generation and chemical reaction. Heat Transfer Engng., to appear. [9.1.6.4]

    Google Scholar 

  • Zhu, Q. Y., Zhuang, Y. J. and Yu, H. Z. 2017a Three-dimensional numerical investigation of thermosolutal convection of power-law fluids in anisotropic media. Int. J. Heat Mass Transfer 104, 897–917. [9.1.6.4]

    Article  Google Scholar 

  • Zhu, Q. Y., Zhuang, Y. J. and Yu, H. Z. 2017b Entropy generation due to three-dimensional double-diffusive convection of power-law fluids in heterogeneous porous media. Int. J. Heat Mass Transfer 106, 61–82. [9.1.6.4]

    Article  Google Scholar 

  • Zueco, J., Bég, O. A. and Takhar, H. S. 2009 Network numerical analysis of magneto-micropolar convection through a circular non-Darcian porous medium conduit. Comp. Mater. Sci. 46, 1028-1037. [7.3.3]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nield, D.A., Bejan, A. (2017). Double-Diffusive Convection. In: Convection in Porous Media. Springer, Cham. https://doi.org/10.1007/978-3-319-49562-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49562-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49561-3

  • Online ISBN: 978-3-319-49562-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics