Skip to main content

Forced Convection

  • Chapter
  • First Online:
Convection in Porous Media

Abstract

The fundamental question in heat transfer engineering is to determine the relationship between the heat transfer rate and the driving temperature difference. In nature, many saturated porous media interact thermally with one another and with solid surfaces that confine them or are embedded in them. In this chapter we analyze the basic heat transfer question by looking only at forced convection situations, in which the fluid flow is caused (forced) by an external agent unrelated to the heating effect. First we discuss the results that have been developed based on the Darcy flow model and later we address work on the non-Darcy effects. We end this chapter with a review of current engineering applications of the method of forced convection through porous media. Some fundamental aspects of the subject have been discussed by Lage and Narasimhan (2000) and the topic has been reviewed by Lauriat and Ghafir (2000) and Zhang et al. (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasbandy, S., Shivanian, E. and Hashim, I. 2011 Exact analytical solution of forced convection in a porous-saturated duct. Comm. Nonlinear Sci. Numer. Simul. 16, 3981-3989. [4.9]

    Article  MATH  Google Scholar 

  • Abbassi, H. 2007 Entropy generation analysis in a uniformly heated microchannel heat sink. Energy 32, 1932-1947. [4.16.5]

    Article  Google Scholar 

  • Abdollahzadeh Jamalabadi M. Y. 2015 Effects of micro- and macro-scale viscous dissipations with heat generation and local thermal non-equilibrium on thermally developing forced convection in saturated porous media. J. Porous Media 18, 843-860. [4.10]

    Article  Google Scholar 

  • Abedou, A. and Bouhadef, K. 2015 Comparison between two local thermal non-equilibrium criteria in forced convection through a porous channel. J. Appl. Fluid Mech. 8, 491-498. [4.10]

    Article  Google Scholar 

  • Abedou, A., Bouhadef, K. and Bennacer, R. 2016 Forced convection in a self heating porous channel: Local thermal equilibrium model. Thermal Science, to appear. [4.10]

    Google Scholar 

  • Abedou, A., Bouhadef, K. and Topin, F. 2015 Numerical analysis of heat exchange in a porous channel with heat generation and local thermal nonequilibrium. Heat Transfer Research 46, 969-994. [4.10]

    Article  Google Scholar 

  • Abkar, M., Forooghi, P., Abbassi, A. and Aghdam, M. M. 2010 Heat transfer of non-Newtonian fluid flow in a channel lined with porous layers under thermal nonequilibrium conditions. J. Porous Media 13, 235-246. [4.16.3]

    Article  Google Scholar 

  • Abu-Hijleh, B. A. K. 1997 Convection heat transfer from a laminar flow over a 2-D backward facing step with asymmetric and orthotropic porous floor segments. Numer. Heat Transfer A 31, 325-335. [4.11]

    Article  Google Scholar 

  • Abu-Hijleh, B. A. K. 2000 Heat transfer from a 2D backward facing step with isotropic porous floor segments. Int. J. Heat Mass Transfer 43, 2727-2737. [4.11]

    Article  MATH  Google Scholar 

  • Abu-Hijleh, B. A. K. 2001b Laminar forced convection heat transfer from a cylinder covered with an orthotropic porous layer in cross-flow. Int. J. Numer. Meth. Heat. Fluid Flow 11, 106-120. [4.11]

    Article  MATH  Google Scholar 

  • Abu-Hijleh, B. A. K. 2002 Entropy generation due to cross-flow heat transfer from a cylinder covered with an orthotropic porous layer. Heat Mass Transfer 39, 27-40. [4.11]

    Article  Google Scholar 

  • Abu-Hijleh, B. A. K. 2003 Enhanced forced convection heat transfer from a cylinder using permeable fins. ASME J. Heat Transfer 125, 804-811. [4.11]

    Article  Google Scholar 

  • Abu-Hijleh, B. A. K. and Al-Nimr, M. A. 2001 The effect of the local inertial term on the fluid flow in channels partially filled with porous material. Int. J. Heat Mass Transfer 44, 1565-1572. [4.11]

    Article  MATH  Google Scholar 

  • Abu-Hijleh, B. A. K., Al-Nimr, M. A. and Hader, M. A. 2004 Thermal equilibrium in transient forced convection porous channel flow. Transport Porous Media 57, 49-58. [4.10]

    Article  Google Scholar 

  • Adewumi, O. O., Bello-Ochende, T. and Meyer, J. P. 2013 Constructal design of combined microchannel and micro pin fins for electronic cooling. Int. J. Heat Mass Transfer 66, 315-323. [4.15]

    Article  Google Scholar 

  • Adnani, P., Catton, I. and Abdou, M. A. 1995 Non-Darcian forced convection in porous media with anisotropic dispersion. ASME J. Heat Transfer 117, 447-451. [4.9]

    Article  Google Scholar 

  • Afifi, R. I. and Berbish, N. S. 1998 Non-Darcian forced convection heat transfer from a circular cylinder embedded in a packed bed of spherical particles. J. Engng. Appl. Sci. 45, 923-942. [4.3]

    Google Scholar 

  • Afifi, R. I. and Berbish, N. S. 1999 Experimental investigation of forced convection heat transfer over a horizontal flat plate in a porous medium. J. Engng. Appl. Sci. 46, 693-710. [4.1]

    Google Scholar 

  • Aguilar-Madera C. G., Valdés-Parada, F. J., Goyeau, B. and Ochoa-Tapia, J. A. 2011a Convective heat transfer in a channel partially filled with a porous medium. Int. J. Therm. Sci. 50, 1355-1368. [4.11]

    Article  MATH  Google Scholar 

  • Aguilar-Madera, C. G., Valdés-Parada, F. J., Goyeau, B. and Ochoa-Tapia, J. A. 2011b Effective thermal properties at the fluid-porous medium interfacial region: Role of the particle-particle contact. Rev. Mexicana Ing. Quim. 10, 375-386. [2.4]

    MATH  Google Scholar 

  • Aithal, S. M., Aldemir, T. and Vafai, K. 1994 Assessment of the impact of neutronic/thermal-hydraulic coupling in the design and performance of nuclear reactors on the design and performance of nuclear reactors for space propulsion. Nuclear Tech. 106, 187-202. [4.16.5]

    Google Scholar 

  • Akyildiz, F. T. and Siginer, D. A. 2011 Nonlinear Forchheimer effect on the forced convection in porous-saturated ducts of rectangular cross section. J. Porous Media 14, 81-90. [4.9]

    Article  Google Scholar 

  • Alalaimi, M., Lorente, S., Wechsatol, W. and Bejan, A. 2015 The robustness of the permeability of constructal tree-shaped fissures. Int. J. Heat Mass Transfer 90, 259-266. [3.7]

    Article  Google Scholar 

  • Alazmi, B. and Vafai, K. 2002 Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transfer 45, 3071-3087. [2.2.3, 4.10]

    Article  MATH  Google Scholar 

  • Alazmi, B. and Vafai, K. 2004 Analysis of variable porosity, thermal dispersion and local thermal nonequilibrium on free surface flows through porous media. ASME J. Heat Mass Transfer 126, 389-399. [4.10]

    Article  Google Scholar 

  • Alhusseny, A., Turan, A. and Nasser, A. 2015b Developing convective flow in a square channel partially filled with a high porosity metal foam and rotating in a parallel-mode. Int. J. Heat Mass Transfer 90, 578-590.

    Article  Google Scholar 

  • Alhusseny, A., Turan, A., Nasser, A. and Hidri, F. 2015a Hydrodynamically and thermally developing flow in a rectangular channel filled with a high porosity fibre and rotating about a parallel axis. Int. Comm. Heat Mass Transfer 67, 114-123. [4.16.5]

    Article  Google Scholar 

  • Alkam, M. K. and Al-Nimr, M. A. 1998 Transient non-Darcian forced convection flow in a pipe partially filled with a porous material. Int. J. Heat Mass Transfer 41, 347-356. [4.6.4]

    Article  MATH  Google Scholar 

  • Alkam, M. K. and Al-Nimr, M. A. 1999a Improving the performance of double-pipe heat exchangers by using porous substrates. Int. J. Heat Mass Transfer 42, 3609-3618. [4.11]

    Article  MATH  Google Scholar 

  • Alkam, M. K. and Al-Nimr, M. A. 1999b Solar collectors with tubes partially filled with porous substrates. ASME J. Solar Energy 121, 20-24. [4.11]

    Article  Google Scholar 

  • Alkam, M. K. and Al-Nimr, M. A. 2001 Transient flow hydrodynamics in circular channels partially filled with a porous material. Heat Mass Transfer 37, 133-137. [4.11]

    Article  Google Scholar 

  • Alkam, M. K., Al-Nimr, M. A. and Hamdan, M. O. 2001 Enhancing heat transfer in parallel-plate channels by using porous media. Int. J. Heat Mass Transfer 44, 931-938. [4.11]

    Article  MATH  Google Scholar 

  • Alkam, M. K., Al-Nimr, M. A. and Hamdan, M. O. 2002 On forced convection in channels partially filled with porous substrates. Heat Mass Transfer 38, 337-342. [4.11]

    Article  Google Scholar 

  • Alkam, M. K., Al-Nimr, M. A. and Mousa, Z. 1998 Forced convection of non-Newtonian fluids in porous concentric annuli. Int. J. Numer. Meth. Heat. Fluid Flow 8, 703-716. [4.16.3]

    Article  MATH  Google Scholar 

  • Allouache, N. and Chikh, S. 2008 Numerical modeling of turbulent flow in an annular heat exchanger partly filled with a porous substrate. J. Porous Media 11, 617-632. [4.11]

    Article  Google Scholar 

  • Al-Nimr, M. A. and Abu-Hijleh, B. A. 2002 Validation of thermal equilibrium assumption in transient forced convection flow in porous channel. Transport in Porous Media 49, 127-138. [4.10]

    Article  Google Scholar 

  • Al-Nimr, M. A. and Alkam, M. K. 1997a Film condensation on a vertical plate embedded in a porous medium. J. Appl. Energy 56, 47-57. [10.4]

    Article  Google Scholar 

  • Al-Nimr, M. A. and Alkam, M. K. 1998a A modified tubeless solar collector partially filled with porous substrate. Renewable Energy 13, 165-173. [4.11]

    Article  Google Scholar 

  • Al-Nimr, M. A. and Alkam, M. K. 1998b Unsteady non-Darcian fluid flow in parallel-plates channels partially filled with porous materials. Heat Mass Transfer 33, 315-318. [4.11]

    Article  MATH  Google Scholar 

  • Al-Nimr, M. A. and Haddad, O. M. 2006 Comments on ‘Forced convection with slip-flow in a channel or duct occupied by a hyper-porous medium saturated by a rarefied gas’. Transp. Porous Media 67, 165-167. [4.9]

    Article  Google Scholar 

  • Al-Nimr, M. A. and Kiwan, S. 2002 Examination of the thermal equilibrium assumption in periodic forced convection in a porous channel. J. Porous Media 5, 35-40. [4.10]

    MATH  Google Scholar 

  • Al-Nimr, M. A., Aldoss, T. and Naji, M. I. 1994a Transient forced convection in the entrance region of a porous tube. Canad. J. Chem. Engng. 72, 249-255. [4.6.4]

    Article  Google Scholar 

  • Al-Nimr, M. A., Aldoss, T. and Naji, M. I. 1994b Transient forced convection in the entrance region of porous concentric annuli. Canad. J. Chem. Engng, 72, 1092-1096. [4.6.4]

    Article  Google Scholar 

  • Al-Sumaily, G. F. 2014 Forced convection heat transfer from a bank of circular cylinders embedded in a porous medium. ASME J. Heat Transfer 136, 042602. [4.11]

    Article  Google Scholar 

  • Al-Sumaily, G. F., and Thompson, M. C. 2013 Forced convection from a circular cylinder in pulsating flow with and without the presence of porous media. Int. J. Heat Mass Transfer 61, 226-244. [4.10]

    Article  Google Scholar 

  • Al-Sumaily, G. F., Nakayama, A., Sheridan, J. and Thompson, M. C. 2012a The effect of porous media particle size on forced convection from a circular cylinder without assuming local thermal equilibrium between phases. Int. J. Heat Mass Transfer 55, 3366-3378. [4.3]

    Article  Google Scholar 

  • Al-Sumaily, G. F., Sheridan, J. and Thompson, M. C. 2013 Validation of thermal equilibrium assumption of forced convection steady and pulsatile flows over a cylinder embedded in a porous channel. Int. Comm. Heat Mass Transfer 43, 30-38. [4.10]

    Article  Google Scholar 

  • Al-Sumaily, G. P., Sheridan, J. and Thompson, M. C. 2012b Analysis of forced convection heat transfer from a circular cylinder embedded in a porous medium. Int. J. Therm. Sci. 51, 121-131. [4.3]

    Article  Google Scholar 

  • Amiri, A. and Vafai, K. 1994 Analysis of dispersion effects and non-thermal equilibrium non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transfer 37, 939-954. [4.6.4]

    Article  Google Scholar 

  • Amiri, A. and Vafai, K. 1998 Transient analysis of incompressible flow through a packed bed. Int. J. Heat Mass Transfer 41, 4259-4279. [4.6.4]

    Article  MATH  Google Scholar 

  • Amiri, A., Vafai, K. and Kuzay, T. M. 1995 Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons. Numer. Heat Transfer A 27, 651-664. [4.6.4]

    Article  Google Scholar 

  • Ando, K., Kuwahara, F., Yang, C. and Nakayama, A. 2013 A local thermal non-equilibrium analysis of forced convective heat transfer in a metal foam filled channel. Kagaku Kogaku Ronbunshu 39, 78-85. [4.10]

    Article  Google Scholar 

  • Angirasa, D. 2002a Forced convection heat transfer in metallic fibrous materials. ASME J. Heat Transfer 124, 739-745. [4.9]

    Article  Google Scholar 

  • Angirasa, D. 2002b Experimental investigation of forced convection heat transfer augmentation with metallic fibrous materials. Int. J. Heat Mass Transfer 45, 919-922. [4.9]

    Article  Google Scholar 

  • Angirasa, D. and Peterson, G. P. 1999 Forced convection heat transfer augmentation in a channel with a localized heat source using fibrous materials. ASME J. Electr. Pack. 121, 1-7. [4.16.5]

    Article  Google Scholar 

  • Ansari, A. R. and Siddiqui, A. M. 2010 A note on the Darcy-Forchheimer-Brinkman equation for fully developed flow through a porous channel bounded by flat plates. J. Porous Media 13, 1111-1117. [4.9]

    Article  Google Scholar 

  • Attia, H. A. 2008b Time varying flow of a power law fluid in a porous medium between parallel porous plates with heat transfer under an exponentially decaying pressure gradient. J. Porous Media 11, 487-495. [4.16.3]

    Article  Google Scholar 

  • Attia, H. A., Ewis, K. M. and Awad-Allah, N. A. 2012 Effect of porosity on the transient MHD generalized Couette flow with heat transfer in the presence of heat source and uniform suction and injection. J. Korean Soc. Indust. Appl. Math. 16, [4.16.5]

    Google Scholar 

  • Attia, H. A., Ewis, K. M. and Abdeen, M. A. M. 2012a Stagnation point flow through a porous medium towards a radially stretching sheet in the presence of uniform suction or injection and heat generation. ASME J. Fluids Engrg. 134, 081202. [5.1.9.9]

    Article  Google Scholar 

  • Awad, A. A. 2014 Entransy is now clear. ASME J. Heat Transfer 136, 095502. [4.10]

    Article  Google Scholar 

  • Aydin, O. and Avci, M. 2011 Analytical investigation of heat transfer in Couette-Poiseuille flow through porous medium. J Thermophys. Heat Transfer 25, 468-472. [4.9]

    Article  Google Scholar 

  • Aydin, O. and Koya, A. 2008b Non-Darcian forced convection flow of viscous dissipating fluid over a flat plate embedded in a porous medium. Transp. Por. Media 73, 173-186. [4.8]

    Article  Google Scholar 

  • Aydin, O. and Koya, A. 2008c Reply to comments on “Non-Darcian forced convection flow of viscous dissipating fluid over a flat plate embedded in a porous medium.” Transp. Por. Media 73, 191-193. [4.8]

    Article  Google Scholar 

  • Aydin, O. and Koya, A. 2008d Reply to comments on “Non-Darcian forced convection flow of viscous dissipating fluid over a flat plate embedded in a porous medium.” Transp. Por. Media 75, 271-272. [4.8]

    Google Scholar 

  • Azoumah, Y., Mazet, N. and Neveu, P. 2004 Constructal network for heat and mass transfer in a solid-gas reactive porous medium. Int. J. Heat Mass Transfer 47, 2961-2970. [4.18]

    Article  MATH  Google Scholar 

  • Bakar, S. A., Arifin, N. M., Ali, F. M. and Nazar, R. 2014 MHD forced convection boundary layer slip flow in Darcy-Forchheimer porous medium with effects of chemical reaction. Int. Rev. Mech. Engng. 8, 754-760. [4.16.5]

    MATH  Google Scholar 

  • Band, L. E., McDonnell, J. J., Duncan, J. M., Barros, A., Bejan, A., Burt, T., Dietrich, W. E., Emanuel, R. E., Hwang, T., Katul, G., Kim, Y, McGlynn, B., Miles, B., Porporato, A., Scaife, C. and Troch, P. A. 2014 Ecohydrological flow networks in the subsurface. Ecohydrology 7, 1073-1078. [4.18.5]

    Google Scholar 

  • Banerjee, A., Haji-Sheikh, A. and Nomura, S. 2012 Heat transfer with axial conduction in triangular ducts filled with saturated porous materials. Numer. Heat Transfer A 62, 1-24. [4.16.5]

    Article  Google Scholar 

  • Barletta, A., Celli, M., Kuznetsov, A. V. and Nield, D. A. 2016 Unstable forced convection in a plane porous channel with variable-viscosity dissipation. ASME J. Heat Transfer 138, 032601. [4.9]

    Article  Google Scholar 

  • Bartlett, R. F. and Viskanta, R. 1996 Enhancement of forced convection in an asymmetrically heated duct filled with high thermal conductivity porous media. J. Enhanced Heat Transfer 3, 291-299. [4.9]

    Article  Google Scholar 

  • Basak, T. and Roy, S. 2008 ‘Bejan’s heatlines’ in heat flow visualization and optimal thermal mixing for differentially heated square enclosures. Int. J. Heat Mass Transfer, 51, 3486-3503. [4.17]

    Article  MATH  Google Scholar 

  • Basak, T., Aravind, G. and Roy, S. 2009 Visualization of heat flow due to natural convection within triangular cavities using Bejan’s heatline concept. Int. J. Heat Mass Transfer 52, 2824-2833. [4.17]

    Article  MATH  Google Scholar 

  • Basak, T., Roy, S., Singh, A. and Balakrishnan, A. R. 2009a Natural convection flows in porous trapezoidal enclosures with various inclination angles. Int. J. Heat Mass Transfer 52, 4612-4623. [7.3.7]

    Article  MATH  Google Scholar 

  • Beckermann, C. and Viskanta, R. 1987 Forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous medium. Int. J. Heat Mass Transfer 30, 1547-1551. [4.8]

    Article  Google Scholar 

  • Bejan, A. 2004a Convection Heat Transfer, 3rd ed., Wiley, New York. [1.5.2, 2.1, 4.17, 4.18, 4.20]

    MATH  Google Scholar 

  • Bejan, A. 2013 Convection Heat Transfer, 4th ed. Wiley, Hoboken. [6.26.3]

    Book  MATH  Google Scholar 

  • Bejan, A. 1997a Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer 40, 799-816. [4.18]

    Article  MATH  Google Scholar 

  • Bejan, A. 1997b Constructal tree network for fluid flow between a finite-size volume and one source or sink. Rev. Gén. Thermique 36, 592-604. [4.18]

    Article  Google Scholar 

  • Bejan, A. 1997c Advanced Engineering Thermodynamics, 3rd ed., Wiley, New York. [4.19, 6.26]

    Google Scholar 

  • Bejan, A. 1984 Convection Heat Transfer, Wiley, New York. [1.1, 4.1, 4.2, 4.5, 4.17, 5.1.4, 5.11.1, 6.9.2, 7.1.1, 7.1.2, 7.3.3, 7.4.2, 9.2.1, 10.1.2]

    MATH  Google Scholar 

  • Bejan, A. 1990a Theory of heat transfer from a surface covered with hair. ASME J. Heat Transfer 112, 662-667. [4.14]

    Article  Google Scholar 

  • Bejan, A. 1992b Surfaces covered with hair: optimal strand diameter and optimal porosity for minimum heat transfer. Biomimetics 1, 23–38. [4.14]

    Google Scholar 

  • Bejan, A. 1995 The optimal spacing for cylinders in cross flow forced convection. J. Heat Transfer 117, 767–770. [4.15]

    Article  Google Scholar 

  • Bejan, A. 1996a Entropy Generation Minimization, CRC Press, Boca Raton, FL. [4.15]

    MATH  Google Scholar 

  • Bejan, A. 2000 Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, UK. [1.5.2, 4.18, 6.2, 6.26, 11.10]

    MATH  Google Scholar 

  • Bejan, A. 2004b Designed porous media: maximal heat transfer density at decreasing length scales. Int. J. Heat Mass Transfer 47, 3073-3083. [4.15]

    Article  MATH  Google Scholar 

  • Bejan, A. 1993 Heat Transfer, 2nd ed., Wiley, New York. [4.4, 4.15]

    MATH  Google Scholar 

  • Bejan, A. 1996b Street network theory of organization in nature. J. Adv. Transportation 30, 85-107. [4.18]

    Article  Google Scholar 

  • Bejan, A. 2014 ‘Entransy’ and its lack of content in physics. ASME J. Heat Transfer 136, 055501. [4.10]

    Article  Google Scholar 

  • Bejan, A. 2015 Constructal law: Optimization as design evolution. ASME J. Heat Transfer 137, 061003. [4.18.5]

    Article  Google Scholar 

  • Bejan, A. 2016 The Physics of Life: The Evolution of Everything. St Martin’s Press. [4.18.5]

    Google Scholar 

  • Bejan, A. and Fautrelle, Y. 2003 Constructal multi-scale structure for maximal heat transfer density. Acta Mech. 163, 39-49. [4.19]

    MATH  Google Scholar 

  • Bejan, A. and Lage, J. L. 1991 Heat transfer from a surface covered with hair. Convective Heat and Mass Transfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 823-845. [1.2, 4.14]

    Chapter  Google Scholar 

  • Bejan, A. and Lorente, S. 2004 The constructal law and the thermodynamics of flow systems with configuration. Int. J. Heat Mass Transfer 47, 3203-3214. [4.18]

    Article  MATH  Google Scholar 

  • Bejan, A. and Lorente, S. 2006 Constructal theory of generation of configuration in nature and engineering. J. Applied Physics 100, #041301. [3.7]

    Google Scholar 

  • Bejan, A. and Lorente, S. 2008 Design with Constructal Theory. Wiley, Hoboken. [3.7]

    Book  Google Scholar 

  • Bejan, A. and Lorente, S. 2010 The constructal law of design and evolution in nature. Phil. Trans. Roy. Soc. B, Biological Sciences 365, 1335-1347. [3.7, 4.14]

    Article  Google Scholar 

  • Bejan, A. and Lorente, S. 2011 The constructal law and the evolution of design in nature. Physics of Life Reviews 8, 209-240. [3.7, 4.14]

    Article  Google Scholar 

  • Bejan, A. and Lorente, S. 2013 Constructal law of design and evolution: Physics, biology, technology, and society. J. Appl. Phys. 113, 151301. [4.18.5]

    Article  Google Scholar 

  • Bejan, A. and Morega, A. M. 1993 Optimal arrays of pin fins and plate fins in laminar forced convection. J. Heat Transfer 115, 75–81. [4.15]

    Article  Google Scholar 

  • Bejan, A. and Morega, A. M. 1993 Optimal arrays of pin fins and plate fins in laminar forced convection. ASME J. Heat Transfer 115, 75-81. [4.15]

    Article  Google Scholar 

  • Bejan, A. and Nield, D. A. 1991 Transient forced convection near a suddenly heated plate in a porous medium. Int. Comm. Heat Mass Transfer 18, 83–91. [4.6]

    Article  Google Scholar 

  • Bejan, A. and Sciubba, E. 1992 The optimal spacing of parallel plates cooled by forced convection. Int. J. Heat Mass Transfer 35, 3259–3264. [4.15]

    Article  Google Scholar 

  • Bejan, A. and Zane, J. P. 2012 Design in Nature. How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization. Doubleday, New York. [4.14, 4.18.5]

    Google Scholar 

  • Bejan, A., Dincer, I., Lorente, S., Miguel, A. F. and Reis, A. H. 2004 Porous and Complex Flow Structures in Modern Technologies. Springer, New York. [1.5.2, 2.1, 3.3, 3.7, 4.18, 4.19, 6.26, 10.1.7]

    Book  Google Scholar 

  • Bejan, A., Lorente S. and Kang, D. H. 2013 Constructal design of regenerators. Int. J. Energy Research 37, 1509-1518. [4.18.5]

    Article  Google Scholar 

  • Bello-Ochende, T. and Bejan, A. 2004 Maximal heat transfer density: Plates with multiple lengths in forced convection. Int. J. Thermal Sci. 43, 1181-1186. [4.19]

    Article  Google Scholar 

  • Bello-Ochende, T. and Bejan, A. 2005a Constructal multi-scale cylinders in cross-flow. Int. J. Heat Mass Transfer 48, 1373-1383. [4.19]

    Article  MATH  Google Scholar 

  • Bello-Ochende, T. and Bejan, A. 2005b Constructal multi-scale cylinders with natural convection. Int. J. Heat Mass Transfer 48, 4300-4306. [4.19]

    Article  MATH  Google Scholar 

  • Benmerkhi, M., Afrid, M. and Grouix, D. 2016 Thermally developing forced convection in a metal foam-filled elliptic annulus. Int. J. Heat Mass Transfer 97, 253-269. [4.13]

    Article  Google Scholar 

  • Bhanja, D. and Kundu, B. 2013 Thermal analysis of a constructal T-shaped porous fin with radiation effects. Int. J. Energy Research 13, 1509-1518. [4.18.5]

    Google Scholar 

  • Bhargavi, D., and Satyamurty, V. V. 2011 Optimum porous insert configurations for enhanced heat transfer in channels. J. Porous Media 14, 187-203. [4.11]

    Article  Google Scholar 

  • Bhargavi, D., Satyamurthy, V. V. and Sekhar, G. P. R. 2009 Effect of porous fraction and interface stress jump on skin friction and heat transfer in flow through a channel partially filled with porous material. J. Porous Media 12, 1065-1082. [4.11]

    Article  Google Scholar 

  • Bhattacharjee, S. and Grosshandler, W. L. 1988 The formation of a wall jet near a high temperature wall under a microgravity environment, ASMR HTD 96, 711-716. [4.15]

    Google Scholar 

  • Bondareva, N. S., Sheremet, M. A., Oztop, H. F. and Abu-Hamdeh, N. 2016 Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with nanofluid with a local heater. Int. J. Heat Mass Transfer 99, 872-888. [4.17, 9.7.2]

    Article  Google Scholar 

  • Bradshaw, P. 2001 Shape and structure, from engineering to nature. AAIA J. 39, 983. [4.19]

    Google Scholar 

  • Buonomo, B., Manca, O. and Lauriat, G. 2014b Forced convection in micro-channels filled with porous media in local thermal non-equilibrium conditions. Int. J. Therm. Sci. 77, 206-222. [4.10]

    Article  Google Scholar 

  • Buonomo, B., Manca, O. and Lauriat, G. 2016b Forced convection in porous microchannels with viscous dissipation in local thermal non-equilibrium conditions. Int. Comm. Heat Mass Transfer 76, 46-54. [4.10]

    Article  Google Scholar 

  • Byun, S. Y., Ro, S. T., Shin, J. Y., Son, Y. S. and Lee, D. Y. 2006 Transient thermal behaviour of porous media under oscillating flow condition. Int. J. Heat Mass Transfer 49, 5081-5085. [4.16.2]

    Article  MATH  Google Scholar 

  • Calmidi, V. V. and Mahajan, R. L. 2000 Forced convection in high porosity metal foams. ASME J. Heat Transfer 122, 557-565. [4.9]

    Article  Google Scholar 

  • Cekmer, O., Mobedi, M., Ozerem, B. and Pop, I. 2012 Fully developed forced convection in a parallel plate channel with a centred porous layer. Transp. Porous Media 93, 179-201. [4.11]

    Article  Google Scholar 

  • Cekmer, O., Mobedi, M., Ozerdem, B. and Pop, I. 2016 Effect of an inserted porous layer into a channel on heat transfer and pressure drop. J. Porous Media 19, 65-82. [4.11]

    Article  Google Scholar 

  • Celli, M., Rees, D. A. S. and Barletta, A. 2010 The effect of local thermal non-equilibrium on forced convection boundary layer flow from a heated surface in porous media. Int. J. Heat Mass Transfer 53, 3533-3539. [4.10]

    Article  MATH  Google Scholar 

  • Cetkin, E., Lorente, S. and Bejan A. 2011a Vascularization for cooling and mechanical strength. Int. J. Heat Mass Transfer 54, 2774-2781. [4.19]

    Article  MATH  Google Scholar 

  • Cetkin, E., Lorente, S. and Bejan, A. 2011b Hybrid grid and tree structures for cooling and mechanical strength. J. Appl. Phys. 110, #064910. [4.19]

    Article  MATH  Google Scholar 

  • Cezmer, O., Mobedi, M., Ozerdem, B. and Pop, I. 2011 Fully developed forced convection heat transfer in a porous channel with asymmetric heat flux boundary conditions. Transp. Porous Media 90, 791-806. [4.9]

    Article  MathSciNet  Google Scholar 

  • Chamkha, A. J. 2001b Unsteady laminar hydromagnetic flow and heat transfer in porous channels with temperature-dependent properties. Int. J. Numer. Meth. Heat Fluid Flow 11, 430-448. [4.16.5]

    Article  MATH  Google Scholar 

  • Chaudhary, S. and Kumar, P. 2014 MHD forced convection boundary layer flow with a flat plate and porous substrate. Meccanica 49, 69-77. [4.10]

    Article  MathSciNet  MATH  Google Scholar 

  • Chauhan, D. S. and Kumar, V. 2009 Effects of slip conditions on forced convection and entropy generation in a circular channel occupied by a highly porous medium: Darcy extended Brinkman-Forchheimer model. Turkish J. Engng. Envir. Sci. 33, 91-104. [4.16.5]

    Google Scholar 

  • Chee, Y.S., Ting, T. W. and Hung, Y. M. 2015 Entropy generation of viscous dissipative flow in thermal non-equilibrium porous media with thermal asymmetries. Energy 89, 392-401. [4.10]

    Article  Google Scholar 

  • Chen, B. M., Liu, F., Zhang, G. Q. and Liu, Z. 2014 Influence of stress jump coefficient of porous structure and flow conditions. IHTC 15-9590, Kyoto, Japan. [1.6]

    Google Scholar 

  • Chen, C. C., Huang, P. C. and Huang, H. Y. 2013a Enhanced forced convective cooling of heat sources by metal foam porous layers. Int. J. Heat Mass Transfer 58, 356-373. [4.10]

    Article  Google Scholar 

  • Chen, G. and Hadim, H. A. 1995 Numerical study of forced convection of a power-law fluid in a porous channel. ASME HTD 309, 65-72. [4.16.3]

    Google Scholar 

  • Chen, G. and Hadim, H. A. 1998a Forced convection of a power-law fluid in a porous channel—numerical solutions. Heat Mass Transfer 34, 221-228. [4.16.3]

    Article  MATH  Google Scholar 

  • Chen, G. and Hadim, H. A. 1998b Numerical study of non-Darcy forced convection in a packed bed saturated with a power-law fluid. J. Porous Media 1, 147-157. [4.16.3]

    MATH  Google Scholar 

  • Chen, G. and Hadim, H. A. 1999a Forced convection of a power-law fluid in a porous channel—integral solutions. J. Porous Media 2, 59-69. [4.16.3]

    Article  MATH  Google Scholar 

  • Chen, G. and Hadim, H. A. 1999b Numerical study of three dimensional non-Darcy forced convection in a square porous duct. Int. J. Numer. Meth. Heat Fluid Flow 9, 151-169. [4.9]

    Article  MATH  Google Scholar 

  • Chen, G. M. and Tsao, C. P. 2011a Effects of viscous dissipation on forced convection heat transfer in a channel embedded in a power-law fluid saturated porous medium. Int. Comm. Heat Mass Transfer 38, 57-62. [4.16.3]

    Article  Google Scholar 

  • Chen, G. M. and Tsao, C. P. 2011b Forced convection with viscous dissipation using a two-equation model in a channel filled with a porous medium. Int. J. Heat Mass Transfer 54, 1791-1804. [4.10]

    Article  MATH  Google Scholar 

  • Chen, G. M. and Tsao, C. P. 2011c A two-equation model for thermally developing forced convection in porous medium with viscous dissipation. Int. J. Heat Mass Transfer 54, 5406-5414. [4.13]

    Article  MATH  Google Scholar 

  • Chen, G. M. and Tsao, C. P. 2012a A thermal resistance analysis on forced convection with viscous dissipation in a porous medium using entransy dissipation concept. Int. J. Heat Mass Transfer 55, 3744-3754. [4.10]

    Article  Google Scholar 

  • Chen, G. M. and Tsao, C. P. 2012b Field synergy principle analysis on convective heat transfer in porous medium with uniform heat generation for thermally developing flow. Int. J. Heat Mass Transfer 55, 4139-4147. [4.13]

    Article  Google Scholar 

  • Chen, L. E., Feng, H. J., Xie, Z. H. and Sun, F. R. 2014 “Disk-point” mass transfer constructal optimizations with Darcy and Hagen-Poiseuille flows in porous media. Applied Math. Modell. 38, 1288-1299. [4.18.5]

    Article  Google Scholar 

  • Chen, Q., Guo, Z. Y. and Liang, X.G. 2014 Closure to “Discussion of ‘Entransy is now clear’”. ASME J. Heat Transfer 136, 096001. [4.10]

    Article  Google Scholar 

  • Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008a A numerical method for forced convection in porous and homogeneous fluid domains coupled at interface by stress jump. Int. J. Numer. Meth. Fluid Flow 18, 635–655. [1.6]

    Article  MATH  Google Scholar 

  • Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2008d Numerical analysis for the flow past a porous square cylinder based on the stress-jump interfacial conditions. Int. J. Numer. Meth. Fluids 56, 1705-1729. [4.11]

    Article  MATH  Google Scholar 

  • Chen, X. L. and Sutton, W. H. 2005 Enhancement of heat transfer: Combined convection and radiation in the entry region of circular ducts with porous inserts. Int. J. Heat Mass Transfer 48, 5460-5474. [4.11]

    Article  MATH  Google Scholar 

  • Chen, Z. S., Xie, M. Z., Liu, H. S. and Yue, M. 2014 Numerical investigation on the thermal non-equilibrium in low-velocity reacting flow within porous media. Int. J. Heat Mass Transfer 77, 585-599. [2.2.3]

    Article  Google Scholar 

  • Cheng, L. P. and Kuznetsov, A. V. 2005 Heat transfer in a laminar flow in a helical pipe filled with a saturated porous medium. Int. J. Thermal Sci. 44, 787-798. [4.5]

    Article  MATH  Google Scholar 

  • Cheng, P. 1977c Combined free and forced boundary layer flows about inclined surfaces in a porous medium. Int. J. Heat Mass Transfer 20, 807-814. [4.1, 8.1.4]

    Article  MATH  Google Scholar 

  • Cheng, P. 1982 Mixed convection about a horizontal cylinder and a sphere in a fluid saturated porous medium. Int. J. Heat Mass Transfer 25, 1245-1247. [4.3, 8.1.3]

    Article  MATH  Google Scholar 

  • Cheng, P. 1987 Wall effects on fluid flow and heat transfer in porous media. Proc. 1987 ASME JSME Thermal Engineering Joint Conf. 2, 297-303. [4.8]

    Google Scholar 

  • Cheng, P. and Hsu, C. T. 1986a Fully developed, forced convective flow through an annular packed-sphere bed with wall effects. Int. J. Heat Mass Transfer 29, 1843-1853. [4.9]

    Article  MATH  Google Scholar 

  • Cheng, P. and Hsu, C. T. 1986b Applications of Van Driest’s mixing length theory to transverse thermal dispersion in forced convective flow through a packed bed. Int. Comm. Heat Mass Transfer 13, 613-626. [4.9]

    Article  Google Scholar 

  • Cheng, P. and Vortmeyer, D. 1988 Transverse thermal dispersion and wall channeling in a packed bed with forced convective flow. Chem. Engng. Sci. 43, 2523-2532. [4.9]

    Article  Google Scholar 

  • Cheng, P. and Zhu, H. 1987 Effects of radial dispersion on fully-developed forced convection in cylindrical packed tubes. Int. J. Heat Mass Transfer 30, 2373-2383. [4.9]

    Article  Google Scholar 

  • Cheng, P., Chowdhury, A. and Hsu, C. T. 1991 Forced convection in packed tubes and channels with variable porosity and thermal dispersion effects. Convective Heat and Mass Transfer in Porous Media, (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, 625-653. [1.7, 4.9]

    Chapter  Google Scholar 

  • Cheng, P., Hsu, C. T. and Chowdhury, A. 1988 Forced convection in the entrance region of a packed channel with asymmetric heating. ASME J. Heat Transfer 110, 946-954. [4.9]

    Article  Google Scholar 

  • Cheng, W. T. and Lin, H. T. 2002 Unsteady forced convection heat transfer on a flat plate embedded in the fluid-saturated porous medium with inertia effect and thermal dispersion. Int. J. Heat Mass Transfer, 45, 1563-1569. [4.6.3]

    Article  MATH  Google Scholar 

  • Chikh, S., Boumedien, A. Bouhadef, K. and Lauriat, G. 1998 Analysis of fluid flow and heat transfer in a channel with intermittent heated porous disks. Heat Mass Transfer 33, 405-413. [4.11]

    Article  Google Scholar 

  • Chikh, S., Boumedien, A., Bouhadef, K. and Lauriat, G. 1995b Non-Darcian forced convection analysis in an annulus partially filled with a porous material. Numer. Heat Transfer A 28, 707-722. [4.11]

    Article  MATH  Google Scholar 

  • Cho, K. H., Lee, J., Ahn, H. S., Bejan, A. and Kim, M. H. 2010b Fluid flow and heat transfer in vascularized cooling plates. Int. J. Heat Mass Transfer 53, 3607-3614. [4.19]

    Article  MATH  Google Scholar 

  • Cho, K. H., Lee, J., Kim, M. H. and Bejan, A. 2010a Vascular design of constructal structures with low flow resistance and nonuniformity. Int. J. Therm. Sci. 49, 2309-2318. [4.19]

    Article  Google Scholar 

  • Chou, F. C., Chung, P. Y. and Cheng, C. J. 1992b Effects of stagnant and dispersion conductivities on non-Darcian forced convection in square packed-sphere channels. Canad. J. Chem. Engng, 69, 1401-1407. [4.9]

    Article  Google Scholar 

  • Chou, F. C., Lien, W. Y. and Lin, S. H. 1992c Analysis and experiment of non-Darcian convection in horizontal square packed-sphere channels—1. Forced convection. Int. J. Heat Mass Transfer 35, 195-205. [4.9]

    Article  Google Scholar 

  • Chou, F. C., Su, J. H. and Lien, S. S. 1994 A reevaluation of non-Darcian forced and mixed convection in cylindrical packed tubes. ASME J. Heat Transfer, 116, 513-516. [4.9, 8.2.1]

    Article  Google Scholar 

  • Combelles, L., Lorente, S. and Bejan, A. 2009 Leaf like architecture for cooling a flat body. J. Appl. Phys. 106, #044906. [4.19]

    Article  Google Scholar 

  • Combelles, L., Lorente, S., Anderson, R. and Bejan, A. 2012 Tree-shaped fluid flow and heat storage in a conducting solid. J. Appl. Phys. 111, #014902. [4.19]

    Article  Google Scholar 

  • Costa, V. A. F. 2003 Unified streamline, heatline and massline methods for visualization of two-dimensional heat and mass transfer in anisotropic media. Int. J. Heat Mass Transfer 46, 1309-1320. [4.17]

    Article  MATH  Google Scholar 

  • Costa, V. A. F. 2004 Double-diffusive natural convection in parallelogrammic enclosures filled with fluid-saturated porous media. Int. J. Heat Mass Transfer 47, 2699-2714. [9.4]

    Article  MATH  Google Scholar 

  • Costa, V. A. F. 2006a Bejan’s heatlines and masslines for convection visualization and analysis. Appl. Mech. Rev. 59, 126-145. [4.17]

    Article  Google Scholar 

  • Costa, V. A. F., Oliveira, M. S. A. and Sousa, A. C. M. 2004c Numerical evaluation of heat dissipation by non-Darcian forced convection in porous/fluid systems. Comput. Stud. 5, 99-108. [4.9]

    Google Scholar 

  • Cui, C., Huang, X. Y. and Liu, C. Y. 2000 Forced convection in a porous channel with discrete heat sources. ASME J. Heat Transfer 123, 404–407. [4.16.1]

    Article  Google Scholar 

  • da Silva, A. K. and Bejan, A. 2005 Constructal multi-scale structure for maximal heat transfer density in natural convection. Int. J. Heat Fluid Flow 26, 34-44. [4.19]

    Article  Google Scholar 

  • Dalal, A. and Das, M. K. 2008 Heatlines method of the visualization of natural convection in a complicated cavity. Int. J. Heat Mass Transfer 51, 263-272. [4.17]

    Article  MATH  Google Scholar 

  • David, E., Lauriat, G. and Cheng, P. 1991 A numerical solution of variable porosity effects on natural convection in a packed-sphere cavity. ASME J. Heat Transfer 113, 391-399. [7.6.2]

    Article  Google Scholar 

  • Degan, G., Zohoun, S. and Vasseur, P. 2002 Forced convection in horizontal porous channels with hydrodynamic anisotropy. Int. J. Heat Mass Transfer 45, 3181-3188. [4.16.5]

    Article  MATH  Google Scholar 

  • Dehghan, M. 2015 Effects of heat generations on the thermal response of channels partially filled with non-Darcian porous materials. Transp. Porous Media 110, 461-482. [4.11]

    Article  MathSciNet  Google Scholar 

  • Dehghan, M., Jamal-Abad, M. T. and Rashidi, S. 2014c Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers. Energy Convers. Manag. 85, 264-271. [4.10]

    Article  Google Scholar 

  • Dehghan, M., Mahmoudi, Y., Valipour, M. S. and Saedodin, S. 2015b Combined conduction-convection-radiation heat transfer of slip flow inside a micro-channel filled with a porous material. Transp. Porous Media 108, 413-436. [4.16.5]

    Article  Google Scholar 

  • Dehghan, M., Rahmani, Y., Domiri Ganji, D., Saedodin, S., Valipour, M. S. and Rashidi, S. 2015a Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: Homotopy perturbation method versus numerical analysis. Renewable Energy 74, 448-455. [4.16.5]

    Article  Google Scholar 

  • Dehghan, M., Valipour, M. S. and Saedodin, S 2016b Microchannels enhanced by porous materials: heat transfer enhancement or pressure drop increment? Energy Conv. Manag. 110, 22-32. [4.13]

    Article  Google Scholar 

  • Dehghan, M., Valipour, M. S. and Saedodin, S. 2014a Perturbation analysis of the local thermal non-equilibrium condition in a fluid-saturated porous medium bounded by an iso-thermal channel. Transp. Porous Media 102, 139-152. [4.10]

    Article  Google Scholar 

  • Dehghan, M., Valipour, M. S. and Saedodin, S. 2015c Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: A perturbation solution. Energy Conv. Manag. 91, 259-266. [4.16.5]

    Article  Google Scholar 

  • Dehghan, M., Valipour, M. S., Keshmiri, A., Saedodin, S. and Shokri, N. 2016a On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: An analytical study. Int. J. Heat Mass Transfer 92, 815-823. [4.13]

    Article  Google Scholar 

  • Dehghan, M., Valipour, M. S., Saedodin, S. and Mahmoudi, Y. 2016c Investigation of forced convection through entrance region of a porous-filled microchannel: An analytical study based on the scale analysis. Appl. Therm. Engng. 99, 446-454. [4.13]

    Article  Google Scholar 

  • Delavar, M. A. and Hedayatpour, M. 2012 Forced convection and entropy generation inside a channel with a heat-generating porous block. Heat Transfer Asian Res. 41, 580-600. [4.11]

    Article  Google Scholar 

  • Demirel, Y. and Kahraman, R. 1999 Entropy generation in a rectangular packed duct with wall heat flux. Int. J. Heat Mass Transfer 42, 2337-2344. [4.9]

    Article  MATH  Google Scholar 

  • Demirel, Y. and Kahraman, R. 2000 Thermodynamic analysis of convective heat transfer in an annular packed bed. Int. J. Heat Fluid Flow 21, 442-448. [4.16.5]

    Article  Google Scholar 

  • Demirel, Y., Abu-Al-Saud, B. A., Al-Ali, H. H. and Makkawi, Y. 1999 Packing size and shape effects on forced convection in large rectangular packed ducts with asymmetrical heating. Int. J. Heat Mass Transfer 42, 3267-3277. [4.16.5]

    Article  MATH  Google Scholar 

  • Demirel, Y., Sharma, R. N. and Al-Ali, H. H. 2000 On the effective heat transfer parameters in a packed bed. Int. J. Heat Mass Transfer 43, 327-332. [4.16.5]

    Article  Google Scholar 

  • Dhahri, H., Amami, B. and Ben Nasrallah, S. 2013a Viscous dissipation effects on entropy generation and heat transfer in cylindrical packed beds subjected to reciprocating flow. Int. J. Exergy 13, 220-259. [4.16.2]

    Article  Google Scholar 

  • Dhahri, H., Boughamoura, A. and Ben Nasrallah, S. 2006a Forced pulsating flow and heat transfer in a tube partially filled with a porous medium. J. Porous Media 9, 1-14. [4.16.2]

    Article  Google Scholar 

  • Dhahri, H., Boughamoura, A. and Ben Nasrallah, S. 2006b Numerical study of heat transfer in a porous pipe subjected to reciprocating flow. J. Porous Media 9, 289-305. [4.16.2]

    Article  Google Scholar 

  • Dhahri, H., Boughamoura, A. and Ben Nasrallah, S. 2013b Entropy generation for pulsating flow in a cylinder filled with porous media including viscous dissipation effects J. Porous Media 16, 69-87. [4.16.2]

    Article  Google Scholar 

  • Dhahri, H., Slimi, K. and Ben Nasrallah, S. 2008 Entropy generation for pulsating flow in a composite fluid/porous system. J. Porous Media 11, 603-615. [4.16.2]

    Article  Google Scholar 

  • Do, K. H., Min, J. Y. and Kim, S. J. 2007 Thermal optimization of an internally finned tube using analytical solutions based on a porous medium. ASME J. Heat Transfer 129, 1408-1416. [4.11]

    Article  Google Scholar 

  • Du, J. H. and Wang, B.X. 1999b Mixed convection in porous media between vertical concentric cylinders. Heat Transfer Asian Res. 28, 95-101. [8.3.3]

    Article  Google Scholar 

  • Du, Y. P., Qu, Z. G., Zhao, C. Y. and Tao, W. Q. 2010 Numerical study of conjugated heat transfer in metal foam filled double-pipe. Int. J. Heat Mass Transfer 53, 4899-4907. [4.10]

    Article  MATH  Google Scholar 

  • Dukhan, N. 2009b Developing non thermal-equilibrium convection in porous media with negligible fluid conduction. ASME J Heat Transfer 131, #014501. [4.13]

    Article  Google Scholar 

  • Dukhan, N. and Al-Rammahi, M. A. 2012 Analysis and experiment for Darcy flow convection in cylindrical metal foam. AIP Conf. Proc. 1453, 191-196. [4.10]

    Article  Google Scholar 

  • Dukhan, N. and Hooman, K. 2013 Comments on two analyses of thermal non-equilibrium Darcy-Brinkman convection in cylindrical porous media. Int. J. Heat Mass Transfer 66, 440-443. [4.10]

    Article  Google Scholar 

  • Dukhan, N., Al-Rammahi, M. A. and Suleiman, A. S. 2013 Fluid temperature measurements inside metal foam and comparison to Brinkman-Darcy flow convection analysis. Int. J. Heat Mass Transfer 67, 877-884. [4.5]

    Article  Google Scholar 

  • Dukhan, N., Bagci, O. and Ozdemir, M. 2014 Metal foam hydrodynamics: Flow regimes from pre-Darcy to turbulent. Int. J. Heat Mass Transfer 77, 114-123. [4.5]

    Article  Google Scholar 

  • Dukhan, N., Bagci, O. and Ozdemir, M. 2015 Thermal development in open cell foam: An experiment with constant wall heat flux. Int. J. Heat Mass Transfer 85, 852-859. [4.5]

    Article  Google Scholar 

  • Dyga, R. 2010 Heat transfer during the fluid flow through a channel with wire mesh packing. Chem. Proc. Engng. 31, 119-134. [4.16.5]

    Google Scholar 

  • Ebinuma, C. D. and Nakayama, A. 1990b An exact solution for transient film condensation in a porous medium along a vertical surface with lateral mass flux. Int. Comm. Heat Mass Transfer 17, 105-111. [4.6.2, 10.4]

    Article  Google Scholar 

  • El-Amin, M. F. 2003a Combined effect of magnetic field and viscous dissipation on a power-law fluid over plate with variable surface heat flux embedded in a porous medium. J. Magn. Magn. Mater. 261, 228-237. [5.1.9.2]

    Article  Google Scholar 

  • Eldabe, N. T. M. and Sallam, S. N. 2005 Non-Darcy Couette flow through a porous medium of magnetohydrodynamic viscoelastic fluid with heat and mass transfer. Canad. J. Phys. 83, 1241-1263. [9.2.2]

    Article  Google Scholar 

  • Eldabe, N. T. M. and Sallam, S. N. 2005 Non-Darcy Couette flow through a porous medium of magneto-hydrodynamic visco-elastic fluid with heat and mass transfer. Canad. J. Phys. 83, 1241-1263. [4.16.5]

    Article  Google Scholar 

  • El-Dabe, N. T. M., Sallam, S. N., Hassan, A. A. and Hussein, M. M. 2010 The pulsatile flow of a Burger’s fluid and heat transfer through a porous medium in a circular pipe. Spec. Top. Rev. Porous Media 1, 243-255. [4.16.2]

    Article  Google Scholar 

  • Elliot, A., Torabi, M., Karimi, N. and Cunningham, S. 2016 On the effects of internal heat sources upon forced convection in porous channels with asymmetric thick walls. Int. Comm. Heat Mass Transfer, 73, 100-110. [4.16.5]

    Article  Google Scholar 

  • El-Shaarawi, M. A. I., Al-Nimr, M. A. and Al Yah, M. M. K. 1999 Transient conjugate heat transfer in a porous medium in concentric annuli. Int. J. Numer. Meth. Heat Fluid Flow 9, 444-460. [4.6.4]

    Article  MATH  Google Scholar 

  • Errera, M. R. and Bejan, A. 1999 Tree networks for flows in composite porous media. J. Porous Media 2, 1-17. [4.18]

    Article  MATH  Google Scholar 

  • Evoshenko, V. M. and Yaskin, L. A. 1976 Heat transfer in forced convection of fluid in porous sintered metals. I. Engng. Phys. 30, 1-8. [4.5]

    Article  Google Scholar 

  • Fand, R. M., Varahasamy, M. and Greer, L. S. 1993 Empirical correlation equations for heat transfer by forced convection from cylinders embedded in porous media that account for the wall effect and dispersion. Int. J. Heat Mass Transfer 36, 4407-4418. [4.8]

    Article  Google Scholar 

  • Filippov, A. I. 1976 Forced convection heat transfer in porous medium with Joule-Thomson effect. J. Engnrg. Phys. 31, 780-783. [4.16.5]

    Article  Google Scholar 

  • Foo, J. J., Shih, W. H. and Hsieh, W. H. 2005 Analytical study of two-dimensional forced convective heat transfer of porous media under local-thermal-equilibrium conditions. J. Chinese Soc. Mech. Engnrs. C 26, 107-113. [4.10]

    Google Scholar 

  • Forooghi, P. Abkar, M. and Saffar-Awal, M. 2011 Steady and unsteady heat transfer in a channel partially filled with porous media under thermal non-equilibrium conditions. Transp. Porous Media 86, 207-228. [4.10]

    Article  MathSciNet  Google Scholar 

  • Fowler, A. J. and Bejan, A. 1994 Forced convection in banks of inclined cylinders at low Reynolds numbers. Int. J. Heat Fluid Flow 15, 90–99. [4.14]

    Article  Google Scholar 

  • Fowler, A. J. and Bejan, A. 1995 Forced convection from a surface covered with flexible fibers. Int. J. Heat Mass Transfer 38, 767–777. [1.9, 4.14]

    Article  MATH  Google Scholar 

  • Fu, H. L., Leong, K. C., Huang, X. Y. and Liu, C. Y. 2001a An experimental study of heat transfer of a porous channel subjected to oscillating flow. ASME J. Heat Transfer 123, 162-170 (erratum p. 1194). [4.6.4]

    Article  Google Scholar 

  • Fu, W. S. and Chen, S. F. 2002 A numerical study of heat transfer of a porous block with the random porosity model in a channel flow. Heat Mass Transfer 38, 695-704. [4.16.1]

    Article  Google Scholar 

  • Fu, W. S., Huang, H. C. and Liou, W. Y. 1996 Thermal enhancement in laminar channel flow with a porous block. Int. J. Heat Mass Transfer 39, 2165-2175. [4.11]

    Article  MATH  Google Scholar 

  • Fu, W. S., Wang, K. N. and Ke, W. W 2001b Heat transfer of porous medium with random porosity model in a laminar channel flow. J. Chinese Inst. Engrs. 24, 431-438. [4.16.5]

    Article  Google Scholar 

  • Fujii, Y., Ohita, K. and Hijikata, A. 1994 Unsteady heat transfer around a periodically-heated cylinder embedded in saturated porous media. Heat Transfer 1994, Inst. Chem. Engrs, Rugby, Vol. 5, 249-254. [4.8]

    Google Scholar 

  • Ghadi, A. Z., Goudarzian, H., Gorji-Banpy, M. and Valipour, M. S. 2012 Numerical investigation of magnetic effect on forced convection around two-dimensional circular cylinder embedded in porous media. Engng. Appl. Comput. Fluid Mech. 6, 395-402. [4.3]

    Google Scholar 

  • Ghafarian, M., Mohebbi-Kaihori, D. and Sadegi, J. 2013 Analysis of heat transfer in oscillating flow through a channel filled with metal foam using computational fluid dynamics. Int. J. Therm. Sci. 66, 42-50. [4.16.2]

    Article  Google Scholar 

  • Ghazian, O., Rezvantalab, H. and Mehdi, A. 2011 Analytical investigation of the effect of viscous dissipation on Couette flow in a channel partially filled with a porous medium. Transp. Porous Media 89, 1-13. [4.11]

    Article  MathSciNet  Google Scholar 

  • Ghazvini, M. , Akhavan-Behabadi, M. A. and Esmaeili, M. 2009 The effect of viscous dissipation on laminar nanofluid flow in a microchannel heat sink. J. Mech. Engng. Sci. 263, 2697-2706. [4.16.5]

    Article  Google Scholar 

  • Ghazvini, M. and Shokouhmand, H. 2009 Investigation of nanofluid-cooled microchannel heat sink using fin and porous media approaches. Energy Convers. Manag. 50, 2373-2380. [4.16.5]

    Article  Google Scholar 

  • Ghorab, M. G. 2015a Forced convection analysis of discrete heated porous convergent channel. Heat Transfer Engng. 36, 829-846. [4.11]

    Article  Google Scholar 

  • Ghorab, M. G. 2015b Modelling mixing convection analysis of discrete partially filled porous channel of optimum design. Alexandria Engng. J. 54, 853-869. [8.4.1]

    Article  Google Scholar 

  • Gokhale, M. Y. and Fernandez, I. 2016 Lattice Boltzmann simulation of forced convection in non-Newtonian fluid through low permeable porous media. Far East J. Math. Sci. 100, 315-322. [4.16.3]

    MATH  Google Scholar 

  • Grosan, T., Postelnicu, A. and Pop, I. 2010 Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium. Transp. Porous Media 81, 89-103. [4.16.4]

    Article  MathSciNet  Google Scholar 

  • Guo, Z., Kim, S. Y. and Sung, H. J. 1997a Pulsating flow and heat transfer in a pipe partially filled with a porous medium. Int. J. Heat Mass Transfer 40, 4209-4218. [4.11]

    Article  Google Scholar 

  • Guo, Z., Sung, H. J. and Hyan, J. M. 1997b Pulsating flow and heat transfer in an annulus partially filled with porous media. Numer. Heat Transfer A 31, 517-527. [4.11]

    Article  Google Scholar 

  • Habibi, K., Mosahebi, A. and Shokouhmand, H. 2011 Heat transfer characteristics of reciprocating flows in channels partially filled with porous medium. Transp. Porous Media 89, 139-153. [4.16.5]

    Article  Google Scholar 

  • Hadad, Y. and Jafapur, K. 2012 Modelling of laminar forced convection in spherical-pebble packed beds. J. Mech. Sci. Tech. 26, 643-649. [4.16.5]

    Article  Google Scholar 

  • Hadad, Y. and Jafarpur, K. 2013 Modelling of laminar forced convection heat transfer in packed beds with pebbles of arbitrary geometry. J. Porous Media 16, 1049-1061. [4.5]

    Article  Google Scholar 

  • Haddad, O. M., Abuzaid, M. M. and Taamney, Y. 2006a Hydrodynamic and thermal behaviour of gas flow in microchannels filled with porous media. J. Porous Media 9, 403-414. [4.10]

    Article  Google Scholar 

  • Haddad, O. M., Al-Nimr, M. A. and Abuzaid, M. M. 2006b Effect of periodically oscillating driving force on basic microflows in porous media. J. Porous Media 9, 695-707. [4.16.2]

    Article  Google Scholar 

  • Haddad, O. M., Al-Nimr, M. A. and Al-Omary, J. S. 2007a Forced convection of gaseous slip-flow in porous microchannels under local thermal non-equilibrium conditions. Transp. Porous Media 67, 453-471. [4.10]

    Article  MathSciNet  Google Scholar 

  • Haddad, O. M., Al-Nimr, M. A. and Sari, M. S. 2007b Forced convection gaseous slip flow in circular porous micro-channels. Transp. Porous Media 70, 167-179. [4.5]

    Article  Google Scholar 

  • Haddad, O. M., Al-Nimr, M. A. and Taamneh, Y. 2006c Hydrodynamic and thermal behaviour of gas flow in microchannels filled with porous media. J. Porous Media 9, 403-414. [4.5]

    Article  Google Scholar 

  • Haddad, O.M., Al-Nimr, M. A. and Abu-Ayyad, M. A. 2002 Numerical simulation of forced convection flow past a parabolic cylinder embedded in porous media. Int. J. Numer. Meth. Heat Fluid Flow 12, 6-28. [4.3]

    Article  MATH  Google Scholar 

  • Hadim, A. 1994a Forced convection in a porous channel with localized heat sources. ASME J. Heat Transfer 116, 465-472. [4.11]

    Article  Google Scholar 

  • Hadim, H. and North, A. 2005 Forced convection in a sintered porous channel with inlet and outlet slots. Int. J. Thermal Sci. 44, 33-42. [4.16.5]

    Article  Google Scholar 

  • Hadim, H.A. and Bethancourt, A. 1995 Numerical study of forced convection in a partially porous channel with discrete heat sources. ASME J. Electron. Packaging 117, 46-51. [4.11]

    Article  Google Scholar 

  • Hadjistassou, C., Bejan, A. and Ventikos, Y. 2015 Cerebral oxygenation and optimal brain organization. J. Roy. Soc. Interface 12, 20150245. [4.18.5]

    Article  Google Scholar 

  • Hady, F. M. and Ibrahim, F. S. 1997 Forced convection heat transfer on a flat plate embedded in porous media for power-law fluids. Transport Porous Media 28, 125-134. [4.16.3]

    Article  Google Scholar 

  • Haji-Sheikh, A. 2004 Estimation of average and local heat transfer in parallel plates and circular ducts filled with porous materials. ASME J. Heat Transfer 126, 400-409. [4.5]

    Article  Google Scholar 

  • Haji-Sheikh, A. 2006 Fully developed heat transfer to fluid flow in rectangular passages filled with porous materials. ASME J. Heat Transfer 128, 550-556. [4.5]

    Article  Google Scholar 

  • Haji-Sheikh, A., Minkowycz W. J. and Sparrow E. M. 2004b Green’s function solution of temperature field for flow in porous passages. Int. J. Heat Mass Transfer 47, 4685-4695. [4.13]

    Article  MATH  Google Scholar 

  • Haji-Sheikh, A., Minkowycz W. J. and Sparrow E. M. 2005 Heat transfer to flow through porous passages using extended weighted residual method—a Green’s function solution. Int. J. Heat Mass Transfer 48, 1330-1349. [4.13]

    Article  MATH  Google Scholar 

  • Haji-Sheikh, A., Beck, J. V. and Cole, K. D. 2010a Steady-state Green’s function solution for moving media with axial conduction. Int. J. Heat Mass Transfer 53, 2583-2592. [4.9]

    Article  MATH  Google Scholar 

  • Haji-Sheikh, A., Minkowycz, W. J. and Manafzadeh, S. 2010b Axial conduction effect in flow through circular porous passages with prescribed wall heat flux. Heat Mass Transfer 46, 727-738. [4.9]

    Article  Google Scholar 

  • Hamdan, M. and Al-Nimr, M. A. 2010 The use of porous fins for heat transfer augmentation in parallel-plate channels. Transp. Porous Media 84, 409-420. [4.11]

    Article  Google Scholar 

  • Hamdan, M. O., Al-Nimr, M. A. and Alkam, M. K. 2000 Enforcing forced convection by inserting porous substrate in the core of a parallel-plate channel. Int. J. Numer. Meth. Heat Fluid Flow 10, 502-517. [4.11]

    Article  MATH  Google Scholar 

  • Hashemi, S. M. H. and Fazeli, S. A. 2010 Modification to ‘Forced convection with slip-flow in a channel or duct occupied by a hyper-porous medium saturated by a rarefied gas’. Transport in Porous Media 64, 161-170, 2006 and ‘Thermally developing forced convection in a porous medium occupied by a rarefied gas: Parallel plate channel or circular tube with walls at constant heat flux.’ Transport in Porous Media 76, 345-362. Transp. Porous Media 85, 653-685. [4.16.5]

    Google Scholar 

  • Hashemi, S. M. H., Fazeli, S. A. and Shokouhmand, H. 2011 Fully developed non-Darcian forced convection slip-flow in a micro-annulus filled with a porous medium: Analytical solution. Energy Convers. Manag. 52, 1054-1060. [4.16.5]

    Article  Google Scholar 

  • Hayat, T. and Abbas, Z. 2008 Heat transfer analysis on the MHD flow of a second grade fluid in a channel with porous medium. Chaos Solitons Fractals 38, 556-567. [4.16.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Hayat, T., Abbas, Z. and Asghar, S. 2007b On heat transfer analysis for an oscillatory flow of a second-grade fluid through a porous medium. J. Porous Media 10, 601-612. [4.16.2]

    Article  Google Scholar 

  • Hayes, A. M., Khan, J. A., Shaaban, A. H. and Spearig, I. G. 2008 The thermal modeling of a matrix heat exchanger using a porous medium and the thermal nonequilibrium model. Int. J. Therm. Sci. 47, 1306-1315. [4.10]

    Article  Google Scholar 

  • Hayes, R. E. 1990a Forced convection heat transfer at the boundary layer of a packed bed. Transport in Porous Media 5, 231-245. [4.8]

    Article  Google Scholar 

  • Herwig, H. 2014 Do we really need ‘Entransy’? A critical assessment of a new quantity in heat transfer analysis. ASME J. Heat Transfer 136, 045501. [4.10]

    Article  Google Scholar 

  • Hooman, K. 2005 Second-law analysis of thermally developing forced convection in a porous medium. Heat Transfer Res. 36, 437-447. [4.13]

    Article  Google Scholar 

  • Hooman, K. 2006 Entropy-energy analysis of forced convection in a porous-saturated circular tube considering temperature-dependent viscosity effects. Int. J. Exergy 3, 436-451. [4.16.5]

    Article  Google Scholar 

  • Hooman, K. 2007 Entropy generation for microscale forced convection: Effects of different thermal boundary conditions, velocity slip, temperature jump, viscous dissipation and duct geometry. Int. Comm. Heat Mass Transfer 34, 945-957. [4.16.5]

    Article  Google Scholar 

  • Hooman, K. 2008a A perturbation solution for forced convection in a porous-saturated duct. J. Comput. Appl. Math. 211, 57-66. [4.16.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Hooman, K. 2008c Heat and fluid flow in a rectangular microchannel filled with a porous medium. Int. J. Heat Mass Transfer 51, 5804-5810. [4.16.5]

    Article  MATH  Google Scholar 

  • Hooman, K. 2009a Effects of temperature-dependent viscosity on thermally developing forced convection through a porous medium. Heat Transfer Res. 36, 132-140. [4.16.1]

    Article  Google Scholar 

  • Hooman, K. 2009b Slip flow forced convection in a microporous duct of rectangular cross-section. Appl. Therm. Engng. 29, 1012-1019. [4.5]

    Article  Google Scholar 

  • Hooman, K. and Dahari, M. 2015 Thermal dispersion effects on forced convection in a parallel plate porous channel. Meccanica 50, 1971-1976. [4.9]

    Article  MathSciNet  MATH  Google Scholar 

  • Hooman, K. and Ejlali, A. 2007 Entropy generation for forced convection in a porous saturated circular tube with uniform wall temperature. Int. Comm. Heat Mass Transfer 34, 408-419. [4.16.5]

    Article  Google Scholar 

  • Hooman, K. and Gorji-bandpy, M. 2004 Effect of viscous dissipation on forced convection in a porous saturated duct with a uniform wall temperature. Heat Transfer Res. 35, 588-597. [4.9]

    Article  Google Scholar 

  • Hooman, K. and Gorji-Bandpy, M. 2006 Laminar dissipative flow in a porous channel bounded by isothermal parallel plates. Appl. Math. Mech. (English edit.) 26, 587-593. [4.16.5]

    Article  MATH  Google Scholar 

  • Hooman, K. and Gurgenci, H. 2007 A theoretical analysis of forced convection in a porous-saturated circular tube: Brinkman-Forchheimer model. Transp. Porous Media 69, 289-300. [4.9]

    Article  Google Scholar 

  • Hooman, K. and Gurgenci, H. 2007a Effects of temperature-dependent viscosity variation on entropy generation, heat and fluid flow through a porous-saturated duct of rectangular cross-section. Appl. Math. Mech. (English edit.) 28, 69-78. [4.16.5]

    Article  MATH  Google Scholar 

  • Hooman, K. and Gurgenci, H. 2007b Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium. Transp. Porous Media 68, 301-319. [4.16.5]

    Article  MathSciNet  Google Scholar 

  • Hooman, K. and Gurgenci, H. 2008b Effects of temperature-dependent viscosity on forced convection inside a porous medium. Transp. Porous Media 75, 249-267. [4.16.1]

    MATH  Google Scholar 

  • Hooman, K. and Haji-Sheikh, A. 2007 Analysis of heat transfer and entropy generation for a thermally developing Brinkman-Brinkman forced convection problem in a rectangular duct with isoflux walls. Int. J. Heat Mass Transfer 50, 4180-4194. [4.16.5]

    Article  MATH  Google Scholar 

  • Hooman, K. and Merrikh, A. A. 2006 Analytical solution of forced convection in a duct of rectangular cross-section saturated by a porous medium. ASME J. Heat Transfer 128, 596-600. [4.16.5]

    Article  Google Scholar 

  • Hooman, K. and Mohebpour, S. R. 2007 Numerical investigation of temperature-dependent viscosity variation effects on thermally developing forced convection through a porous medium. Heat Transfer Research 38, 1-8. [4.16.5]

    Article  Google Scholar 

  • Hooman, K. and Ranjbar-Kani, A. A. 2003 Forced convection in a fluid-saturated porous-medium tube with iso-flux wall. Int. Comm. Heat Mass Transfer 30, 1015-1026. [4.9]

    Article  Google Scholar 

  • Hooman, K. and Ranjbar-Kani, A. A. 2004 A perturbation based analysis to investigate forced convection in a porous saturated tube. J. Comp. Appl. Math. 162, 411-419. [4.9]

    Article  MathSciNet  MATH  Google Scholar 

  • Hooman, K., and Merrikh, A. A. 2010 Thermal analysis of natural convection in an enclosure filled with disconnected conducting square solid blocks. Transp. Porous Media 85, 641-651. [4.11]

    Article  MathSciNet  Google Scholar 

  • Hooman, K., Ejlali, A. and Hooman, F. 2008a Entropy generation analysis of thermally developing forced convection in fluid-saturated porous medium. Appl. Math. Mech. (English edit.) 29, 229-237. [4.13]

    Article  MATH  Google Scholar 

  • Hooman, K., Gurgenci, H. and Dincer, T. 2009a Heatline and energy-flux-vector visualization of natural convection in a porous cavity occupied by a fluid with temperature-dependent viscosity. J. Porous Media 12, 265-275. [4.16.1]

    Article  Google Scholar 

  • Hooman, K., Gurgenci, H. and Merrikh, A. A. 2007a Heat transfer and entropy generation optimization and forced convection in porous-saturated ducts of rectangular cross-section. Int. J. Heat Mass Transfer 50, 2051-2059. [4.16.5]

    Article  MATH  Google Scholar 

  • Hooman, K., Haji-Sheikh, A. and Nield, D. A. 2007b Thermally developing Brinkman-Brinkman forced convection in rectangular ducts with isothermal walls. Int. J. Heat Mass Transfer 50, 3521-3533. [4.13]

    Article  MATH  Google Scholar 

  • Hooman, K., Hooman, F. and Famouri, M. 2009b Scaling effects for flow in micro-channels: Variable property, viscous heating, velocity slip, and temperature jump. Int. Comm. Heat Mass Transfer 36, 192-196. [4.9]

    Article  Google Scholar 

  • Hooman, K., Hooman, F. and Mohebpour, S. R. 2008b Entropy generation for forced convection in a porous channel with isoflux or isothermal walls. Int. J. Exergy 5, 78-96. [4.16.5]

    Article  Google Scholar 

  • Hooman, K., Pourshaghaghy, A. and Ejlali, A. 2006 Effects of viscous dissipation on thermally developing forced convection in a porous saturated circular tube with an isoflux wall. Appl. Math. Mech. (English edit.) 27, 683-694. [4.13]

    Google Scholar 

  • Hooman, K., Ranjbar-Kani, A. A. and Ejlali, A. 2003 Axial conduction effects on thermally developing forced convection in a porous medium: circular tube with uniform wall temperature. Heat Transfer Research 34, 34-40. [4.13]

    Google Scholar 

  • Hooman, K., Sauret, E. and Dahari, M. 2015 Theoretical modelling of momentum transfer function of bi-disperse porous media. Appl. Therm. Engng. 75, 867-870. [4.16.4]

    Article  Google Scholar 

  • Hossain, M. A., Banu, N. and Nakayama, A. 1994 Non-Darcy forced convection boundary layer flow over a wedge embedded in a saturated porous medium. Numer. Heat Transfer A 26, 399-414. [4.16.5]

    Article  Google Scholar 

  • Hossain, M. A., Banu, N., Rees, D. A. S. and Nakayama, A. 1996 Unsteady forced convection boundary layer flow through a saturated porous medium. Proceedings of the International Conference on Porous Media and their Applications in Science, Engineering and Industry, (K. Vafai and P.N. Shivakumar, eds), Engineering Foundation, New York, 85-101. [4.8]

    Google Scholar 

  • Hsieh, W. H. and Lu, S. F. 1998 Heat-transfer analysis of thermally developing region of annular porous media. Heat Transfer 1998, Proc. 11th IHTC. 4, 447-452. [4.13]

    Google Scholar 

  • Hsu, C. T. and Cheng, P. 1988 Closure schemes of the macroscopic energy equation for convective heat transfer in porous media. Int. Comm. Heat Mass Transfer 15, 689-703. [4.9]

    Article  Google Scholar 

  • Hsu, C. T. and Cheng, P. 1990 Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33, 1587-1597. [1.5.2, 1.5.3, 2.2.4, 4.9]

    Article  MATH  Google Scholar 

  • Huang, P. C. and Vafai, K. 1993 Flow and heat transfer control over an external surface using a porous block array arrangement. Int. J. Heat Mass Transfer 36, 4019-4032. [4.11]

    Article  MATH  Google Scholar 

  • Huang, P. C. and Vafai, K. 1994a Passive alteration and control of convective heat transfer utilizing alternate porous cavity-block wafers. Int. J. Heat Fluid Flow 15, 48-61. [4.11]

    Article  Google Scholar 

  • Huang, P. C. and Vafai, K. 1994b Internal heat transfer augmentation in a channel using alternate set of porous cavity-block obstacles. Numer. Heat Transfer A 25, 519-539. [4.11]

    Article  Google Scholar 

  • Huang, P. C. and Vafai, K. 1994c Analysis of flow and heat transfer over an external boundary covered with a porous substrate. ASME J. Heat Transfer 116, 768-771. [4.11]

    Article  Google Scholar 

  • Huang, P. C. and Vafai, K. 1994d Analysis of forced convection enhancement in a channel using porous blocks. AIAA J. Thermophys. Heat Transfer 8, 563-573. [4.11]

    Article  Google Scholar 

  • Huang, P. C. and Yang, C. F. 2008 Analysis of pulsating convection from two heat sources mounted with porous blocks. Int. J. Heat Mass Transfer 51, 6294-6311. [4.16.2]

    Article  MATH  Google Scholar 

  • Huang, P. C., Yang, C. F., Hwang, J. J. and Chiu, M. T. 2004b Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers. Int. J. Heat Mass Transfer 48, 674-664. [4.11]

    MATH  Google Scholar 

  • Huang, Z. F., Nakayama, A., Yang, K, Yang, C. and Liu, W. 2010 Enhancing heat transfer in the core flow by using porous medium insert in a tube. Int. J. Heat Mass Transfer 53, 1164-1174. [4.11]

    Article  MATH  Google Scholar 

  • Hung, Y. M. and Tso, C. P. 2008 Temperature variations of forced convection in porous media for heating and cooling processes: internal heating effect of viscous dissipation. Transp. Porous Media 75, 319-322. [4.9] Erratum 75, 333.

    Article  Google Scholar 

  • Hung, Y. M. and Tso, C. P. 2009 Effects of viscous dissipation on fully developed forced convection in porous media. Int. Comm. Heat Mass Transfer 36, 597-603. Erratum 75, 333. [4.9]

    Article  Google Scholar 

  • Hunt, M. L. and Tien, C. L. 1988a Effects of thermal dispersion on forced convection in fibrous media. Int. J. Heat Mass Transfer 31, 301-309. [4.9]

    Article  Google Scholar 

  • Hunt, M. L. and Tien, C. L. 1988b Non-Darcian convection in cylindrical packed beds. ASME J. Heat Transfer 110, 378-384. [4.9]

    Article  Google Scholar 

  • Hwang, G. J., Cai, Y. and Cheng, P. 1992 An experimental study of forced convection in a packed channel with asymmetric heating. Int. J. Heat Mass Transfer 35, 3029-3039. [4.5]

    Article  Google Scholar 

  • Hwang, G. J., Wu, C. C. and Chao, C. H. 1995 Investigation on non-Darcian forced convection in an asymmetrically heated sintered porous channel. ASME J. Heat Transfer 117, 725-732. [4.16.5]

    Article  Google Scholar 

  • Hwang, J. J., Hwang, G. J., Yeh, R. H. and Chao, C. H. 2002 Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams. ASME J. Heat Transfer 124, 120-124. [4.9]

    Article  Google Scholar 

  • Ibanez, G. 2015 Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions. Int. J. Heat Mass Transfer 80, 274-280. [4.16.5]

    Article  Google Scholar 

  • Ichimiya, K., Takeda, T., Uemura, T. and Norikuni, T. 2009 Effects of a high porous material on heat transfer and flow in a circular tube. ASME J. Heat Transfer 131, #024503. [4.16.5]

    Google Scholar 

  • Imani, G. R., Maerefat, M. and Hooman, K. 2012 Estimation of heat flux bifurcation at the heated boundary of a porous medium using a pore-scale numerical simulation. Int. J. Therm. Sci. 54, 109-118. [4.10]

    Article  Google Scholar 

  • Inaba, H., Ozaki, K. and Nozu, S. 1993 Convective heat transfer of a horizontal-spherical particle layer heated from below and cooled from above. Heat Transfer Japan Res. 22, 573-595. [4.5]

    Google Scholar 

  • Izadpanah, M. R., Müller-Steinhagen, H. and Jamialahmadi, M. 1998 Experimental and theoretical studies of convective heat transfer in a cylindrical porous medium. Int. J. Heat Fluid Flow 19, 629-635. [4.9]

    Article  Google Scholar 

  • Jamal-Abad, M. T., Saedodin, S. and Aminy, M. 2016 Variable conductivity in forced convection for a tube filled with porous media: A perturbation solution. Ain Shams Engng. J., to appear. [4.12]

    Google Scholar 

  • Jang, J. Y. and Chen, J. L. 1992 Forced convection in a parallel plate channel partially filled with a high porosity medium. Int. Comm. Heat Mass Transfer 19, 263-273. [4.11]

    Article  Google Scholar 

  • Jat, R. N. and Chaudary, S. 2009 Magnetohydrodynamic boundary layer flow past a porous substrate with Beavers-Joseph boundary condition. Indian J. Pure Appl. Phys. 47, 624-630. [4.11]

    Google Scholar 

  • Jen, T. C. and Yan, T. Z. 2005 Developing flow and heat transfer in a channel partially filled with a porous medium. Int. J. Heat Mass Transfer 48, 3995-4009. [4.11]

    Article  MATH  Google Scholar 

  • Jeng, T. M. and Tzeng, S. C. 2007a Experimental study of forced convection in metallic porous block subject to a confined slot jet. Int. J. Therm. Sci. 46, 1242-1250. [4.16.5]

    Article  Google Scholar 

  • Jeng, T. M. and Tzeng, S. C. 2007b Forced convection of metallic foam heat sink under laminar slot jet confined by a parallel wall. Heat Transfer Engng. 28, 484-495. [4.16.5]

    Article  Google Scholar 

  • Jeng, T. M., Tzeng, S. C. and Chang, C. W. 2010 Forced convection of the brass-beads packed bed situated in a vertical oncoming flow. Int. J. Therm. Sci. 49, 829-837. [4.16.5]

    Article  Google Scholar 

  • Jeng, T. M., Tzeng, S. C. and Chen, Y. C. 2011 Thermal characteristics in asymmetrically heated channels fully filled with brass beads. Int. J. Therm. Sci. 50, 1853-1860. [4.9]

    Article  Google Scholar 

  • Jeng, T. M., Tzeng, S. C. and Hung, Y. H. 2006 An analytical study of local thermal equilibrium in porous heat sinks using fin theory. Int. J. Heat Mass Transfer 49, 1907-1914. [7.3.7]

    Article  MATH  Google Scholar 

  • Jiang, P. X. and Lu, X.C. 2006 Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels. Int. J. Heat Mass Transfer 49, 1685-1695. [4.16.5]

    Article  MATH  Google Scholar 

  • Jiang, P. X. and Lu, X.C. 2007 Numerical simulation and theoretical analysis of thermal boundary characteristics of convection heat transfer in porous media. Int. J. Heat Fluid Flow 28, 1144-1156. [4.16.5]

    Article  Google Scholar 

  • Jiang, P. X. and Ren, Z. 2001 Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 22, 102-110. [4.10]

    Article  Google Scholar 

  • Jiang, P. X., Li, M., Ma, Y. C. and Ren, Z. P. 2004e Boundary conditions and wall effect for forced convection heat transfer in sintered porous channels. Int. J. Heat Mass Transfer 47, 2073-2083. [4.9]

    Article  MATH  Google Scholar 

  • Jiang, P. X., Li, M., Ma, Y. C. and Ren, Z. P. 2004f Experimental research on convection heat transfer in sintered porous channels. Int. J. Heat Mass Transfer 47, 2085-2096. [4.9]

    Article  Google Scholar 

  • Jiang, P. X., Li, M., Lu, T. J., Ren, Z. P. and Sun, X. J. 2002 Convection heat transfer in sintered porous plate channels. Heat Transfer 2002, Proc. 12 th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 803-808. [4.10]

    Google Scholar 

  • Jiang, P. X., Ren, Z. and Wang, B. X. 1999a Numerical simulation of forced convection heat transfer in porous plate channels using thermal equilibrium and non-thermal equilibrium models. Numer. Heat Transfer A 35, 99-113. [4.10]

    Article  Google Scholar 

  • Jiang, P. X., Si, G. S., Li, M. and Ren, Z. P. 2004g Experimental and numerical investigation of forced convection heat transfer of air in non-sintered porous media. Exp. Thermal Fluid Sci. 28, 545-555. [4.9]

    Article  Google Scholar 

  • Jiang, P. X., Wang, Z. and Ren, Z. 1998 Fluid flow and concentration heat transfer in a plate channel filled with solid particles. Heat Transfer 1998, Proc. 11 th IHTC 4, 405-410. [4.10]

    Google Scholar 

  • Jiang, P. X., Wang, Z., Ren, Z. and Wang, B. X. 1999b Experimental research of fluid flow and convection heat transfer in plate channels filled with glass or metallic particles. Exp. Thermal Fluid Sci. 20, 45-54. [4.9]

    Article  Google Scholar 

  • Jiang, P. X., Xu, Y. J. and Li, M. 2004h Experimental investigation of convection heat transfer in min-fin structures and sintered porous media. J. Enhanced Heat Transfer 11, 391-405. [4.9]

    Google Scholar 

  • Jiang, P. X., Xu, Y. J. and Shi, R. F. 2004i Experimental investigation of convection heat transfer of CO at supercritical pressures in a porous tube. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Évora, Portugal, pp. 173-181. [4.5]

    Google Scholar 

  • Jiang, P. X., Xu, Y. J., Lu, J., Shi, R. F., He, S. and Jackson, J. D. 2004j Experimental investigation of convection heat transfer of CO2 at supercritical pressure in vertical mini-tubes and porous media. Appl. Thermal Engng. 24, 1255-1270. [4.5]

    Article  Google Scholar 

  • Jiang, P., Si, G. and Ren, Z. 2000 Numerical investigation on the effects of viscous dissipation and variable thermo-physical properties on forced convection heat transfer in porous media. J. Engng. Thermophys. 21, (5) [5.1.9.4]

    Google Scholar 

  • Jiang, P., Wang, Z., Ren, Z. and Wang, B. 1997 Forced convective heat transfer in a porous plate channel. J. Therm. Sci. 6, 197-206. [4.5]

    Article  Google Scholar 

  • Jogie, D. C. and Bhatt, B. 2013 The study of fluid flows and heat transfer of two immiscible incompressible fluids in naturally permeable channels using the Brinkman-Darcy model. J. Porous Media 16, 903-919. [4.11]

    Article  Google Scholar 

  • Joo, J. H., Kang, K. J., Kim, T. and Lu, T. J. 2011 Forced convective heat transfer in all metallic wire-woven bulk Kagome sandwich panels. Int. J. Heat Mass Transfer 54, 5658-5662. [4.11]

    Article  Google Scholar 

  • Juncu, G. 2014 The influence of the porous media permeability on the unsteady conjugate forced convection heat transfer from a porous sphere embedded in a porous medium. Int. J. Heat Mass Transfer 77, 1124-1132. [4.16.5]

    Article  Google Scholar 

  • Kadir, N. F. A., Rees, D. A. S. and Pop, I. 2008 Conjugate forced convection flow past a circular cylinder with internal heat generation of the porous medium. Int. J. Numer. Meth. Heat Fluid Flow 18, 730-744. [4.16.5]

    Article  MATH  Google Scholar 

  • Kahlil, R. A., El-Shazly, K. M. and Assassa, G. R. 2000 Experimental investigation of forced convection in a packed pipe with a porous medium. J. Engng. Appl. Sci. 47, 269-285. [4.5]

    Google Scholar 

  • Kamath, P. M., Balaji, C. and Venkateshan, S. P. 2014 Heat transfer enhancement with discrete sources in a metal foam filled vertical channel. Int. Comm. Heat Mass Transfer 53, 180-184. [4.15, 7.1.7]

    Article  Google Scholar 

  • Kamisli, F. 2009 Analysis of laminar flow and forced convection heat transfer in a porous medium. Transp. Porous Media 80, 389-395. [4.16.5]

    Article  Google Scholar 

  • Kamiuto, K. and Saitoh, S. 1994 Fully developed forced-convection heat transfer in cylindrical packed beds with constant wall temperatures. JSME Int. J. Series B 37, 554-559. [4.5]

    Article  Google Scholar 

  • Kang, D. H., Lorente, S. and Bejan, A. 2013 Constructal distribution of multi-layer insulation. Int. J. Energy Res 37, 153-16. [4.18.5]

    Article  Google Scholar 

  • Kang, J. H., Chen, X., Fu, C. J. and Tan, W. C. 2013 Centrifugally driven thermal convection in a rotating porous cylindrical annulus. Phys. Fluids 25, 044104. [7.3.3]

    Article  Google Scholar 

  • Kang, J. H., Niu, J., Fu, C. J. and Tan, W. C. 2013 Coriolis effect on thermal convective instability of viscoelastic fluids in a rotating porous cylindrical annulus. Transp. Porous Media 98, 349-362. [7.3.3]

    Article  MathSciNet  Google Scholar 

  • Karimi, N., Agbo, D., Khan, A. T. and Younger, P. L. 2015 On the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channel. Int. J. Therm. Sci. 96, 128-148. [4.11]

    Article  Google Scholar 

  • Karimi, N., Mahmoudi, Y., and Mazaheri, K. 2014 Temperature fields in a channel partially filled with a porous material under local thermal non-equilibrium – An exact solution. Proc. Inst. Mech. Engrs. C. 228, 2778-2789. [4.11]

    Google Scholar 

  • Kasimova, R. G., Tishin, D., Obnosov, Yu. V., Dlussky, G. M., Baksht, F. B. and Kacimov, A. R. 2014 Ant mound as an optimal shape in constructal design: Solar irradiation and circadian brood/fungi-warming sorties. J. Theor. Biol. 355, 21-32. [4.18.5]

    Article  MATH  Google Scholar 

  • Kauffman, S. A. 1993 The Origins of Order: Self-Organization and Selection and Evolution, Oxford University Press, London. [4.18]

    Google Scholar 

  • Kaviany, M. 1985 Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transfer 28, 851-858. [4.9]

    Article  Google Scholar 

  • Kaviany, M. 1987 Boundary-layer treatment of forced convection heat transfer from a semi-infinite flat plate embedded in porous media. ASME J. Heat Transfer 109, 345-349. [4.8]

    Article  Google Scholar 

  • Kaya, A. and Aydin, G. 2012 Effects of MHD and thermal radiation on forced convection flow about a permeable horizontal plane embedded in a porous medium. J. Therm. Sci. Tech. 32, 9-17. [4.16.5]

    Google Scholar 

  • Kephart, J. and Jones, G. F. 2016 Optimizing a functionally graded metal-matrix heat sink through growth of a constructal tree of convective fins. J. Heat Transfer 138, 082802. [4.15]

    Article  Google Scholar 

  • Khademi, M. 2016 Effect of thermal radiation on temperature differential in microchannels filled with parallel porous media. Int. J. Therm. Sci. 99, 228-237. [4.10]

    Article  Google Scholar 

  • Khadrawi, A. F., Al-Nimr, M. A. and Hader, A. 2010 Thermal equilibrium assumption of fluid flow in porous channel as described by a hyperbolic heat-conduction model. J. Porous Media 13, 529-535. [4.10]

    Article  Google Scholar 

  • Khadrawi, A. F., Othman, A. M. and Al-Nimr, M. A. 2005a Non-Darcy forced convection for laminar incompressible boundary layer flow (the family of wedge and cone flows in porous media). Int. J. Heat Tech. 23, 115-121. [4.3]

    Google Scholar 

  • Khan, W. A. and Pop, I. 2011 Flow and heat transfer over a continuously moving flat plate in a porous medium. ASME J. Heat Transfer 133, #054501. [4.16.5]

    Google Scholar 

  • Khan, W. A. and Pop, I. 2011a Free convection boundary layer flow past a horizontal flat plate embedded in a porous medium with a nanofluid. ASME J. Heat Transfer 133, 094501. [9.7.3].

    Article  Google Scholar 

  • Khanafer, K. and Vafai, K. 2001 Isothermal surface production and regulation for high heat flux applications using porous inserts. Int. J. Heat Mass Transfer 44, 2933-2947. [4.11]

    Article  MATH  Google Scholar 

  • Khanafer, K. and Vafai, K. 2005 Transport through porous media – a synthesis of the state of the art for the past couple of decades. Ann. Rev. Heat Transfer 14, 346-383. [4.11]]

    Google Scholar 

  • Khanafer, K., Bull, J. L., Pop, I. and Berquer, R. 2007 Influence of pulsatile blood flow and heating scheme on the temperature distribution during hypothermia. Int. J. Heat Mass Transfer 50, 4883-4890. [4.16.2]

    Article  MATH  Google Scholar 

  • Khashan, S. A. and Al-Nimr, M. A. 2005 Validation of the local thermal equilibrium assumption in forced convection in non-Newtonian fluids through porous channels. Transport Porous Media 61, 291-305. [4.10]

    Article  Google Scholar 

  • Khashan, S. A., Al-Amiri, A. M. and Al-Nimr, M. A. 2005 Assessment of the local thermal equilibrium condition in developing forced convection flows through fluid-saturated porous tubes. Appl. Thermal Engng. 25, 1429-1445. [4.10]

    Article  Google Scholar 

  • Kim, M. C., Kim, S., and Choi, C. K. 2002a Convective instability in a horizontal fluid-saturated porous layer under uniform volumetric heat sources. Int. Comm. Heat Mass Transfer 29, 919-928. [6.11.3]

    Article  Google Scholar 

  • Kim, M. C., Lee, S. B., Chung, B. J. and Kim, S. 2002b Heat transfer correlation in fluid-saturated porous layer under uniform volumetric heat sources. Int. Comm. Heat Mass Transfer 29, 1089-1097. [6.11.2]

    Article  Google Scholar 

  • Kim, M. C., Lee, S. B., Kim. and Chung, B. J. 2003b Thermal instability of viscoelastic fluids in porous media. Int. J. Heat Mass Transfer 46, 5065-5072. [6.23]

    Article  MATH  Google Scholar 

  • Kim, M. C., Yoon, D. Y. and Choi, C. L. 2009a Onset of buoyancy-driven instability in porous medium solidified from above. Transp. Porous Media 78, 295-307. [10.2.2]

    Article  MathSciNet  Google Scholar 

  • Kim, S. J, Kang, B. H. and Kim, J. H. 2001b Forced convection from aluminum foam materials in an asymmetrically heated channel. Int. J. Heat Mass Transfer 44, 1451–1454. [4.9]

    Article  Google Scholar 

  • Kim, S. Y., Koo, J. M. and Kuznetsov, A. V. 2001c Effect of anisotropy in permeability and effective thermal conductivity on thermal performance of an aluminum foam heat sink. Numer. Heat Transfer A 40, 21–36. [4.16.5]

    Article  Google Scholar 

  • Kim, S. J. and Hyun, J. M. 2005 A porous medium approach for the thermal analysis of heat transfer devices. In Transport Phenomena in Porous Media III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 120-146. [4.16.1]

    Chapter  Google Scholar 

  • Kim, S. J. and Jang, S. P. 2002 Effects of the Darcy number, the Prandtl number and the Reynolds number on local thermal non-equilibrium. Int. J. Heat Mass Transfer 45, 3885-3896. [4.10]

    Article  MATH  Google Scholar 

  • Kim, S. J. and Kim, D. 1999 Forced convection in microstructure for electronic equipment cooling. ASME J. Heat Transfer 121, 639-645. [4.9]

    Article  Google Scholar 

  • Kim, S. J. and Kim, D. 2000 Discussion: “Heat transfer measurement and analysis for sintered porous channels” (Hwang, G. J. and Chao, C. H., 1994, ASME J. Heat Transfer, 116, pp. 456-469). ASME J. Heat Transfer 122, 632-633. [4.9]

    Google Scholar 

  • Kim, S. J., Kim, D. and Lee, D. Y. 2000 On the local thermal equilibrium of microchannel heat sinks. Int. J. Heat Mass Transfer 43, 1735-1748. [4.10]

    Article  MATH  Google Scholar 

  • Kim, S. J., Yoo, J. W. and Jang, S. P. 2002 Thermal optimization of a circular-sectored finned tube using a porous medium approach. ASME J. Heat Transfer 124, 1026-1033. [4.16.5]

    Article  Google Scholar 

  • Kim, S. Y. and Kuznetsov, A. V. 2003 Optimization of pin-fin heat sinks using anisotropic local thermal non-equilibrium porous model in a jet impinging channel. Numer. Heat Transfer A 44, 771-787. [4.16.5]

    Article  Google Scholar 

  • Kim, S. Y., Kang, B. H. and Hyun, J. M. 1994 Heat transfer from pulsating flow in a channel filled with porous media. Int. J. Heat Mass Transfer 37, 2025-2033. [4.12.2]

    Article  MATH  Google Scholar 

  • Kim, S. Y., Paek, J. W. and Kang, B. H. 2000 Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger. ASME J. Heat Transfer 122, 572-578. [4.16.5]

    Article  Google Scholar 

  • Kim, S., Lorente, S. and Bejan, A. 2006 Vascularized materials: tree-shaped flow and architectures matched canopy to canopy. J. Appl. Phys. 100s, 063525. [4.19]

    Article  Google Scholar 

  • Kim, S., Lorente, S. and Bejan, A. 2007 Vascularized materials with heating from one side and coolant forced from the other side. Int. J. Heat Mass Transfer 50, 3498-3506. [4.19]

    Article  MATH  Google Scholar 

  • Kim, S., Lorente, S. and Bejan, A. 2009 Transient behaviour of vascularized walls exposed to sudden heating. Int. J. Therm. Sci. 48, 2046-2052. [4.19]

    Article  Google Scholar 

  • Kim, S., Lorente, S., Bejan, A., Miller, W. and Morse, J. 2008a The emergence of vascular design in three dimensions. J. Appl. Phys. 103, 123511. [4.19]

    Article  Google Scholar 

  • Kimura, S. 1988a Forced convection heat transfer about an elliptic cylinder in a saturated porous medium. Int. J. Heat Mass Transfer 31, 197-199. [4.3]

    Article  Google Scholar 

  • Kimura, S. 1988b Forced convection heat transfer about a cylinder placed in porous media with longitudinal flows. Int. J. Heat Fluid Flow 9, 83-86. [4.3]

    Article  Google Scholar 

  • Kimura, S. 1988c Transient heat transfer from a circular cylinder with constant heat flux in a saturated porous layer; application to underground water velocimetry. Int. Symp. Geothermal Energy, Kumamoto and Beppu, Japan, November 10-14]

    Google Scholar 

  • Kimura, S. 1989a Transient forced convection heat transfer from a circular cylinder in a saturated porous medium. Int. J. Heat Mass Transfer 32, 192-195. [4.6]

    Article  Google Scholar 

  • Kimura, S. 1989b Transient forced and natural convection heat transfer about a vertical cylinder in a porous medium. Int. J. Heat Mass Transfer 32, 617-620. [4.6.4, 5.7]

    Article  Google Scholar 

  • Kimura, S. and Bejan, A. 1983 The "heatline" visualization of convective heat transfer. J. Heat Transfer 105, 916–919. [4.17]

    Article  Google Scholar 

  • Kimura, S. and Nigorinuma, H. 1991 Heat transfer from a cylinder in a porous medium subjected to axial flow. Heat Transfer Jap. Res. 20, 368-375. [4.3]

    Google Scholar 

  • Kimura, S. and Yoneysa, M. 1992 Forced convection heat transfer from a circular cylinder with constant heat flux in saturated porous medium. Heat Transfer Japanese Res. 21, 250-258. [4.3]

    Google Scholar 

  • Klinbun, W., Vafai, K. and Rattanadecho, P. 2012 Electromagnetic effects on transport through porous media. Int. J. Heat Mass Transfer 55, 325-335. [4.10]

    Article  MATH  Google Scholar 

  • Koh, J. C. Y. and Colony, R. 1974 Analysis of cooling effectiveness by porous material in coolant passage. ASME J. Heat Transfer 96, 324-330. [4.11]

    Article  Google Scholar 

  • Koh, J. C. Y. and Stevens, R. L. 1975 Enhancement of cooling effectiveness by porous material in coolant passage, ASME J. Heat Transfer 97, 309-311. [4.11]

    Article  Google Scholar 

  • Koshelev, S. B., Plakseev, A. A. and Kharitonov, V. V. 1989 Unsteady heat transfer in beds with forced convection. Therm. Engng. 36, 2220223. [4.5]

    Google Scholar 

  • Krishna, D. V. 2009 Non-Darcian convection flow in a circular duct partially filled with a porous medium. J. Engng. Phys. Thermophys. 82, 882-889. [4.11]

    Article  Google Scholar 

  • Krishna, D. V., Prasada Rao, D. R. V. and Suganamma, V. 1999 Finite element analysis of convection flow through a porous medium in a horizontal channel. Transp. Porous Media 36, 69-83. [4.1]

    Article  Google Scholar 

  • Kumar, N. and Gupta, S. 2011 MHD forced convection and entropy generation in a circular channel occupied by a hyper porous medium. Int. J. Heat Tech. 29, 91-100. [4.16.5]

    Google Scholar 

  • Kumari, M., Pop, I. and Nath, G. 1990b Natural convection in porous media above a near horizontal uniform heat flux surface. Wärme-Stoffübertrag., 25, 155-159. [5.3]

    Article  Google Scholar 

  • Kundu, B. and Lee, K. S. 2015 Exact analysis of minimum shape of porous fins under convection and radiation heat exchange with surrounding. Int. J. Heat Mass Transfer 81, 439-448. [4.15]

    Article  Google Scholar 

  • Kuwahara, F., Shirota, M. and Nakayama, A. 2000 A numerical study of interfacial convective heat transfer coefficient in two-energy equation model of porous media. Trans. Japan Soc. Mech. Engnrs 66, 1430-1435. [4.10]

    Article  MATH  Google Scholar 

  • Kuwahara, F., Yang, C., Ando, K. and Nakayama, A. 2011 Exact solutions for a thermal nonequilibrium model of fluid saturated porous media based on an effective porosity. ASME J. Heat Transfer 133, 112602. [4.10]

    Article  Google Scholar 

  • Kuznetsov, A. V. 1994 An investigation of a wave of temperature difference between solid and fluid phases in a porous packed bed. Int. J. Heat Mass Transfer 37, 3030-3033. [4.6.4]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1995b An analytical solution for heating a two-dimensional porous packed bed by a non-thermal equilibrium fluid flow. Appl. Sci. Res. 55, 83-93. [4.6.4]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1996a Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl. Sci. Res. 56, 53-67. [1.6]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1996b Analysis of a non-thermal equilibrium fluid flow in a concentric tube annulus filled with a porous medium. Int. Comm. Heat Mass Transfer 23, 929-938. [4.6.4]

    Article  Google Scholar 

  • Kuznetsov, A. V. 1996c Stochastic modeling of heating of a 1D porous slab by a flow of incompressible fluid. Acta Mech. 114, 39-50. [4.6.4]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1996d A perturbation solution for a nonthermal equilibrium fluid flow through a three-dimensional sensible heat storage packed bed. ASME J. Heat Transfer 118, 508-510. [4.6.4]

    Article  Google Scholar 

  • Kuznetsov, A. V. 1996e Investigation of a non-thermal equilibrium flow of an incompressible fluid in a cylindrical tube filled with porous media. Z. Angew. Math. Mech. 76, 411-418. [4.6.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, A. V. 1997 Study of forced convection in the presence of a liquid-porous-medium interface. Inzhen. Fiz. Zhur. 70, 895-901. [4.11]

    Google Scholar 

  • Kuznetsov, A. V. 1997a Determination of the optimal initial temperature distribution in a porous bed. Acta Mech. 120, 61-69. [4.6.4]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1997b Influence of the stress jump condition at the porous-medium/clear-fluid interface on a flow at a porous wall. Int. Comm. Heat Mass Transfer 24, 401-410. [1.6]

    Article  Google Scholar 

  • Kuznetsov, A. V. 1997c Optimal control of the heat storage in a porous slab. Int. J. Heat Mass Transfer 40, 1720–1723. [4.15]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1997e Study of forced convection in the presence of a liquid-porous-medium interface. Inzhen. Fiz. Zhur. 70, 895–901. [4.11]

    Google Scholar 

  • Kuznetsov, A. V. 1998a Numerical investigation of the macrosegregation during thin strip casting of carbon steel. Numer. Heat Transfer A 33, 515-532. [10.2.3]

    Article  Google Scholar 

  • Kuznetsov, A. V. 1998b Analytical study of fluid flow and heat transfer during forced convection in a composite channel partly filled with a Brinkman-Forchheimer porous medium. Flow, Turbulence and Combustion 60, 173-192. [4.11]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1998c Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model. Acta Mech. 129, 13-24. [4.9]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1998d Analytical investigation of Couette flow in a composite channel partially filled with a porous medium and partially with a clear fluid. Int. J. Heat Mass Transfer 41, 2556-2560. [4.16.1]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1999a Fluid mechanics and heat transfer in the interface region between a porous medium and a fluid layer: A boundary layer solution. J. Porous Media 2, 309-321. [4.11]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1999b Analytical investigation of forced convection from a flat plate enhanced by a porous substrate. Acta Mech. 137, 211-223. [4.11]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1999c Forced convection heat transfer in a parallel-plate channel with a porous core. Appl. Mech. Engng. 4, 271-290. [4.11]

    MATH  Google Scholar 

  • Kuznetsov, A. V. 2000a Analytical studies of forced convection in partly porous configurations. Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York., pp. 269-312. [4.11]

    Google Scholar 

  • Kuznetsov, A. V. 2000b Fluid flow and heat transfer analysis of Couette flow in a composite duct. Acta Mech. 140, 163-170. [4.11]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 2000c Investigation of the effect of transverse thermal dispersion on forced convection in porous media. Acta Mech. 145, 35-43. [4.9]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 2001 Influence of thermal dispersion on forced convection in a composite parallel-plate channel. Z. Angew. Math. Phys. 52, 135-150. [4.11]

    Google Scholar 

  • Kuznetsov, A. V. 2004a Effect of turbulence on forced convection in a composite tube partly filled with a porous medium. J. Porous Media 7, 59-64. [4.11]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1995a Comparisons of the waves of temperature difference between the solid and fluid phases in a porous slab and in a semi-infinite porous body. Int. Comm. Heat Mass Transfer 22, 499-506. [4.6.4]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Becker, S. M. 2004 Effect of the interface roughness on turbulent convective heat transfer in a composite porous/fluid duct. Int. Comm. Heat Mass Transfer 31, 11-20. [4.11]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2001 Effects of heterogeneity in forced convection in a porous medium: triple layer or conjugate problem. Numer Heat Transfer A 40, 363-385. [4.12]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2006a Boundary layer treatment of forced convection over a wedge with an attached porous substrate. J. Porous Media 9, 683-694. [4.11]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2006b Forced convection with laminar pulsating flow in a saturated porous channel or tube. Transp. Porous Media 65, 505-523. [4.61.2]

    Article  MathSciNet  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2006c Thermally developing forced convection in a bidisperse porous medium. J. Porous Media 9, 393-402. [4.16.4]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2008a The effects of a transition layer between a fluid and a porous medium: Forced convection in a channel. ASME J. Heat Transfer 130, #094504. [4.11]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2009a Forced convection with counterflow in a circular tube occupied by a porous medium. J. Porous Media 12, 657-666. [2.6, 4.16.2]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2009b Forced convection with laminar pulsating counterflow in a saturated porous circular tube. Transp. Porous Media 77, 447-462. [2.6, 4.16.2]

    Article  MathSciNet  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2010a Forced convection in a channel partly occupied by a bidisperse porous medium: Asymmetric case. Int. J. Heat Mass Transfer 53, 5167-5175. [4.16.4]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2010f Corrigendum to “Forced convection with slip flow in a channel occupied by a hyperporous medium saturated by a rarefied gas”, TiPM 64, 161-170. 2006, and ‘Thermally developing forced convection in a porous medium occupied by a rarefied gas: Parallel plate channel or circular tube with walls at constant heat flux.”, TiPM 76, 345-362, 2009. Transp. Porous Media 85, 657-658. [4.13]

    Google Scholar 

  • Kuznetsov, A. V. and Xiong, M. 1999 Limitation of the single-domain approach for computation of convection in composite channels: comparisons with exact solutions. Hybrid Methods in Engineering 1, 249-264. [4.11]

    Google Scholar 

  • Kuznetsov, A. V. and Xiong, M. 2000 Numerical simulation of the effect of thermal dispersion on forced convection in a circular duct partly filled with a Brinkman-Forchheimer porous medium. Int. J. Numer. Meth. Heat Fluid Flow 10, 488-501. [4.11]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V., Cheng, L. and Xiong, M. 2002 Effects of thermal dispersion and turbulence in forced convection in a composite parallel-plate channel: Investigation of constant wall heat flux and constant wall temperature cases. Numer. Heat Transfer A 42, 365-383. [4.11]

    Article  Google Scholar 

  • Kuznetsov, A. V., Cheng, L. and Xiong, M. 2003b Investigation of turbulence effects on forced convection in a composite porous/fluid duct: Constant wall heat flux and constant wall temperature cases. Heat Mass Transfer 39, 613-623. [4.11]

    Article  Google Scholar 

  • Kuznetsov, A.V., Xiong, M. and Nield, D. A. 2003c Thermally developing forced convection in a porous medium: circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects. Transport Porous Media 53, 331-345. [4.13]

    Article  MathSciNet  Google Scholar 

  • Kwan, H. H. Y., Rees, D. A. S. and Pop, I. 2008 Finite Péclet number forced convection past a sphere in a porous medium using a thermal nonequilibrium model. Heat Mass Transfer 44, 1391-1399. [4.10]

    Article  Google Scholar 

  • Lage, J. L. and Bejan, A. 1990 Numerical study of forced convection near a surface covered with hair. Int. J. Heat Fluid Flow 11, 242-248. [5.13]

    Article  Google Scholar 

  • Lage, J. L. and Narasimhan, A. 2000 Porous media enhanced forced convection fundamentals. Handbook of Porous Media (K. Vafia, ed.), Marcel Dekker, New York, pp. 357-394. [4]

    Google Scholar 

  • Lage, J. L. and Nield, D. A. 1997 Comments on "numerical studies of forced convection heat transfer from a cylinder from a cylinder embedded in a packed bed. Int. J. Heat Mass Transfer 40, 1725-1726. [4.8]

    Article  Google Scholar 

  • Lage, J. L., Narasimhan, A., Porneala, P.C. and Price, D. C. 2004b Experimental study of forced convection through microporous enhanced heat sinks. In Technologies and Techniques in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 433-452. [4.5]

    Chapter  Google Scholar 

  • Lage, J. L., Weinert, A. K., Price, D. C. and Weber, R. M. 1996 Numerical study of a low permeability microporous heat sink for cooling phased-array radar systems. Int. J. Heat Mass Transfer, 39, 3633-3647. [4.9]

    Article  Google Scholar 

  • Lai, F. C. and Kulacki, F. A. 1987 Non-Darcy convection from horizontal impermeable surfaces in saturated porous media. Int. J. Heat Mass Transfer 30, 2189-2192. [4.7, 8.1.2]

    Article  Google Scholar 

  • Lai, F. C. and Kulacki, F. A. 1989a Thermal dispersion effects on non-Darcy convection over horizontal surfaces in saturated porous media. Int. J. Heat Mass Transfer 32, 971-976. [4.7, 8.1.2]

    Article  Google Scholar 

  • Lan, X. K. and Khodadadi, J. M. 1993 Fluid flow and heat transfer through a porous medium channel with permeable walls. Int. J. Heat Mass Transfer 36, 2242-2245. [4.9]

    Article  Google Scholar 

  • Lauriat, G. and Ghafir, R. 2000 Forced convective heat transfer in porous media. Handbook of Porous Media (K. Vafia, ed.), Marcel Dekker, New York, pp. 201-267. [4]

    Google Scholar 

  • Lauriat, G. and Vafai, K. 1991 Forced convection flow and heat transfer through a porous medium exposed to a flat plate or a channel. In Convective Heat and Mass Transfer in Porous Media (eds. S. Kakaç, et al.), Kluwer Academic, Dordrecht, pp. 289-327. [4.8, 4.9]

    Chapter  Google Scholar 

  • Layeghi, M. and Nouri-Borujerdi, A. 2004 Fluid flow and heat transfer around circular cylinders in the presence or no-presence of porous media. J. Porous Media 7, 239-247. [4.11]

    Article  MATH  Google Scholar 

  • Leblond, G. and Gosselin, L. 2008 Effect of non-local equilibrium on minimal thermal resistance porous layered systems. Int. J. Heat Fluid Flow 29, 281-291. [4.10]

    Google Scholar 

  • Ledezma, G., Morega, A. M. and Bejan, A. 1996 Optimal spacing between fins with impinging flow. J. Heat Transfer 118, 570–577. [4.15]

    Article  Google Scholar 

  • Ledezma, G. A., Bejan, A. and Errara, M. P. 1997 Constructal tree networks for heat transfer. J. Appl. Phys. 82, 89–100. [4.18]

    Article  Google Scholar 

  • Lee, D. Y. and Vafai, K. 1999 Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int. J. Heat Mass Transfer 42, 423-435 (erratum 4077). [4.10]

    Article  MATH  Google Scholar 

  • Lee, J., Kandaswamy, P. Bhuvaneswari, M. and Sivasankaran, S. 2008 Lie group analysis of radiation natural convection past an inclined porous surface. J. Mech. Sci. Tech. 22, 1779-1784. [5.3]

    Article  MATH  Google Scholar 

  • Lee, J., Kim, Y., Lorente, S. and Bejan, A. 2008 Vascularization with trees matched canopy to canopy: diagonal channels with multiple sizes. Int. J. Heat Mass Transfer 51, 2029-2040. [4.19]

    Article  Google Scholar 

  • Lee, J., Kim, Y., Lorente, S. and Bejan, A. 2013 Constructal design of a comb-like channel network for self-heating and self-cooling. Int. J. Heat Mass Transfer 66, 898-905. [4.18.5]

    Article  Google Scholar 

  • Lee, J., Lorente, S. and Bejan, A. 2009b Vascular design for thermal management of heated structures. The Aeronautical J. 113, 397-407. [4.19]

    Article  Google Scholar 

  • Lee, J., Lorente, S. and Bejan, A. 2009c Transient cooling of smart vascular materials for self-cooling. J. Appl. Phys. 105, #064904. [4.19]

    Google Scholar 

  • Lee, J., Lorente, S., Bejan, A., and Kim, M. 2009a Vascular structures with flow uniformity and small resistance. Int. J. Heat Mass Transfer 52, 1761-1768. [4.19]

    Article  Google Scholar 

  • Leong, K. C. and Jin, L. W. 2004 Heat transfer of oscillating and steady flows in a channel filled with porous media. Int. Comm. Heat Mass Transfer 31, 63-72. [4.16.5]

    Article  Google Scholar 

  • Leong, K. C. and Jin, L. W. 2005 An experimental study of oscillatory flow through a channel filled with an aluminum foam. Int. J. Heat Mass Transfer 48, 243-253. [4.16.5]

    Article  Google Scholar 

  • Leong, K. C., Li, H. Y., Jin, L. W. and Chai, J. C. 2010 Numerical and experimental study of forced convection in graphite foams of different configurations. Appl. Therm. Engng. 30, 520-532. [4.16.25

    Article  Google Scholar 

  • Lewins, J. 2003 Bejan’s constructal theory of equal potential distribution. Int. J. Heat Mass Transfer 46, 1541-1543. [4.18, 4.20, 6.26, 11.10]

    Article  MATH  Google Scholar 

  • Li, H. Y., Leong, K. C., Jin, L. W. and Chai, J. C. 2010a Analysis of fluid flow and heat transfer in a channel with staggered porous blocks. Int. J. Therm. Sci. 49, 950-962. [4.11]

    Article  Google Scholar 

  • Li, J. X. and Tu, S. D. 2008 Integral solution of convection heat transfer of fluid’s laminar forced flow over an isothermal plate in porous medium. J. Petrochem. Univ. 21, 64-67. [4.1]

    Google Scholar 

  • Li, J. X., Lai, H. X. and Tu, S. T. 2009 Integral solution of a forced laminar boundary layer over an isothermal plate embedded in a porous medium. Int. J. Nonlinear Sci. Numer. Simul. 10, 617-624. [4.1]

    Google Scholar 

  • Li, M., Jiang, P. X., Yu, L. and Ren, Z. P. 2003 Experimental research of forced convection heat transfer in sintered porous plate channels. J. Engng. Thermophys. 24, 1016. [4.9]

    Google Scholar 

  • Lienhard, J. H. 1973 On the commonality of equations for natural convection from immersed bodies. Int. J. Heat Mass Transfer 16, 2121-2123. [4.3]

    Article  Google Scholar 

  • Lim, T. K., Cotton, M. A. and Axcell, B. P. 2007 Laminar forced convection and flow characteristics for the multiple plate porous insulation. Appl. Thermal Engng. 27, 918-926. [4.11]

    Article  Google Scholar 

  • Ling, J. X. and Dybbs, A. 1992 The effect of variable viscosity on forced convection over a flat plate submersed in a porous medium. ASME J. Heat Transfer 114, 1063-1065. [4.2]

    Article  Google Scholar 

  • Liu, I. C. 2006 Flow and heat transfer of viscous fluids saturated in porous media over a permeable non-isothermal stretching sheet. Transport Porous Media 64, 375-392. [5.1.9.9]

    Article  Google Scholar 

  • Lorente, S. 2009 Vascularized materials as designed porous media. Int. J. Energy Res. 33, 211-220. [4.15]

    Article  Google Scholar 

  • Lorente, S. and Bejan, A. 2006 Heterogeneous porous media as multiscale structures for maximum flow access. J. Appl. Phys. 100, 114909. [4.19]

    Article  Google Scholar 

  • Lorente, S. and Bejan, A. 2009a Vascularized smart materials: Designed porous media for self-healing and self-cooling. J. Porous Media 12, 1-18. [4.19]

    Article  Google Scholar 

  • Lorente, S. and Bejan, A. 2009b Constructal design of vascular porous materials and electrokinetic mass transfer. Transp. Porous Media 77, 305-322. [4.19]

    Article  Google Scholar 

  • Lu, C. H., Shi, L. S., Chen, Y. M., Xie, Y. Q. and Simmons, C. T. 2016a Impact of kinetic mass transfer on free convection in a porous medium. Water Resoirces Res., to appear. [6.18]

    Google Scholar 

  • Lu, W., Zhao, C. Y. and Tassou, S. A. 2006 Thermal analysis on metal-foam filled heat exchangers. Part 1: Metal-foam filled pipes. Int. J. Heat Mass Transfer 49, 2751-2761. [4.16.5]

    Article  MATH  Google Scholar 

  • Luna, N. and Mendez, F. 2005 Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium. Int. J. Thermal Sci. 44, 656-664. [4.8]

    Article  Google Scholar 

  • Luna, N. and Mendez, F. 2005 Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium. Int. J. Thermal Sci. 44, 556-664. [4.8]

    Article  Google Scholar 

  • Ma, W. P., Tzeng, S. C. and Jwo, W. J. 2006 Flow resistance and forced convective heat transfer effects for various flow orientations in a packed channel. Int. Comm. Heat Mass Transfer 33, 319-326. [4.5]

    Article  Google Scholar 

  • Maerefat, M., Mahmoudi, S. Y. and Mazaheri, K. 2011 Numerical simulation of forced convection enhancement in a pipe by porous inserts. Heat Transfer Engng. 32, 45-56. [4.11]

    Article  Google Scholar 

  • Maghrebi, M. J., Nazari, M. and Armaghansi, T. 2012 Forced convection heat transfer of nanofluids in a porous channel. Transp. Porous Media 93, 401-413. [4.16.5]

    Article  MathSciNet  Google Scholar 

  • Magyari, E. 2013b Forced convection heat transfer from a heated cylinder in an axial background flow in a porous medium: Three exactly soluble cases. Transp. Porous Media 96, 483-493. [4.3]

    Article  MathSciNet  Google Scholar 

  • Magyari, E. 2013c Normal mode analysis of the high speed channel flow in a bidisperse porous medium. Transp. Porous Media 97, 345-352. [4.16.4]

    Article  MathSciNet  Google Scholar 

  • Magyari, E. and Keller, B. 2002 Note on ‘A two-equation analysis of convection heat transfer in porous media’ by H. Y. Zhang and X. Y. Huang. Transport Porous Media 46, 109-112. [4.10]

    Google Scholar 

  • Magyari, E., Pop, I. and Keller, B. 2001b Exact dual solutions occurring in the Darcy mixed convection flow. Int. J. Heat Mass Transfer 44, 4563-4566. [8.1.1]

    Article  MATH  Google Scholar 

  • Magyari, E., Pop, I. and Keller, B. 2003b Effect of viscous dissipation on the Darcy forced-convection flow past a plane surface. J. Porous Media 6, 111-122. [4.1]

    Article  MATH  Google Scholar 

  • Mahgoub, S. E. 2013 Forced convection heat transfer over a flat plate in a porous medium. Ain Shams Engng. J. 4, 605-613. [4.2]

    Article  Google Scholar 

  • Mahmoudi, Y, Karimi, N. and Mazaheri, K. 2014 Analytical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition: Effects of different thermal boundary conditions at the porous –fluid interface. Int. J. Heat Mass Transfer 70, 875-891. [4.11]

    Article  Google Scholar 

  • Mahmoudi, Y. 2014 Effect of thermal radiation on temperature differential in a porous medium under local thermal non-equilibrium condition. Int. J. Heat Mass Transfer 76, 105-121. [4.10]

    Article  Google Scholar 

  • Mahmoudi, Y. 2015 Constant wall heat flux boundary condition in micro-channels filled with a porous medium with internal heat generation under local thermal non-equilibrium condition. Int. J. Heat Mass Transfer 85, 524-542. [4.10]

    Article  Google Scholar 

  • Mahmoudi, Y. and Karimi, N. 2014 Numerical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: Effects of different thermal boundary conditions at the porous-fluid interface. Int. J. Heat Mass Transfer 68, 161-173. [4.10]

    Article  Google Scholar 

  • Mahmoudi, Y. and Maerefat, M. 2011 Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Therm. Sci. 50, 2386-2401. [4.11]

    Article  Google Scholar 

  • Mahmud, S. and Fraser, R. A. 2004a Flow and heat transfer inside porous stack: steady state problem. Int. Comm. Heat Mass Transfer 31, 951-962. [4.9]

    Article  Google Scholar 

  • Mahmud, S. and Fraser, R. A. 2004b Magnetohydrodynamic free convection and entropy generation in a square porous cavity. Int. J. Heat Mass Transfer 47, 3245-3256. [7.1.7]

    Article  MATH  Google Scholar 

  • Mahmud, S. and Fraser, R. A. 2005a Conjugate heat transfer inside a porous channel. Heat Mass Transfer 41, 568-575. [4.12]

    Article  Google Scholar 

  • Mahmud, S. and Fraser, R. A. 2005b Flow, thermal, and entropy characteristics inside a porous channel with viscous dissipation. Int. J. Thermal Sci. 44, 21-32. [4.9]

    Article  Google Scholar 

  • Mahmud, S., Frazer, R. A. and Pop, I. 2007 Flow, thermal, energy transfer, and entropy generation characteristics inside wavy enclosures filled with microstructures. ASME J. Heat Transfer 129, 1564-1575. [4.16.5]

    Article  Google Scholar 

  • Mandavi, M., Saffar-Avval, M., Tiari, S. and Mansoori, Z. 2014 Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int. J. Heat Mass Transfer 79, 496-506. [4.11]

    Article  Google Scholar 

  • Mansour, F. S. and Dawood, A. S. 2016 Numerical analysis of forced convection enhancement inside wavy channels fully filled with porous media. J. Porous Media 19, 95-111. [4.16.5]

    Article  Google Scholar 

  • Mansour, M. A. 1997 Forced convection radiation interaction heat transfer in boundary layer over a flat plate submersed in a porous medium. Appl. Mech. Engng. 2, 405-413. [4.16.5]

    MATH  Google Scholar 

  • Marafie, A. and Vafai, K. 2001 Analysis of non-Darcian effects on temperature differentials in porous media. Int. J. Heat Mass Transfer 44, 4401-4411. [4.10]

    Article  MATH  Google Scholar 

  • Marpu, D. R. 1993 Non-Darcy flow and axial conduction effects of forced convection in porous material filled pipes. Wärme- Stoffübertrag. 29, 51-58. [4.9]

    Article  Google Scholar 

  • Masuoka, T., Kakimoto, Y., Nomura, A. and Ooba, M. 2004 Fluid flow through a permeable porous obstacle. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Évora, Portugal, pp. 107-112. [4.11]

    Google Scholar 

  • Meghdadi, Isfahani, A. H. and Soleimani, A. 2012 Numerical study of flow and heat transfer of high Knudsen number flow regime in nanochannels filled with porous media. Adv. Mater. Res. 403-408, 5324-5329. [4.16.5]

    Google Scholar 

  • Mehmood, A., Ali, A. and Mahmood, T. 2010 Unsteady magnetohydrodynamic oscillatory flow and heat transfer analysis of a viscous fluid in a porous channel filled with a saturated porous medium. J. Porous Media 13, 573-577. [4.16.2]

    Article  Google Scholar 

  • Miguel, A. F. 2015 Fluid flow in a porous tree-shaped network: Optimal design and extension of Hess-Murray’s law. Physica A 423, 61-71. [4.19]

    Article  MathSciNet  Google Scholar 

  • Miguel, A. F. 2016 Toward an optimal design principle in symmetric and asymmetric tree flow networks. J. Theor. Biol. 389, 101-109. [4.19]

    Article  MathSciNet  MATH  Google Scholar 

  • Miguel, A. F. and Heier Reis, A. 2005 Transient forced convection in an inclined fluid-saturated porous medium layer: Effective permeability and boundary layer thickness. J. Porous Media 8, 165-174. [4.16.5]

    Article  Google Scholar 

  • Minkowycz, W. J. and Haji-Sheikh, A. 2006 Heat transfer in parallel plates and circular porous passages with axial conduction. Int. J. Heat Mass Transfer 49, 2381-2390 [4.9]

    Article  MATH  Google Scholar 

  • Minkowycz, W. J. and Haji-Sheikh, A. 2009 Asymptotic behaviour of heat transfer in porous passages with axial conduction. Int. J. Heat Mass Transfer 52, 3101-3108. [4.9]

    Article  MATH  Google Scholar 

  • Minkowycz, W. J., Haji-Sheik, A. and Vafai, K. 1999 On departure from local thermal equilibrium in porous media due to rapidly changing heat source: the Sparrow number. Int. J. Heat Mass Transfer 42, 3373-3385. [4.10]

    Article  MATH  Google Scholar 

  • Misirlioglu, A. 2007 Thermally developing forced convection inside a parallel-plate channel filled with a non-Darcy porous medium. J. Porous Media 10, 311-317. [4.13]

    Article  Google Scholar 

  • Mitrovic, J. and Maletic, R. 2006 Effect of thermal asymmetry on laminar forced convection heat transfer in a porous annular channel. Chem. Engng. Tech. 29, 750-760. [4.9]

    Article  Google Scholar 

  • Mitrovic, J. and Maletic, R. 2007 Heat transfer with laminar forced convection in a porous channel exposed to a thermal asymmetry. Int. J. Heat Mass Transfer 50, 1106-1121. [4.9]

    Article  MATH  Google Scholar 

  • Mobedi, M., Cekmer, O. and Pop, I. 2010 Forced convection heat transfer inside an anisotropic porous channel with oblique principal axes: Effect of viscous dissipation. Int. J. Therm. Sci. 49, 1984-1993. [4.16.5]

    Article  Google Scholar 

  • Moghari, M. 2008 A numerical study of non-equilibrium convective heat transfer in porous media. J. Enhanced Heat Transfer 18, 81-99. [4.10]

    Article  Google Scholar 

  • Mohais, R. and Bhatt, B. 2009 Heat transfer of coupled fluid flow within a channel with a permeable base. ASME J. Heat Transfer 131, #112601. [4.11]

    Article  Google Scholar 

  • Mohamad, A. A. and Karim, G. A. 2001 Flow and heat transfer with segregated beds of solid particles. J. Porous Media 4, 215-224. [4.6.4]

    Article  MATH  Google Scholar 

  • Mohan, M. and Srivastava, K. K. 1978 Free and forced convection flow in a rotating channel bounded below by a permeable bed. Proc. Indian Acad. Sci. Math. Sci. 87, 147-160. [4.16.5]

    Article  MATH  Google Scholar 

  • Mondal, P. K. 2013 Thermodynamically consistent limiting forced convection heat transfer in a asymmetrically heated porous channel: An analytical study. Transp. Porous Media 100, 17-37. Erratum 101, 533-533, 2014. [4.9]

    Article  MathSciNet  Google Scholar 

  • Montakhab, A. 1979 Convective heat transfer in porous media. ASME J. Heat Transfer 101, 507-571. [4.13]

    Article  Google Scholar 

  • Morega, A. M. and Bejan, A. 1994 Heatline visualization of convection in porous media. Int. J. Heat Fluid Flow 15, 42–47. [4.17]

    Article  Google Scholar 

  • Morega, A. M., Bejan, A. and Lee, S. W. 1995 Free stream cooling of a stack of parallel plates. Int. J. Heat Mass Transfer 38, 519–531. [4.15]

    Article  Google Scholar 

  • Moreno, R. M. and Tao, Y. X. 2006 Thermal and flow performance of a microconvective heat sink with three-dimensional constructal channel configuration. J. Heat Transfer 128, 740-751. [4.19]

    Article  Google Scholar 

  • Mukhopadhyay, S., De, P. R., Bhattacharyya, R. and Layek, G. C. 2012 Forced convective flow and heat transfer over a porous plate in a Darcy-Forchheimer porous medium in presence of radiation. Meccanica 47, 153-161. [4.16.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Muralidhar, K. and Suzuki, K. 2001 Analysis of flow and heat transfer in a regenerator mesh using a non-Darcy thermally non-equilibrium model. Int. J. Heat Mass Transfer 44, 2493-2504. [4.10]

    Article  MATH  Google Scholar 

  • Murty, V. D., Camden, M. P., Clay, C. L. and Paul, D. B. 1990 A study of non-Darcian effects on forced convection heat transfer over a cylinder embedded in a porous medium. Heat Transfer 1990, Hemisphere, Washington, DC, vol. 5, pp. 201-206. [4.3]

    Google Scholar 

  • Nakayama, A. and Ebinuma, C. D. 1990 Transient non-Darcy forced convective heat transfer from a flat plate embedded in a fluid-saturated porous medium. Int. J. Heat Fluid Flow 11, 249-263. [4.6, 4.7]

    Article  Google Scholar 

  • Nakayama, A. and Pop, I. 1993 Momentum and heat transfer over a continuously moving surface in a non-Darcian fluid. Wärme-Stoffübertrag, 28, 177-184. [4.16.5]

    Article  Google Scholar 

  • Nakayama, A. and Shenoy, A. V. 1993b Non-Darcy forced convective heat transfer in a channel embedded in a non-Newtonian inelastic fluid-saturated porous medium. Canad. Chem. Engng. 71, 168-173. [4.16.3]

    Article  Google Scholar 

  • Nakayama, A., Kokudai, T. and Koyama, H. 1988 Integral method for non-Darcy free convection over a vertical flat plate and cone embedded in a fluid-saturated porous medium. Wärme-Stoffübertrag. 23, 337-341. [5.8]

    Article  Google Scholar 

  • Nakayama, A., Kokudai, T. and Koyama, H. 1990a Non-Darcian boundary layer flow and forced convective heat transfer over a flat plate in a fluid-saturated porous medium. ASME J. Heat Transfer 112, 157-162. [4.8, 8.1.5]

    Article  Google Scholar 

  • Nakayama, A., Koyama, H. and Kuwahara, F. 1988 An analysis on forced convection in a channel filled with a porous medium: Exact and approximate solutions. Wärme-Stoffubertrag. 23, 291-296. [4.9]

    Article  Google Scholar 

  • Nakayama, A., Kuwahara, F., Sugiyama, M. and Xu, G. 2001 A two-energy model for conduction and convection in porous media. Int. J. Heat Mass Transfer 44, 4375-4379. [4.10]

    Article  MATH  Google Scholar 

  • Nakayama, A., Kuwahara, F., Unemoto, T. and Hatashi, T. 2002 Heat and fluid flow within an anisotropic porous medium. ASME J. Heat Transfer 124, 746-753. [4.16.5]

    Article  Google Scholar 

  • Narasimhan, A. and Lage, J. L. 2001a Modified Hazen-Dupuit-Darcy model for forced convection of a fluid with temperature-dependent viscosity. ASME J. Heat Transfer 123, 31-38. [4.16.1]

    Article  Google Scholar 

  • Narasimhan, A. and Lage, J. L. 2001b Forced convection of a fluid with temperature-dependent viscosity through a porous medium channel. Numer. Heat Transfer A 40, 801-820. [4.16.1]

    Article  Google Scholar 

  • Narasimhan, A. and Lage, J. L. 2002 Inlet temperature influence on the departure from Darcy flow of a fluid with variable viscosity. Int. J. Heat Mass Transfer 45, 2419-2422. [4.16.1]

    Article  MATH  Google Scholar 

  • Narasimhan, A. and Lage, J. L. 2003 Temperature-dependent viscosity effects on the thermohydraulics of heated porous-medium channel flows. J. Porous Media 6, 149-158. [4.16.1]

    Article  MATH  Google Scholar 

  • Narasimhan, A. and Lage, J. L. 2004a Predicting inlet temperature effects on the pressure-drop of heated porous medium channel flows using the M-HDD model. ASME J. Heat Transfer 126, 301-303. [4.16.1]

    Article  Google Scholar 

  • Narasimhan, A. and Lage, J. L. 2004b Pump power gain for heated porous medium channel flows. ASME J. Fluids Engng. 126, 494-497. [4.16.1]

    Article  Google Scholar 

  • Narasimhan, A. and Lage, J. L. 2005 Variable viscosity forced convection in porous medium channels. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 195-234. [4.16.1]

    Google Scholar 

  • Narasimhan, A., Lage, J. L. and Nield, D. A. 2001b New theory for forced convection through porous media by fluids with temperature-dependent viscosity. ASME J. Heat Transfer 123, 1045-1051. [4.16.1]

    Article  Google Scholar 

  • Narasimhan, A., Lage, J. L., Nield, D. A. and Porneala, D. C. 2001a Experimental verification of two new theories predicting temperature-dependent viscosity effects on the forced convection in a porous channel. ASME J. Fluids Engng. 123, 948-951. [4.16.1]

    Article  Google Scholar 

  • Narasimhan, A., Reddy, B. V. K. and Dutta, P. 2012 Thermal management using the bi-disperse porous medium approach. Int. J. Heat Mass Transfer 55, 538-546. [4.16.4]

    Article  MATH  Google Scholar 

  • Narrein, K., Sivasankaran, S. and Ganesan, P. 2015 Convective heat transfer and fluid flow analysis in a helical microchannel filled with a porous medium. J. Porous Media 18, 791-800. [4.16.5]

    Article  Google Scholar 

  • Nasr, K., Ramadhyani, S. and Viskanta, R. 1994 An experimental investigation on forced convection heat transfer from a cylinder embedded in a packed bed. ASME J. Heat Transfer 116, 73-78. [4.3]

    Article  MATH  Google Scholar 

  • Nasr, K., Ramadhyani, S. and Viskanta, R. 1995 Numerical studies of forced convection heat transfer from a cylinder embedded in a packed bed. Int. J. Heat Mass Transfer 38, 2353-2366. [4.8]

    Article  MATH  Google Scholar 

  • Nazari, M., Shakerinejad, E., Nazari, M. and Rees, D. A. S. 2013b Natural convection induced by heated vertical plate embedded in a porous medium with transpiration: local thermal non-equilibrium. Transp. Porous Media 98, 223-238. [5.1.9.3]

    Article  MathSciNet  Google Scholar 

  • Nebbali, R. and Bouhadef, K. 2006 Numerical study of forced convection in a 3D flow of a non-Newtonian fluid through a porous duct. Int. J. Numer. Meth. Heat Fluid Flow 16, 870-889. [4.16.3]

    Article  Google Scholar 

  • Nebbali, R. and Bouhadef, K. 2011 Non-Newtonian fluid flow in plane channels: Heat transfer enhancement using porous blocks. Int. J. Therm. Sci. 50, 1984-1995. [4.11]

    Article  Google Scholar 

  • Nelson, R. A., Jr, and Bejan, A. 1998 Constructal optimization of internal flow geometry in convection. ASME J. Heat Transfer 120, 357-364. [6.2, 6.26]

    Article  Google Scholar 

  • Nield, D. A. 1998a Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Media 1, 181-186. [2.2.3, 4.10]

    MATH  Google Scholar 

  • Nield, D. A. 2002 A note on the modeling of local thermal non-equilibrium in a structured porous medium. Int. J. Heat Mass Transfer 45, 4367-4368. [4.10]

    Article  MATH  Google Scholar 

  • Nield, D. A. 2004c Forced convection in a plane plate channel with asymmetric heating. Int. J. Heat Mass Transfer 47, 5609-5612. (Erratum 51 (2008), 2108-2108,.) [4.9]

    Google Scholar 

  • Nield, D. A. 2006 A note on a Brinkman-Brinkman forced convection problem. Transp. Porous Media 64, 185-188. [4.9, 4.16.5]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. 2008c General heterogeneity effects on the onset of convection in a porous medium. In P. Vadasz, (ed.), Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 63-84. [6.13.5]

    Chapter  Google Scholar 

  • Nield, D. A. 2015a A note on the modelling of bidisperse porous media. Transp. Porous Media 111. 517-520. [1.10]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. 2015b A note on convection in fracture loops. Transp. Porous Media 109, 195-199. [6.13.6]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010e The effect of local thermal non-equilibrium on the onset of convection in a nanofluid. ASME Journal of Heat Transfer 132, 052405,.

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 1999 Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem. Int. J. Heat Mass Transfer 42, 3245-3252. [4.10]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2000 Effects of heterogeneity in forced convection in a porous medium: parallel plate channel or circular duct. Int. J. Heat Mass Transfer 43, 4119-4134. [4.12]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2001a Effects of heterogeneity in forced convection in a porous medium: parallel plate channel, asymmetric property variation, and asymmetric heating. J. Porous Media 4, 137-148. [4.12]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2001b The interaction of thermal nonequilibrium and heterogeneous conductivity effects in forced convection in layered porous channels. Int. J. Heat Mass Transfer 44, 4369-4373. [4.12]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2003a Effects of gross heterogeneity and anisotropy in forced convection in a porous medium: layered medium analysis. J. Porous Media 6, 51-57. [4.12]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2003b Effects of temperature-dependent viscosity in forced convection in a porous medium: layered medium analysis. J. Porous Media 6, 213-222. [4.16.6]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2003d Boundary-layer analysis of forced convection with a plate and a porous substrate. Acta Mech. 166, 141-148. [4.11]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2004a Interaction of transverse heterogeneity and thermal development of forced convection in a porous medium. Transport Porous Media 57, 103-111. [4.13]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2004b Forced convection in a helical pipe filled with a saturated porous medium. Int. J. Heat Mass Transfer 47, 5175-5180. [4.5]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2004c Forced convection in a bi-disperse porous medium channel: a conjugate problem. Int. J. Heat Mass Transfer 47, 5375-5380. [4.16.4]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2005a Thermally developing forced convection in a channel occupied by a porous medium saturated by a non-Newtonian fluid. Int. J. Heat Mass Transfer 48, 1214-1218. [4.13]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2005b A two-velocity two-temperature model for a bi-dispersed porous medium: forced convection in a channel. Transport in Porous Media, 59, 325-339. [4.16.4]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2005c Heat transfer in bidisperse porous media. In Transport Phenomena in Porous Media III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 34-59. [4.16.4]

    Chapter  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2005d Thermal development of forced convection in a channel or duct partly occupied by a porous medium. J. Porous Media 8, 627-638. [4.11]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2006 Forced convection with slip-flow in a channel or duct occupied by a hyper-porous medium saturated by a rarefied gas. Transport Porous Media 64, 161-170. [4.9]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2007b The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium. Int. J. Heat Mass Transfer 50, 1909-1915. [6.13.5]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2008a A bioheat transfer model: forced convection in a channel occupied by a porous medium with counterflow. Int. J. Heat Mass Transfer 51, 5534-5541. [2.6. 4.16.2]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009b The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792-5795. [9.7.3]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010a The onset of convection in a layer of cellular porous material : Effect of temperature dependent conductivity arising from radiative transfer. ASME J. Heat Transfer 132, #074503. [2.2.5, 6.27]

    Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010b Forced convection with phase-lagged oscillatory counterflow in a saturated porous channel. J. Porous Media 13, 601-611. [2.6, 4.16.2]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010c Forced convection in cellular porous materials: Effect of temperature-dependent conductivity arising from radiative transfer. Int. J. Heat Mass Transfer 53, 2680-2684. [2.2.5]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010d The onset of convection in a heterogeneous porous medium with transient temperature profile. Transp. Porous Media 85, 691-702. [6.18]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2011b A three-velocity three-temperature model for a tridisperse porous medium. Forced convection in a channel. Int. J. Heat Mass Transfer 54, 2490-2498. [4.16.4]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2011h Forced convection in a channel partly occupied by a bidisperse porous medium: Symmetric case. ASME J. Heat Transfer 133, 072601. [4.16.4]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013a A note on modeling high speed flow in a bidisperse porous medium. Transp. Porous Media 96, 495-499. [4.16.4]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013b Onset of convection with internal heating in a weakly heterogeneous porous medium. Transp. Porous Media 98, 543-552. [6.11.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013c Onset of convection with internal heating in a porous medium saturated by a nanofluid. Transp. Porous Media 99, 73-83. [9.7.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013d Optimization of forced convection heat transfer in a composite porous medium channel. Transp. Porous Media 99, 349-357. [4.12]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013e The effect of heterogeneity on the onset of double-diffusive convection induced by internal heating in a porous medium: A layered model. Transp. Porous Media 100, 83-99. [9.1.6.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013f The effect of pulsating deformation on the onset of convection in a porous medium Transp. Porous Media 98, 713-724. [6.23]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013g The onset of convection in a layered porous medium with vertical throughflow. Transp. Porous Media 98, 363-376. [6.13.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2013h A historical and topical note on convection in porous media. ASME J. Heat Transfer 135, 061201. [6.1]

    Article  Google Scholar 

  • Nield, D. A. and Lage, J. L. 1998 The role of longitudinal diffusion in a fully developed forced convective slug flow in a channel. Int. J. Heat Mass Transfer 41, 4375-4377. [4.5]

    Article  MATH  Google Scholar 

  • Nield, D. A., Junqueira, S. L. M. and Lage, J. L. 1996 Forced convection in a fluid saturated porous medium with isothermal and isoflux boundaries. J. Fluid Mech. 322, 201-214. [4.9]

    Article  MATH  Google Scholar 

  • Nield, D. A., Kuznetsov, A. V. and Avramenko, A. A. 2004c The onset of bioconvection in a horizontal porous medium layer. Transport in Porous Media 54, 335-344. [6.25]

    Article  Google Scholar 

  • Nield, D. A., Kuznetsov, A. V. and Xiong, M. 2002 Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium. Int. J. Heat Mass Transfer 45, 4949-4955. [4.13]

    Article  MATH  Google Scholar 

  • Nield, D. A., Kuznetsov, A. V. and Xiong, M. 2003a Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects. Int. J. Heat Mass Transfer 46, 643-651. [4.13]

    Article  MATH  Google Scholar 

  • Nield, D. A., Kuznetsov, A. V. and Xiong, M. 2003b Thermally developing forced convection in a porous medium: parallel-plate channel or circular tube with walls at constant heat flux. J. Porous Media 6, 203-212. [4.13]

    Article  MATH  Google Scholar 

  • Nield, D. A., Kuznetsov, A. V. and Xiong, M. 2004a Thermally developing forced convection in a porous medium: parallel-plate channel or circular tube with isothermal walls. J. Porous Media 7, 19-27. [4.13]

    Article  MATH  Google Scholar 

  • Nield, D. A., Porneala, D. C. and Lage, J. L. 1999 A theoretical study, with experimental verification, of the temperature-dependent viscosity effect on the forced convection through a porous medium channel. ASME J. Heat Transfer 121, 500-503. [4.16.1]

    Article  Google Scholar 

  • Nimvari, M. E., Maerefat, M. and El-Hossaini, M. K. 2012 Numerical simulation of turbulent flow and heat transfer in a channel partially filled with a porous media. Int. J. Therm. Sci. 60, 131-141. [4.11]

    Article  Google Scholar 

  • Noh, J. S., Lee, K. B. and Lee, C. G. 2006 Pressure loss and forced convective heat transfer in an annulus filled with aluminum foam. Int. Comm. Heat Mass Transfer 33, 434-444. [4.16.5]

    Article  Google Scholar 

  • Ordonez, J. C., Bejan, A. and Cherry, R. S. 2003 Designed porous media: Optimally nonuniform flow structures connecting one point with more points. Int. J. Therm. Sci. 42, 857-870. [4.19]

    Article  Google Scholar 

  • Ould-Amer, Y., Chikh, S., Bouhadef, K. and Lauriat, G. 1998 Forced convection cooling enhancement by use of porous materials. Int. J. Heat Fluid Flow 19, 251-258. [4.11]

    Article  Google Scholar 

  • Ouyang, X. L., Vafai, K. and Jiang, P. X. 2013b Analysis of thermally developing flow in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transfer 67, 768-775. [4.13]

    Article  Google Scholar 

  • Ozdemir, M. and Ozguc, F. 1997 Forced convection heat transfer in porous medium of wire screen meshes. Heat Mass Transfer 33, 129-136. [4.16.5]

    Article  Google Scholar 

  • Paek, J. W., Kang, B. H. and Hyun, J. M. 1999a Transient cool-down of a porous medium in pulsating flow. Int. J. Heat Mass Transfer 42, 3523-3527. [4.16.5]

    Article  MATH  Google Scholar 

  • Paek, J. W., Kim, S. Y., Kang, B. H. and Hyun, J. M. 1999b Forced convective heat transfer from anisotropic aluminum foam in a channel flow. Proc. 33 rd Nat. Heat Transfer Conf., NHTC99-158, 1-8. [4.12]

    Google Scholar 

  • Panda, S., Acharya, M. R. and Nayak, A. 2013 Non-Darcian effects on the flow of viscous fluid in partly porous configuration and bounded by heated oscillating plates. Springer Proc. Math. Stats. 28, 179-199. [4.11]

    Article  MathSciNet  Google Scholar 

  • Pantokratoras, A. 2007a Fully developed Couette flow of three fluids with variable thermophysical properties flowing through a porous medium channel heated asymmetrically with large temperature difference. ASME J. Heat Transfer 129, 1742-1747. [4.16.1]

    Article  Google Scholar 

  • Pantokratoras, A. 2007b Fully developed forced convection of three fluids with variable thermophysical properties flowing through a porous medium channel heated asymmetrically with large temperature differences. J. Porous Media 10, 409-419. [4.16.1]

    Article  Google Scholar 

  • Pantokratoras, A. 2007c Non-Darcian forced convection heat transfer over a flat plate in a porous medium with variable viscosity and variable Prandtl number. J. Porous Media 10, 201-208. [4.8]

    Article  Google Scholar 

  • Pantokratoras, A. 2015 Forced convection of Darcy-Brinkman porous medium with a convective thermal boundary condition. J. Porous Media 18, 873-878. [4.8]

    Article  Google Scholar 

  • Pantokratoras, A. and Magyari, E. 2010 Forced convection flow of power-law fluids over a flat plate embedded in a Darcy-Brinkman porous medium. Transp. Porous Media 85, 143-155. [4.16.3]

    Article  Google Scholar 

  • Pathak, M. G. and Ghiaasiaan, S. M. 2010 Convective heat transfer and thermal dispersion during laminar pulsating flow in porous media. Int. J. Therm. Sci. 50, 440–448. Erratum, 59 (2012), 260. [4.16.2]

    Article  Google Scholar 

  • Pathak, M. G., Mulcahey, T. I. and Ghiaasiaan, S. M. 2013 Conjugate heat transfer during oscillatory laminar flow in porous media. Int. J. Heat Mass Transfer 66, 23-30. [4.16.2]

    Article  Google Scholar 

  • Pavel, B. I. and Mohamad, A. A. 2004b Experimental and numerical investigation of heat transfer enhancement using porous material. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Évora, Portugal, pp. 331-338. [4.11]

    Google Scholar 

  • Pavel, B. I. and Mohamad, A. A. 2004c Experimental investigation of the potential of metallic porous inserts in enhancing forced convection heat transfer. ASME J. Heat Transfer 126, 540-545. [4.11]

    Article  Google Scholar 

  • Perng, S. W., Wu, H. W., Wang, R. H. and Jue, T. C. 2011 Unsteady convection heat transfer for a porous square cylinder varying cylinder-to-channel height ratio. Int. J. Therm. Sci. 50, 2006-2015. [4.9]

    Article  Google Scholar 

  • Petrescu, S. 1994 Comments on the optimal spacing of parallel plates cooled by forced convection. Int. J. Heat Mass Transfer 37, 1283. [4.15, 4.19, 4.20]

    Article  Google Scholar 

  • Pilevne, E. and Misirlioglu, A. 2007 Forced convection in a variable section axisymmetric channel with different porous layers and heat generation. WIT Trans. Modell. Simul. 46, 485-493. [4.11]

    Article  Google Scholar 

  • Poirier, H. 2003 Une théorie explique l’intelligence de la nature. Science & Vie 1034, 44-63. [4.18]

    Google Scholar 

  • Pop, I. and Yan, B. 1998 Forced convection flow past a circular cylinder and a sphere in a Darcian fluid at large Péclet numbers. Int. Comm. Heat Mass Transfer 25, 261-267. [4.3]

    Article  Google Scholar 

  • Poulikakos, D. and Kazmierczak, M. 1987 Forced convection in a duct partially filled with a porous material. ASME J. Heat Transfer 109, 653-662. [4.9]

    Article  Google Scholar 

  • Poulikakos, D. and Renken, K. 1987 Forced convection in a channel filled with porous medium, including the effects of flow inertia, variable porosity, and Brinkman friction. ASME J. Heat Transfer 109, 880-888. [4.9]

    Article  Google Scholar 

  • Prakash, O., Kumar, D. and Dwivedi, Y. K. 2012b Free convection effects and radiative heat transfer in MHD Stokes problem for the flow of dusty conducting fluid through porous medium. Pramana J. Phys. 78, 429-438. [5.1.9.10]

    Article  Google Scholar 

  • Prasad, B. G., Kumar, R., Shekhar Prasad, R. A. J. 2013 MHD forced convection with laminar pulsating flow in saturated porous channel. J. Indian Math. Soc. 80, 99-110. [4.16.2]

    MathSciNet  MATH  Google Scholar 

  • Prasad, K. V., Abel, M. S., Khan, S. K. and Datti, P. S. 2002 Non-Darcy forced convective heat transfer in a viscoelastic fluid flow over a non-isothermal sheet. J. Porous Media 5, 41-47. [4.16.3]

    Article  MATH  Google Scholar 

  • Qu, Z. G., Wang, T. S., Tan, W. G. and Lu, T. J. 2012a A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid. Heat Mass Transfer 48, 1385-1395. [2.2.1]

    Article  Google Scholar 

  • Qu, Z. G., Xu, H. J. and Tao, W. G. 2012b Fully developed forced convection in an annulus partly filled with metallic foams: An analytical solution. Int. J. Heat Mass Transfer 55, 7508-7519. [4.11]

    Article  Google Scholar 

  • Rabhi, R., Amami, B., Dhahri, H. and Mhimid, A. 2016 Entropy generation for an axisymmetric MHD flow under thermal non-equilibrium in porous micro duct using a modified lattice Bolzmann method. J. Magnet. Magnet. Mater. 419, 521–532. [4.16.5]

    Article  Google Scholar 

  • Rachedi, R. and Chikh, S. 2001 Enhancement of electronic cooling by insertion of foam materials. Heat Mass Transfer 37, 371-378. [4.11]

    Article  Google Scholar 

  • Raju, K. V. S., Sudhara Reddy, T., Raju, M. C., Satya Narayana, R., Venkataramana, S. 2013 MHD convective flow through a porous medium in a horizontal channel with insulated and impermeable bottom wall in the presence of viscous dissipation and Joule heating. Ain Shaims Engng. J., 5, 543-551. [4.16.5]

    Article  Google Scholar 

  • Ramesh, K. 2016 Effects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous medium. Comput. Meth. Programs Biomedicine 135, 1-14. [4.16.3]

    Article  Google Scholar 

  • Ramirez, N. E. and Saez, A. E. 1990 The effect of variable viscosity on boundary-layer heat transfer in a porous medium. Int. Comm. Heat Mass Transfer 17, 477-485. [4.2]

    Article  Google Scholar 

  • Ranjbar-Kani, A. A. and Hooman, K. 2004 Viscous dissipation effects on thermally developing forced convection in a porous medium: circular duct with isothermal wall. Int. Comm. Heat Mass Transfer 31, 897-907. [4.13]

    Article  Google Scholar 

  • Rao, B. K. 2001 Heat transfer to power-law fluid flows through porous media. J. Porous Media 4, 339-347. [4.16.3]

    Article  MATH  Google Scholar 

  • Rao, B. K. 2002 Internal heat transfer to power-law fluid flows through porous media. Exper. Heat Transfer 15, 73-88. [4.16.3]

    Article  Google Scholar 

  • Rashad, A. M. and Bakier, A. Y. 2009 MHD effects on non-Darcy forced convection boundary layer flow past a permeable wedge in a porous medium with uniform heat flux. Nonlinear Anal. Modell. Control 14, 249-261. [4.16.5]

    MathSciNet  MATH  Google Scholar 

  • Rashidi, M. M., Momoniat, E., Ferdous, M. and Basinparsa, A. 2014a Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media. Math. Prob. Engng. 239082. [9.7.3]

    Google Scholar 

  • Rashidi, M. M., Ali, M., Freidoonimehr, N., Rostami, B. and Hossain, M. A. 2014b Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv. Mech. Engng. 735939. [8.1.4]

    Google Scholar 

  • Rashidi, S., Nouri-Borujerdi, M. S., Valipour, M. S., Ellahi, R. and Pop, I. 2015c Stress-jump and continuity interface conditions for a cylinder embedded in a porous medium. Transp. Porous Media 107, 171-186. [4.11]

    Article  Google Scholar 

  • Rashidi, S., Tamayol, A., Valipour, M. S. and Shokri, N. 2013 Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring. Int. J. Heat Mass Transfer 63, 91-100. [4.11]

    Article  Google Scholar 

  • Rassoulinejad-Mousavi, S. M., Abbasbandy, S. and Alsulami, H. H. 2014 Analytical flow study of a conducting Maxwell fluid through a porous saturated channel at various wall boundary conditions. European Phys. J. Plus 129, #181. [7.1.6]

    Google Scholar 

  • Rassoulinejad-Mousavi, S. M. and Abbasbandy, S. 2011 Analysis of forced convection in a circular tube filled with Darcy-Brinkman-Forchheimer porous medium using spectral homotopy analysis method. ASME J. Fluids Engng. 133, 101207. [4.9]

    Article  Google Scholar 

  • Rassoulinejad-Mousavi, S. M., and Yaghoobi, H. 2014 Effect of nonlinear drag term on viscous dissipation in a fluid saturated porous medium channel with various boundary conditions at the walls. Arabian J. Sci. Engng. 39, 1231-1240. [4.9]

    Article  MathSciNet  Google Scholar 

  • Rees, D. A. S. and Magyari, E. 2008 Comments on the paper “Non-Darcian forced convection flow of viscous dissipating fluid over a flat plate embedded in a porous medium,” by O.Aydin and A. Kaya. Transp. Porous Media 73, 187-189. [4.8, 8.1.1]

    Google Scholar 

  • Reis, A. H. 2006 Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl. Mech. Rev. 59, 1-6. [4.18.5]

    Article  Google Scholar 

  • Reis, A. H. and Gama, C. 2010 Sand size versus beachface slope – An explanation based on the constructal law. Geomorphology 114, 276-283. [4.18.5]

    Article  Google Scholar 

  • Reis, A. H., Miguel, A. F. and Bejan, A. 2006 Constructal theory of particle agglomeration and design of air-cleaning devices. J. Appl. Phys. D 39, 2311-2316 [4.18.5]

    Article  Google Scholar 

  • Renken, K. J. and Poulikakos, D. 1988 Experiment and analysis of forced convective heat transport in a packed bed of spheres. Int. J. Heat Mass Transfer 31, 1399-1408. [4.9]

    Article  Google Scholar 

  • Renken, K. J. and Poulikakos, D. 1989a Experiments on forced convection from a horizontal heated plate in a packed bed of glass spheres. ASME J. Heat Transfer 111, 59-65. [4.8]

    Article  Google Scholar 

  • Revellin, R., Thome, J. R., Bejan, A. and Bonjour, J. 2009 Constructal tree-shaped microchannel networks for maximizing the saturated critical heat flux. Int. J. Thermal Sci. 48, 342-352. [4.19]

    Article  Google Scholar 

  • Rizk, T. A. and Kleinstreuer, C. 1991 Forced-convection cooling of a linear array of blocks in open and porous matrix channels. Heat Transfer Engng. 12, 40-47. [4.11]

    Article  Google Scholar 

  • Rocha, L. A. O. 2009 Convection in Channels and Porous Media; Analysis, Optimization, and Constructal Design. VDM Verlag, Saarbrücken, Germany. [4.18.5]

    Google Scholar 

  • Rocha, L. A. O., Lorente, S. and Bejan A. 2009 Tree-shaped vascular wall designs for localized intense cooling. Int. J. Heat Mass Transfer 52, 4535-4544. [4.19]

    Article  MATH  Google Scholar 

  • Rocha, L. A. O., Lorente, S. and Bejan, A. 2012 Constructal design of underground heat sources and sinks for the annual cycle. Int. J. Heat Mass Transfer 55¸7882-7837. [4.18.5]

    Google Scholar 

  • Rohsenow, W. M. and Choi, H. Y. 1961 Heat, Mass and Momentum Transfer. Prentice-Hall, Englewood Cliffs, NJ. [4.5]

    Google Scholar 

  • Rohsenow, W. M. and Hartnett, J. P. 1973 Handbook of Heat Transfer. McGraw-Hill, New York. [4.5]

    Google Scholar 

  • Romero, L. A. 1994 Low or high Péclet number flow past a sphere in a saturated porous medium. SIAM J. Appl. Math. 54, 42-71. [4.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Romero, L. A. 1995a Low or high Péclet number flow past a prolate spheroid in a saturated porous medium. SIAM J. Appl. Math. 55, 952-974. [4.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Romero, L. A. 1995b Forced convection past a slender body in a saturated porous medium. SIAM J. Appl. Math. 55, 975-985. [4.16.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Rosa, R. N., Reis, A. H. and Miguel, A. F. 2004 Bejan’s Structural Theory of Shape and Structure, Évora Geophysical Center, University of Évora, Portugal. [4.18]

    Google Scholar 

  • Rossi di Schio, E. 2012 The LTNE model for forced convection in a duct filled by a Darcy metallic foam. JP J. Heat Mass Transfer 6, 311-325. [4.10]

    Google Scholar 

  • Rossi di Schio, E. and Barletta, A. 2012 Periodic forced convection in a Darcy metallic foam: the LTNE model. ASME IMECE Proc. 7, 2735-2742. [4.10]

    Google Scholar 

  • Roy, M., Basak, T. and Roy, S. 2015 Analysis of entropy generation during mixed convection in porous square cavities: Effect of thermal boundary conditions. Numer. Heat Transfer A 68, 925-957. [4.17, 8.2.1]

    Article  Google Scholar 

  • Saati, A. A. and Mohamad, A. A. 2007 Heat transfer enhancement in a composite parallel plate channel: Utilizing the low-Reynolds-number k-epsilon model. J. Porous Media 10, 249-259. [4.11]

    Article  Google Scholar 

  • Sadrhosseini, H., Sehat, A. and Shafii, M. B. 2016 Effect of magnetic field on internal forced convection of ferrofluid flow in porous media. Expt. Heat Transfer 29, 1-16. [4.16.5]

    Article  Google Scholar 

  • Saidi, M. H. and Khiabani, R. H. 2007 Forced convective heat transfer in parallel flow multilayer microchannels. ASME J. Heat Transfer 129, 1230-1236. [4.16.5]

    Article  Google Scholar 

  • Saidu, I., Yusuf, M. W., Uwanta, I. T. and Iguda, A. 2010 MHD effects on convective flow of dusty viscous fluid with fraction in porous medium. J. Appl. Sci. Res. 6, 6094-6105 and Aust. J. Basic Appl. Sci. 4, 6094-6105. [4.16.5]

    Google Scholar 

  • Santos, N. B. and de Lemos, M. J. S. 2006 Flow and heat transfer in a parallel-plate channel with porous and solid baffles. Numer. Heat Transfer A 49, 471-494. [4.11]

    Article  Google Scholar 

  • Sattar, M. D. A. 1993 Free and forced convection boundary flow through a porous medium with large suction. Int. J. Energy Res. 17,1-7. [4.16.2]

    Article  Google Scholar 

  • Satyamurty, W. and Bhargavi, D. 2010 Forced convection in thermally developing region of a channel partially filled with a porous material and optimal porous fraction. Int. J. Therm. Sci. 49, 319-322. [4.11]

    Article  Google Scholar 

  • Sayehvand, H., Dehkordi, E. K. and Parsa, A. B. 2016 Numerical analysis of forced convection heat transfer from two tandem circular cylinders embedded in a porous medium. Thermal Science, to appear. [4.16.5]

    Google Scholar 

  • Seddeek, M. A. 2002 Effects of magnetic field and variable viscosity on forced non-Darcy flow about a flat plate with variable wall temperature in porous media in the presence of suction and blowing. J. Appl. Mech. Tech. Phys. 43, 13-17. [4.16.1]

    Article  MATH  Google Scholar 

  • Seddeek, M. A. 2005 Effects of non-Darcian on forced convection heat transfer over a flat plate in a porous medium with temperature dependent viscosity. Int. Comm. Heat Mass Transfer 32, 258-265. [4.16.1]

    Article  Google Scholar 

  • Sehat, A., Sadrhosseini, H. and Shafil, M. B. 2014 Experimental study of internal forced convection of ferrofluid in porous media. Defect Diffus. Forum 348, 139-146. [4.16.5]

    Article  Google Scholar 

  • Sener, H., Yataganbaba, A, and Kurtbas, I. 2016 Forchheimer forced convection in a rectangular channel partially filled with aluminium foam. Expt. Therm. Fluid Sci. 75, 162-172. [4.11]

    Article  Google Scholar 

  • Sharma, J., Gupta, U. and Wanchoo, R. K. 2016 Magneto binary nanofluid convection in a porous medium. Int. J. Chem. Engrg. 9424936. [9.7.2]

    Google Scholar 

  • Sharma, P., Kumar, N. K. and Sharma, T. 2016 Entropy analysis in MHD forced convective flow through a circular channel filled with porous medium in the presence of thermal radiation. Int. J. Heat Tech. 34, 311-318. [4.16.5]

    Article  Google Scholar 

  • Sheikhnejad, Y., Hosseini, R. and Avval, M. S. 2015 Laminar forced convection of ferrofluid in a horizontal tube partially filled with porous media in the presence of a magnetic field. J. Porous Media 18, 437-448. [4.16.5]

    Article  Google Scholar 

  • Shenoy, A. V. 1992 Darcy natural, forced and mixed convection heat transfer from an isothermal vertical flat plate in a porous medium saturated with an elastic fluid of constant viscosity. Int. J. Engng Sci. 30, 455-467. [4.12.3, 5.1.9.2, 8.1.1]

    Article  MATH  Google Scholar 

  • Shenoy, A. V. 1993a Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. Transport in Porous Media 11, 219-241. [4.16.3, 5.1.9.2, 8.1.1]

    Google Scholar 

  • Shenoy, A. V. 1993b Forced convection heat transfer to an elastic fluid of constant viscosity flowing through a channel filled with a Brinkman-Darcy medium. Wärme-Stoffübertrag. 28, 295-297. [4.16.3]

    Google Scholar 

  • Shih, M. H. and Huang, M. J. 2002 A study of liquid evaporation on forced convection in porous media with non-Darcy effects. Acta Mech 154, 215-231. [4.16.5]

    Article  MATH  Google Scholar 

  • Shim, K. I., Yoo, J. W. and Kim, S. J. 2002 Thermal analysis of an internally finned tube using a porous medium approach. Heat Transfer 2002, Proc. 12 th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 785-790. [4.16.5]

    Google Scholar 

  • Shojaeian, M. and Kosar, A. 2016 Convective heat transfer of non-Newtonian power-law slip flows and plug flows with variable thermophysical properties in parallel plate and circular microchannels. Int. J. Therm. Sci. 100, 155-168. [4.16.3]

    Article  Google Scholar 

  • Shokouhmand, H. and Sayehvand, H. 2010 Study of forced convection in a pipe partially filled with a porous medium. J. Enhanced Heat Transfer 17, 205-221. [4.11]

    Article  Google Scholar 

  • Shokouhmand, H., Isfahani, A. H. M. and Shirani, E. 2010 Friction and heat transfer coefficient in micro and nano channels filled with porous media for wide range of Knudsen number. Int. Comm. Heat Mass Transfer 37, 890-894. [4.9]

    Article  Google Scholar 

  • Shokouhmand, H., Jam, F. and Salimpour, M. R. 2011 The effect of porous insert position on the enhanced heat transfer in partially filled channels. Int. Comm. Heat Mass Transfer 38, 1162-1167. [4.11]

    Article  Google Scholar 

  • Shuja, S. Z., Yilbas, B. S. and Kassas, M. 2009a Flow over porous blocks in a square cavity: influence of heat flux and porosity on heat transfer rates. Int. J. Therm. Sci. 48, 1564-1573. [4.11]

    Article  Google Scholar 

  • Shuja, S. Z. Yilbas, B. S. and Kassas, M. 2009b Flow over porous blocks in an open cavity: Effect of block aspect ratio and porosity on heat transfer characteristics. Int. J. Therm. Sci. 48, 1564-1573. [4.11]

    Article  Google Scholar 

  • Silva, C. and Reis, A. H. 2014 Heart rate, arterial distensibility, and optimal performance of the arterial tree. J. Biomechanics 47, 2878-2882. [4.18.5]

    Article  Google Scholar 

  • Singh, A. K., Roy, S. and Basak, K. 2012 Analysis of Bejan’s heatlines on visualization of heat flow and thermal mixing in titled square cavities. Int. J. Heat Mass Transfer 55, 2965-2983. [4.17]

    Article  Google Scholar 

  • Singh, K. D. 2011 Hydromagnetic forced convective oscillatory slip flow through porous medium in a vertical channel with thermal radiation. Proc. Indian, Nat. Sci. Acad. 77, 19-30. [4.16.2]

    Google Scholar 

  • Singh, R. 2011 Predictions of thermal conductivity of complex materials. In Heat Transfer in Multiphase Materials (eds. A. Oechsner, G. E. Murch), Springer, pp. 235-274. [2.2.1]

    Google Scholar 

  • Sobera, M. P., Klein, C. R., van den Akker, H. A. and Brasser, P. 2003 Convective heat and mass transfer to a cylinder sheathed by a porous layer. AIChE J. 49, 3018-3028. [4.11]

    Article  Google Scholar 

  • Sokolov, V. E. 1982 Mammal Skin, University of California Press, Berkeley, CA. [4.14]

    Google Scholar 

  • Soundalgekar, V. M., Lahuriher, R. M. and Pohanerkar, S. G. 1991 Heat transfer in unsteady flow through a porous medium between two infinite parallel plates in relative motion. Forschung. Ing. 57, 28-31. [4.12.2]

    Article  Google Scholar 

  • Sousa, A. C. M. 2005 Heat transfer distribution for a free/porous system with forced convection and heat generation—a numerical study. Strojniski Vestnik: J. Mech. Engng. 51, 519-526. [4.11]

    Google Scholar 

  • Sözen, M. and Kuzay, T. M. 1996 Enhanced heat transfer in round tubes with porous inserts. Int. J. Heat Fluid Flow, 17, 124-129. [4.12.1]

    Google Scholar 

  • Sözen, M. and Vafai, K. 1990 Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed. Int. J. Heat Mass Transfer 33, 1247-1261. [4.6.5, 10.4]

    Article  Google Scholar 

  • Sözen, M. and Vafai, K. 1991 Analysis of oscillating compressible flow through a packed bed. Int. J. Heat Fluid Flow 12, 130-136. [4.9]

    Article  Google Scholar 

  • Sözen, M. and Vafai, K. 1993 Longitudinal heat dispersion in porous beds with real-gas flow. AIAA J. Thermophys. Heat Transfer 7, 153-157. [4.6.5]

    Article  Google Scholar 

  • Spiga, M. and Morini, G. L. 1999 Transient response of nonthermal equilibrium packed beds. Int. J. Engng. Sci. 37, 179-186. [4.10]

    Article  Google Scholar 

  • Srinivasacharya, D. and Bindu, K. H. 2016 Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions. Energy 111, 165-177. [4.16.5]

    Article  Google Scholar 

  • Srinivasan, V., Vafai, K. and Christenson, R. N. 1994 Analysis of heat transfer and fluid flow through a spirally fluted tube using a porous substrate approach. ASME J. Heat Transfer 116, 543-551. [4.11]

    Article  Google Scholar 

  • Stalio, E., Breugem, W, P, and Boersama, B. J. 2004 Numerical study of turbulent heat transfer above a porous wall. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Évora, Portugal, pp. 191-198. [4.11]

    Google Scholar 

  • Stanescu, G., Fowler, A. J. and Bejan, A. 1996 The optimal spacing of cylinders in free-stream cross-flow forced convection. Int. J. Heat Mass Transfer 39, 311–317. [4.15]

    Article  Google Scholar 

  • Straughan, B. 2014a Anisotropic inertia effect in microfluidic porous thermosolutal convection. Microfluids Nanofluids 16, 361-368. [9.1.6.4]

    Article  Google Scholar 

  • Straughan, B. 2014b Bidisperse poroacoustic waves. Int. J. Engng. Sci. 77, 30-38. [4.16.4]

    Article  Google Scholar 

  • Straughan, B. 2014c Nonlinear stability in microfluidic porous convection problems. Ric. Mat. 63. 265-288. [6.23]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. 2014d Nonlinear stability of convection in a porous layer with solid partitions. J. Math. Fluid Mech. 16, 727-736. [6.13.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Suleiman, A. S. and Dukhan, N. 2014 Forced convection inside metal foam: Simulation over a long domain and analytical validation. Int. J. Therm. Sci. 86, 104-114. [4.5]

    Article  Google Scholar 

  • Sundaravadivelu, K. and Tso, C. P. 2003 Influence of viscosity variations on the forced convection flow through two types of heterogeneous porous media with isoflux boundary condition. Int. J. Heat Mass Transfer 46, 2329-2339. [4.12]

    Article  MATH  Google Scholar 

  • Sung, H. J., Kim, S. Y. and Hyun, J. M. 1995 Forced convection from an isolated heat source in a channel with porous medium. Int. J. Heat Fluid Flow 16, 527-535. [4.16.5]

    Article  Google Scholar 

  • Sultani, H. and Ajamein, H. 2014 Analytical solution of forced convection heat transfer in a horizontal anisotropic porous media cylinder: Effect of variations of frictional heating and heat generation in the temperature profile and Nusselt number. Chem. Biochem. Engng. Quart. 28, 301–318. [4.16.3]

    Article  Google Scholar 

  • Tada, S. and Ichimiya, K. 2007b Numerical simulation of forced convection in a porous circular tube with constant wall heat flux: An extended Graetz problem with viscous dissipation. Chem. Engng. Tech. 30, 1362-1368. [4.13]

    Article  Google Scholar 

  • Tajik Jamal-Abad, M., Saedodin, S. and Amimy, M. 2016 Analytical investigation of forced convection in thermally developed region of a channel partially filled with an asymmetric porous material –LTNE model. Int. J. Engrg. Trans. A, 29, 1024-1033. [4.10, 4.11]

    Google Scholar 

  • Teamah, M. A., El-Maghiany, W. E. and Hanafy, A. A. 2011a Effect of Reynolds and Prandtl numbers on laminar convection in horizontal pipe partially filled with porous material. European J. Sci. Res. 66, 171-186. [4.11]

    Google Scholar 

  • Teamah, M. A., El-Maghiany, W. M. and Dawood, M. M. K. 2011b Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material. Int. J. Therm. Sci. 50, 1512-1522. [4.11]

    Article  Google Scholar 

  • Thayalan, N. and Hung, Y. M. 2013 Momentum integral method for forced convection in thermal non-equilibrium power law fluid saturated porous media. Chem. Engng. Commun. 200, 269-288. [4.10]

    Article  Google Scholar 

  • Thevenin, J. 1995 Transient forced convection heat transfer from a circular cylinder embedded in a porous medium. Int. Comm. Heat Mass Transfer 22, 507-516. [4.6.5]

    Article  Google Scholar 

  • Tian, X., Wang, P., Xu, S. and Wu, X. 2016 Dissipation effects on forced convection heat transfer in a power law fluid saturated porous medium. J. Porous Media 19, 885–900. [4.16.3]

    Article  Google Scholar 

  • Tien, C. L. and Hunt, M. L. 1987 Boundary layer flow and heat transfer in porous beds. Chem. Engng. Proc. 21, 53-63. [4.9]

    Article  Google Scholar 

  • Tong, T. W., Sharatchandra, M. C. and Gdoura, Z. 1993 Using porous inserts to enhance heat transfer in laminar fully-developed flows. Int. Comm. Heat Mass Transfer 20, 761-770. [4.11]

    Article  Google Scholar 

  • Torabi, M. and Peterson, G. P. 2016 Effects of velocity slip and temperature jump on the heat transfer and entropy generation in micro porous channels under magnetic field. Int. J. Heat Mass Transfer 102, 585-595. [4.16.5]

    Article  Google Scholar 

  • Torabi, M., Karimi, N. and Zhang, K. 2015b Heat transfer and second law analysis of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy 93, 106-127. [4.11]

    Article  Google Scholar 

  • Torabi, M., Peterson, G. P., Torabi, M. and Karimi, N. 2016b A thermodynamic analysis of forced convection through porous media using pore scale modelling. Int. J. Heat Mass Transfer 99, 303-316. [4.16.5]

    Article  Google Scholar 

  • Torabi, M., Torabi, M. and Peterson, G. P. 2017 Heat transfer and entropy generation analyses of forced convection through porous media using pore scale modeling. ASME J. Heat Transfer 139, 012601. [4.5]

    Article  Google Scholar 

  • Torabi, M., Zhang, K., Yang, G., Wang, J. and Wu, P. 2015a Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model. Energy 82, 922-938.. [4.11]

    Article  Google Scholar 

  • Trevisan, O. V. and Bejan, A. 1987a Combined heat and mass transfer by natural convection in a vertical enclosure. J. Heat Transfer 109, 104–109. [9.2.2]

    Article  Google Scholar 

  • Tung, V. X. and Dhir, V. K. 1993 Convective heat transfer from a sphere embedded in unheated porous media. ASME J. Heat Transfer 115, 503-506. [4.3, 8.1.3]

    Article  Google Scholar 

  • Tzeng, S. C. 2006 Convective heat transfer in a rectangular channel filled with sintered bronze beads and periodically spaced heated blocks. ASME J. Heat Transfer 128, 453-464. [4.11]

    Article  Google Scholar 

  • Tzeng, S. C. 2007 Spatial thermal regulation of aluminum foam heat sink using a sintered porous conductive pipe. Int. J. Heat Mass Transfer 50, 117-126. [4.16.5]

    Article  MATH  Google Scholar 

  • Tzeng, S. C. and Jeng, T. M. 2006 Convective heat transfer in porous channels with a 90 degree turned flow. Int. J. Heat Mass Transfer 49, 1452-1461. [4.16.5]

    Article  Google Scholar 

  • Tzeng, S. C. and Ma, W. P. 2004 Experimental investigation of heat transfer in sintered porous heat sink. Int. Comm. Heat Mass Transfer 31, 827-836. [4.16.5]

    Article  Google Scholar 

  • Tzeng, S. C., Ma, W. P. and Wang, Y. C. 2007 Friction and forced convective heat transfer in a sintered porous channel with obstacle blocks. Heat Mass Transfer 43, 687-697. [4.11]

    Article  Google Scholar 

  • Tzeng, S. C., Soong, C. Y. and Wong, S. C. 2004 Heat transfer in rotating channel with open cell porous aluminum foam. Int. Comm. Heat Mass Transfer 31, 261-272. [4.16.5]

    Article  Google Scholar 

  • Ucar, E., Mobedi, M. and Pop, I. 2013a Effect of an inserted porous layer located at a wall of a parallel plate channel on forced convection heat transfer. Transp. Porous Media 98¸ 35-57. [4.11]

    Google Scholar 

  • Ucar, E., Mobedi, M., Ozerde, B . and Pop, I. 2013b A comment on change of Nusselt number sign in a channel filled by a fluid-saturated porous medium with constant heat flux. Transp. Porous Media 96, 97-103. [4.12]

    Article  Google Scholar 

  • Umavathi, J. C. and Shekar, M. 2014 Flow and heat transfer in a porous medium saturated by a micropolar fluid between parallel permeable disks. J. Porous Media 17, 669-684. [4.16.5]

    Article  Google Scholar 

  • Umavathi, J. C., Chamkha, A. J. and Sridhar, K. S. R. 2010 Generalised plane Couette flow and heat transfer in a composite channel. Transp. Porous Media 85, 157-169. [4.11]

    Article  Google Scholar 

  • Umavathi, J. C., Chamkha, A. J., Matteen, A. and Al-Mudhaf, A. 2006 Oscillatory flow and heat transfer in horizontal composite porous channel. Int. J. Heat Tech. 24, 75-86. [4.11]

    Google Scholar 

  • Umavathi, J. C., Chamkha, A. J., Matteen, A. and Al-Mudhaf, A. 2009 Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium. Nonlinear Anal.Modell. Control. 4, 397-415. [4.11]

    MATH  Google Scholar 

  • Vafai, K. 1984 Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 147, 233-259. [4.8]

    Article  MATH  Google Scholar 

  • Vafai, K. 1986 Analysis of the channeling effect in variable-porosity media. ASME J. Energy Res. Tech. 108, 131-139. [4.8]

    Article  Google Scholar 

  • Vafai, K. and Amiri, A. 1998 Non-Darcian effects in confined forced convection flows. In Transport Phenomena in Porous Media (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 313-329. [4.9]

    Google Scholar 

  • Vafai, K. and Huang, P. C. 1994 Analysis of heat transfer regulation and modification employing intermittently emplaced porous cavities. ASME J. Heat Transfer 116, 604-613. [4.11]

    Article  Google Scholar 

  • Vafai, K. and Kim, S. J. 1989 Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transfer 111, 1103-1106. [4.9]

    Article  Google Scholar 

  • Vafai, K. and Kim, S. J. 1990 Analysis of surface enhancement by a porous substrate. ASME J. Heat Transfer 112, 700-706. [4.8, 4.14]

    Article  Google Scholar 

  • Vafai, K. and Sözen, M. 1990a Analysis of energy and momentum transport for fluid flow through a porous bed. ASME J. Heat Transfer 112, 690-699. [4.6.5]

    Article  Google Scholar 

  • Vafai, K. and Sözen, M. 1990b An investigation of a latent heat storage porous bed and condensing flow through it. ASME J. Heat Transfer 112, 1014-1022. [4.6.5]

    Article  Google Scholar 

  • Vafai, K. and Thiyagaraja, R. 1987 Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transfer 30, 1391-1405. [4.8]

    Article  MATH  Google Scholar 

  • Vafai, K. and Tien, C. L. 1989 A numerical investigation of phase change effects in porous materials. Int. J. Heat Mass Transfer 32, 1261-1277. [4.10]

    Article  Google Scholar 

  • Vafai, K. and Tien, C.L. 1981 Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Transfer 24, 195-203. [1.5.3, 4.9]

    Article  MATH  Google Scholar 

  • Vafai, K., Alkire, R. L. and Tien, C. L. 1985 An experimental investigation of heat transfer in variable porosity media. ASME J. Heat Transfer 107, 642-647. [4.8]

    Article  Google Scholar 

  • Valipour, M. S. and Ghadi, A. Z. 2012 Numerical investigation of forced convective heat transfer around and through a porous circular cylinder with internal heat generation. ASME J. Heat Transfer 134, 062601. [4.11]

    Article  Google Scholar 

  • Varahasamy, M. and Fand, R. M. 1996 Heat transfer by forced convection in pipes packed with porous media whose matrices are composed of spheres. Int. J. Heat Mass Transfer 39, 3931-3947. [4.9]

    Article  Google Scholar 

  • Vu, T. L., Lauriat, G. and Manca, O. 2014 Forced convection of air through networks of square rods or cylinders embedded in microchannels. Microfluids Nanofluids 16, 287-304. [4.9]

    Article  Google Scholar 

  • Vyas, P. and Ranjan, A. 2015 Entropy analysis of radiative MHD forced convection flow with weakly temperature dependent convection coefficient in porous medium channel. Acta Tech. CSAV 60, 1-14. [4.16.5]

    Google Scholar 

  • Wang, C. and Tu, C. 1989 Boundary-layer flow and heat transfer of non-Newtonian fluids in porous media. Int. J. Heat Fluid Flow 10, 160-165. [4.16.3]

    Article  Google Scholar 

  • Wang, C. Y. 2008 Analytical solution for forced convection in a semi-circular channel filled with a porous medium. Transp. Porous Media 73, 369-378. [4.16.5]

    Article  MathSciNet  Google Scholar 

  • Wang, C. Y. 2010a Analytical solution for forced convection in a sector duct filled with a porous medium. ASME J. Heat Transfer 132, #084502. [4.16.5]

    Google Scholar 

  • Wang, C. Y. 2010b Flow through super-elliptic ducts filled with a Darcy-Brinkman medium. Transp. Porous Media 81, 207-217. [4.16.5]

    Article  MathSciNet  Google Scholar 

  • Wang, C. Y. 2011a Flow and heat transfer through a polygonal duct filled with a porous medium. Transp. Porous Media 90, 321-332. [4.16.5]

    Article  MathSciNet  Google Scholar 

  • Wang, C. Y. 2011b Forced convection in a lens-shaped duct filled with a porous medium. J. Porous Media 14, 743-749. [4.5]

    Article  Google Scholar 

  • Wang, J., Yang, M. and Zhang, Y. 2014a Onset of double-diffusive convection in horizontal cavity with Soret and Dufour effects. Int. J. Heat Mass Transfer 78, 1023-1031. [9.1.4]

    Article  Google Scholar 

  • Wang, K., Tavakkoli, F., Wang, S. and Vafai, K. 2015 Analysis and analytical characterization of bioheat transfer during radiofrequency ablation. J. Biomech. 48, 930-940. [2.6]

    Article  Google Scholar 

  • Wang, K. M., Lorente, S. and Bejan A. 2009b Vascular materials cooled with grids and radical channels. Int. J. Heat Mass Transfer 52, 1230-1239. [4.19]

    Article  MATH  Google Scholar 

  • Wang, K. M., Lorente, S. and Bejan, A. 2007c Vascularization with grids of channels: multiple scales, loops and body shapes. J. Phys. D: Appl. Phys. 40, 4740-4749. [4.19]

    Article  Google Scholar 

  • Wang, K. M., Lorente, S. and Bejan, A. 2009a The transient response of vascular composites cooled with grids and radial channels. Int. J. Heat Mass Transfer 52, 4175-4183. [4.19]

    Article  MATH  Google Scholar 

  • Wang, K., Tavakkoli, F. and Vafai, K. 2015a Analysis of gaseous slip flow in a porous micro-annulus under local thermal non-equilibrium condition – An exact solution. Int. J. Heat Mass Transfer 89, 1331-1341. [4.10]

    Article  Google Scholar 

  • Wang, K., Vafai, K. and Wang, D. 2016a Analytical characterization of gaseous slip flow and heat transport through a parallel-plate microchannel with a centered porous substrate. Int. J. Numer. Meth. Heat Fluid Flow 26, 854-878. [4.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, K.Y., Tavakkoi, F., Wang, S. T. and Vafai, K. 2015b Forced convection gaseous slip flow in a porous circular microtube: An exact solution. Int. J. Thermal Sci. 97, 152-162. [4.10]

    Article  Google Scholar 

  • Wang, M. and Georgiadis, J. G. 1996 Conjugate forced convection in crossflow over a cylinder array with volumetric heating. Int. J. Heat Mass Transfer 39, 1351-1361. [4.16.5]

    Article  MATH  Google Scholar 

  • Wang, P., Vafai, K., and Liu, D. Y. 2014b Analysis of radiative effect under local thermal non-equilibrium conditions in porous media – Applications to a solar air receiver. Numer. Heat Transfer A 65, 931-948. [4.10]

    Article  Google Scholar 

  • Wang, P., Yin, Y.Z. and Shen, S. Q, 2014c Numerical study of convection heat transfer in ordered three-dimensional porous media. Acta Phys. Sinica 63, 214401. [4.10]

    Google Scholar 

  • Wang, Q. W., Yang, J., Zeng, M., and Wang, G. 2010d Three-dimensional numerical study of natural convection in an inclined porous cavity with time sinusoidal oscillating boundary conditions. Int. J. Heat Fluid Flow 31, 70-82. [7.8]

    Article  Google Scholar 

  • Wang, K. M., Lorente, S. and Bejan, A. 2010c Vascular structures for volumetric cooling and mechanical strength. J. Applied Phys. 107, #044901. [4.19]

    Google Scholar 

  • Wang, W. and Sangani, A. S. 1997 Nusselt number for flow perpendicular to arrays of cylinders in the limit of small Reynolds and large Péclet numbers. Phys. Fluids 9, 1529-1539. [4.16.5]

    Article  Google Scholar 

  • Wang, Y., Wang, J. and Jia, P. 2011 Performance of forced convection heat transfer in porous media based on Gibson-Ashby constitutive model. Heat Transfer Engng. 32, 1093-1098. [4.16.3]

    Article  Google Scholar 

  • Wong, W. S., Rees, D. A. S. and Pop, I. 2004 Forced convection past a heated cylinder in a porous medium using a nonequilibrium model; finite Péclet number effects. Int. J. Thermal Sci. 43, 213-220. [4.10]

    Article  Google Scholar 

  • Wu, C. C. and Hwang, G. J. 1998 Flow and heat transfer characteristics inside packed and fluidized beds. ASME J. Heat Transfer 120, 667-673. [4.6.5]

    Article  Google Scholar 

  • Xiong, M. and Kuznetsov, A. V. 2000 Forced convection in a Couette flow in a composite duct: An analysis of thermal dispersion and non-Darcian effects. J. Porous Media 3, 245-255. [4.11]

    Article  MATH  Google Scholar 

  • Xu, H. J., Qu, Z. G. and Tao, W. Q. 2011a Analytical solution of forced convective heat transfer in tubes partially filled with metallic foam using the two-equation model. Int. J. Heat Mass Transfer 54, 3846-3855. [4.11]

    Article  MATH  Google Scholar 

  • Xu, H. J., Qu, Z. G. and Tao, W. Q. 2011b Thermal transport analysis in parallel-plate channel filled with open-celled metallic foams. Int. Comm. Heat Mass Transfer 38, 868-873. [4.11]

    Article  Google Scholar 

  • Xu, H. J., Zhao, C. Y. and Xu, Z. G. 2016 Analytical considerations of slip flow and heat transfer through microfoams in mini/microchannels with asymmetric wall heat fluxes. Appl. Thermal Engng. 93, 15-26. [4.10]

    Article  Google Scholar 

  • Xu, P., Yu, B., Qiu, S. and Cai, J. 2008 An analysis of the radial flow in the heterogeneous porous media based on fractal and constructal tree networks. Physica A 387, 6471-6483. [4.18.5]

    Article  Google Scholar 

  • Xu, R. N. and Jiang, P. X. 2004 Experimental investigation of convection in min-fin structures and sintered porous. J. Engng. Thermophys. 25, 275-277 and J. Enhanced Heat Transfer 11, 391-405. [4.16.5]

    Google Scholar 

  • Xu, X. J., Qu, Z. G., Lu, T. J., He, Y. L. and Tao, W. Q. 2011c Thermal modeling of forced convection in a parallel-plate channel partially filled with metallic foams. ASME J. Heat Transfer 133, 092603. [4.11]

    Article  Google Scholar 

  • Xu, Y. S., Liu, Y., Yang, X. F. and Wu, F. M. 2008 Lattice Boltzmann simulation of convection in a porous medium with temperature jump and velocity boundary conditions. Commun. Theor. Phys. 49, 1319-1322. [2.7]

    Article  Google Scholar 

  • Yan, B. and Pop, I. 1998 Unsteady forced convection heat transfer about a sphere in a porous medium. In Mathematics of Heat Transfer (G. E. Tupholme and A. S. Wood, eds.) Clarendon Press, Oxford, pp. 337-344. [4.6.4]

    Google Scholar 

  • Yang, C., Ando, K. and Nakayama, A. 2011a A local thermal non-equilibrium analysis of fully developed forced convection flow in a tube filled with a porous medium. Transp. Porous Media 89, 237-249. [4.10]

    Article  MathSciNet  Google Scholar 

  • Yang, C., Kuwahara, F., Liu, W. and Nakayama, A. 2011b Thermal non-equilibrium forced convective flow in an annulus filled with a porous medium. Open Transp. Phen. J. 3, 31-39. [4.10]

    Article  Google Scholar 

  • Yang, C., Liu, W. and Nakayama, A. 2009 Forced convective heat transfer enhancement in a tube with its core partially filled with porous medium. Open Transp. Phen. J. 1, 1-6. [4.11]

    Article  Google Scholar 

  • Yang, C., Nakayama, A. and Liu, W. 2012a Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium. Int. J. Therm. Sci. 54, 98-108. [4.11]

    Article  Google Scholar 

  • Yang, J. H. and Lee, S. L. 1999 Effect of anisotropy on transport phenomena in anisotropic porous media. Int. J. Heat Mass Transfer 42, 2673-2681. [4.16.5]

    Article  MATH  Google Scholar 

  • Yang, J., Wang, J., Bu, S. S., Zeng, H., Wang, Q. W. and Nakayama, A. 2012b Experimental analysis of forced convective heat transfer in novel structured packed beds of particles. Chem. Engng. Sci. 71, 126-137. [2.2.3, 4.16.5]

    Article  Google Scholar 

  • Yang, J., Wang, J., Bu, S., Zeng, M. and Wang, Q. W. 2012b Experimental study of forced convective heat transfer in structured packed porous media of particles. J. Engng. Thermophys. 33, 851-855. [4.9]

    Google Scholar 

  • Yang, J., Wang, Q. W., Zeng, M. and Nakayama, A. 2010a Computational study of forced convection heat transfer in structured packed beds with spherical or ellipsoidal particles. Chem. Engng. Sci. 65, 726-738. [4.16.5]

    Article  Google Scholar 

  • Yang, J., Yan, X., Zeng, M. and Wang, Q. W. 2012c Experimental study of forced convective heat transfer in structured packed porous media with spherical or ellipsoidal particles. Nuclear Power Engng. 33, (suppl 1) 85-89. [4.9]

    Google Scholar 

  • Yang, J., Zeng, M., Wang, Q. W., and Nakayama, A. 2010b Forced convection heat transfer enhancement by porous pin fins in rectangular channels. ASME J. Heat Transfer 132, 051702. [4.11]

    Article  Google Scholar 

  • Yang, J., Zeng, M., Yan, X. and Wang, Q. W. 2009 Numerical study of forced convection in a vertical channel filled with heat-generating porous medium. Nuclear Power Engng. 30, 16-20, 50. [4.16.5].

    Google Scholar 

  • Yang, J., Zeng, M., Yan, X. and Wang, Q. W. 2010 Three-dimensional numerical study on forced convection heat transfer in structured packed porous media. Nuclear Power Engng. 31, (suppl) 103-108. [4.16.5]

    Google Scholar 

  • Yang, K. and Vafai, K. 2010 Analysis of temperature gradient bifurcation in porous media: An exact solution. Int J. Heat and Mass Transfer 53, 4316-4325. [2.2.3, 4.10]

    Article  MATH  Google Scholar 

  • Yang, K. and Vafai, K. 2011a Transient aspects of heat flux bifurcation in porous media; A exact solution. ASME J. Heat Transfer 133, #052602. [2.2.3, 4.10]

    Google Scholar 

  • Yang, K. and Vafai, K. 2011b Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects: An exact solution. Int J. Heat and Mass Transfer 54, 5286-5297. [2.2.3, 4.10]

    Article  MATH  Google Scholar 

  • Yang, K. and Vafai, K. 2011c Restrictions on the validity of the thermal conditions at the porous-fluid interface – An exact solution. ASME J. Heat Transfer 133, #112601. [2.2.3, 4.10]

    Article  Google Scholar 

  • Yang, L., Sun, B., Wang, W. and Liu, Q. 2012d Effect of crushed rock layer width on natural convection cooling of highway embankment in permafrost regions. Appl. Mech. Mater. 204-208, 1638-1643. [7.3.7]

    Google Scholar 

  • Yang, X. and Liu, X. M. 2006 Temperature profiles of local thermal nonequilibrium for thermally developing forced convection in porous medium parallel plate channel. Appl. Math. Mech. (English ed.) 27, 1123-1131. [4.13]

    Google Scholar 

  • Yang, Y. T. and Hwang, M. L. 2008 Numerical simulation of turbulent fluid flow and heat transfer characteristics in a rectangular porous channel with periodically spaced heated blocks. Numer. Heat Transfer A 54, 819-836. [4.11]

    Article  Google Scholar 

  • Yee, S. S. and Kamiuto, K. 2005 Combined forced-convective and radiative heat transfer in cylindrical packed beds with constant wall temperatures. J. Porous Media 8, 481-492. [4.16.5]

    Article  Google Scholar 

  • Yenigun, O. and Cetkin, E. 2016 Experimental and numerical investigation of constructal vascular channels for self-cooling: Parallel channels, tree-shaped and hybrid designs. Int. J. Heat Mass Transfer 103, 1155-1165. [4.19]

    Article  Google Scholar 

  • Yih, K. A. 1998d The effect of uniform suction/blowing on heat transfer of magnetohydrodynamic Hiemenz flow through porous media. Acta Mech. 130, 147-158. [4.16.5]

    Article  MATH  Google Scholar 

  • Yih, K. A. 1998e Blowing/suction effect on non-Darcy forced convection flow about a flat plate with variable wall temperature in porous media. Acta Mech. 131, 255-265. [4.16.5]

    Article  MATH  Google Scholar 

  • You, H. I. and Song, J. S. 1999 Heat transfer analysis of non-Darcian flow in local thermal non-equilibrium. J. Chinese Soc. Mech. Engrs. 20, 75-80. [4.10]

    Google Scholar 

  • Young, T. J. and Vafai, K. 1998 Convective flow and heat transfer in a channel containing multiple heated obstacles. Int. J. Heat Mass Transfer 41, 3279-3298. [4.11]

    Article  MATH  Google Scholar 

  • Young, T. J. and Vafai, K. 1999 Experimental and numerical investigation of forced convective characteristics of arrays of channel mounted obstacles. ASME J. Heat Transfer 121, 34-42. [4.11]

    Article  Google Scholar 

  • Yovogan, J. and Degan, G. 2013 Effect of anisotropic permeability on convective heat transfer through a porous river bed underlying a fluid layer. J. Engng. Math. 81, 127-140. [4.16.5]

    Article  MathSciNet  Google Scholar 

  • Yu, W. B., Ya, Y. M., Zhang, X. F., Zhang, S.J. and Xiao, J. Z. 2004 Laboratory investigation on coding effect of coarse rock layer and fine rock layer in permafrost regions. Cold Regions Sci. Tech. 38, 31-42. [4.16.5]

    Article  Google Scholar 

  • Yucel, N. and Guven, R. T. 2007 Forced-convection cooling enhancement of heating elements in a parallel-plates channel using porous inserts. Numer. Heat Transfer A 51, 293-312. [4.11]

    Article  Google Scholar 

  • Yucel, N. and Guven, R. T. 2008 Numerical study of heat transfer in a rectangular channel with porous covering obstacles. Transp. Porous Media 77, 41-58. [4.11]

    Article  Google Scholar 

  • Yuan, K., Ji, Y. and Chung, J. N. 2008 Feasibility study of cooling enhancement with porous metal inserts. J. Thermophys. Heat Transfer 22, 493–500. [4.11]

    Article  Google Scholar 

  • Zahi, N., Boughamoura, A., Dhahr, H. and Ben Nasrallah, S. 2008 Flow and heat transfer in a cylinder with a porous medium insert along the compression stroke. J. Porous Media 11, 525-540. [4.11]

    Article  Google Scholar 

  • Zallama, B., Ghedira, L. Z. and Ben Nasrallah, S. 2016a Viscous dissipation generation in an incompressible fluid flow through an adiabatic cylinder filled with a porous medium. Appl. Therm. Engng. 103, 730-746. [4.9]

    Article  Google Scholar 

  • Zallama, B., Ghedira, L. Z. and Ben Nasrallah, S. 2016b Forced convection in a porous medium, including viscous dissipation effects. J. Appl. Fluid Mech. 9, 139-145. [4.9]

    Article  Google Scholar 

  • Zehforoosh, A. and Hossainpour, S. 2010 Numerical investigation of pressure drop reduction without surrendering heat transfer enhancement in partially porous channel. Int. J. Therm. Sci. 49, 1649-1662. [4.11]

    Article  Google Scholar 

  • Zeng, X., Dai, W. and Bejan, A. 2010 Vascular countercurrent network for 3D triple-layered skin structure with radiation heating. Numer. Heat Transfer A 75, 369-391. [4.19]

    Article  Google Scholar 

  • Zhang, B. L. and Zhao, Y. 2000 A numerical method for simulation of forced convection in a composite porous/fluid system. Int. J. Heat Fluid Flow 21, 432-441. [4.11]

    Article  Google Scholar 

  • Zhang, H. Y. and Huang, X. Y. 2001 A two-equation analysis of convection in porous media. Transport Porous Media 44, 305-324. [Correction in 46 (2002), 113-115.] [4.10]

    Article  Google Scholar 

  • Zhang, H., Lorente, S. and Bejan, A. 2009a Vascularization with line-to-line trees in counterflow heat exchange. Int. J. Heat Mass Transfer 52, 4327-4342. [4.19]

    Article  MATH  Google Scholar 

  • Zhang, J. J., Qu, Z. G., Xu, H. J. and Tao, W. Q. 2014 Semi-analytical solution for fully developed forced convection in metal-foam filled tube with uniform wall temperature. Science China Tech. Sci. 57, 2487-2499. [4.10]

    Article  Google Scholar 

  • Zhang, M. Y., Cheng, G. D. and Li, S. Y. 2009 b Numerical study of the influence of geometrical parameters on natural convection cooling of the crushed rock revetment. Sci. China E 52, 539-545. [7.3.7]

    Article  MATH  Google Scholar 

  • Zhang, W., Li, Y. and Omambia, A. N. 2011 Reactive transport modeling of effects of convective mixing on long-term CO2 geological storage in deep saline formations. Int. J. Greenhouse Gas Control 5, 241-256. [11.11]

    Article  Google Scholar 

  • Zhang, X. W. and Liu, W. 2008 New criterion for local thermal equilibrium in porous media. J. Thermophys. Heat Transfer 22, 649-653. [4.10]

    Article  Google Scholar 

  • Zhang, X. W., Liu, W. and Liu, Z. C. 2009c Criterion for local thermal equilibrium in forced convection flow through porous media. J. Porous Media 12, 1103-1111. [4.10]

    Article  Google Scholar 

  • Zhang, Z. J., Du, J. H. and Wang, B. X. 1999c Effect of viscous dissipation on forced-convection heat transfer in porous media. J. Shanghai Jiaotong Univ. 33, 979-982. [4.9]

    Google Scholar 

  • Zhao, C. Y., Kim, T., Lu, T. J. and Hodson, H. P. 2004b Thermal transport in high porosity cellular metal foams. J. Thermophys. Heat Transfer 18, 309-317. [4.9]

    Article  Google Scholar 

  • Zhao, F. Y., Liu, D. and Tang, G. F. 2007a Application issues of the streamline, heatline and massline for conjugate heat and mass transfer. Int. J. Heat Mass Transfer 50, 320-334. [4.17]

    Article  MATH  Google Scholar 

  • Zhao, F. Y., Liu, D. and Tang, G. F. 2007b Free convection from one thermal and solute source in a confined porous medium. Transp. Porous Media 70, 407-452. [9.2.2]

    Article  Google Scholar 

  • Zhao, T. S. and Song, Y. J. 2001 Forced convection in a porous medium heated by a permeable wall perpendicular to the flow direction: analyses and measurements. Int. J. Heat Mass Transfer 44, 1031-1037. [4.16.5]

    Article  MATH  Google Scholar 

  • Zheng, K. C., Wen, Z., Wang, Z. S., Lou, G. F. Z., Liu, X. L. and Wu, W. F. 2012 Review on forced convection heat transfer in porous media. Acta Physica Sinica 61, 01449. [4.16.5]

    Google Scholar 

  • Zhou, S. B., Chen, L. G. and Sun, F. R. 2008 Constructal optimization for a solid-gas reactor based on triangular element. Science in China E 51, 1554-1562. [4.18.5]

    Article  MATH  Google Scholar 

  • Zukauskas, A. 1987 Convective heat transfer in cross flow. Handbook of Single-Phase Convective Heat Transfer (eds. S. Kakac, R. K. Shah and W. Aung), Wiley, New York, Chapter 6. [4.15]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nield, D.A., Bejan, A. (2017). Forced Convection. In: Convection in Porous Media. Springer, Cham. https://doi.org/10.1007/978-3-319-49562-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49562-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49561-3

  • Online ISBN: 978-3-319-49562-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics