Skip to main content

Heat Transfer Through a Porous Medium

  • Chapter
  • First Online:
Convection in Porous Media

Abstract

In this chapter we focus on the equation that expresses the first law of thermodynamics in a porous medium. We start with a simple situation in which the medium is isotropic and where radiative effects, viscous dissipation, and the work done by pressure changes are negligible. Very shortly we shall assume that there is local thermal equilibrium so that T s = T f = T, where T s and T f are the temperatures of the solid and fluid phases, respectively. Here we also assume that heat conduction in the solid and fluid phases takes place in parallel so that there is no net heat transfer from one phase to the other. More complex situations will be considered in Sect. 6.5. The fundamentals of heat transfer in porous media also are presented in Bejan et al. (2004) and Bejan (2004a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkareem, A. H., Kimura, S., Kiwata, T. and Komatsu, N. 2009 Experimental study on oscillatory convection in a Hele-Shaw cell due to unstably heated side. Transp. Porous Media 76, 363-375. [2.5]

    Article  Google Scholar 

  • Aguilar-Madera, C. G., Valdés-Parada, F. J., Goyeau, B. and Ochoa-Tapia, J. A. 2011b Effective thermal properties at the fluid-porous medium interfacial region: Role of the particle-particle contact. Rev. Mexicana Ing. Quim. 10, 375-386. [2.4]

    MATH  Google Scholar 

  • Aichlmayr, H. T. and Kulacki, F. A. 2006 The effective thermal conductivity of saturated porous media. Adv. Heat Transfer 39, 377-460. [2.2.1]

    Article  Google Scholar 

  • Alazmi, B. and Vafai, K. 2000 Analysis of variants within the porous media transport models. ASME J. Heat Transfer 122, 303-326. [7.6.2]

    Article  Google Scholar 

  • Alazmi, B. and Vafai, K. 2002 Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transfer 45, 3071-3087. [2.2.3, 4.10]

    Article  MATH  Google Scholar 

  • Al-Hadhrami, A. K., Elliot, L. and Ingham, D. B. 2003 A new model for viscous dissipation in porous media across a range of permeability values. Transport in Porous Media 53, 117-122. [2.2.2]

    Article  MathSciNet  Google Scholar 

  • Aniss, S., Brancher, J. P. and Souhar, M. 1993 Thermal convection in a magnetic fluid in an annular Hele-Shaw cell. J. Magnet. Magnet. Mater. 122, 319-322. [2.5]

    Article  MATH  Google Scholar 

  • Aniss, S., Souhar, M. and Brancher, J. P. 1995 Asymptotic study and weakly nonlinear analysis at the onset of Rayleigh-Bénard convection in Hele-Shaw cell. Phys. Fluids 7, 926-934. [2.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Aniss, S.,Belhaq, M., Souhar, M. and Velarde, M. G. 2005 Asymptotic study of Rayleigh-Bénard convection under time periodic heating in a Hele-Shaw cell. Physica Scripta 71, 395-401. [2.5]

    Article  Google Scholar 

  • Askarizadeh, H. and Ahmadikia, H. 2015 Nonequilibrium dual-phase-lag heat transfer through biological tissues. J. Porous Media 18, 57-69. [2.6]

    Article  Google Scholar 

  • Babushkin, I. A. and Demin, V. A. 2006a Experimental and theoretical investigation of transient convective regimes in a Hele-Shaw cell. Fluid Dyn. 41, 323-329. [2.5]

    Article  MATH  Google Scholar 

  • Babushkin, I. A. and Demin, V. A. 2006b Vibrational convection in the Hele-Shaw cell: Theory and experiment. J. Appl. Mech. Theor. Phys. 47, 183-189. [2.5]

    MATH  Google Scholar 

  • Babushkin, I. A., Demin, V. A., Kondrashov, A. N. and Pepelyaev, D. V. 2012 Thermal convection in a Hele-Shaw cell under the action of centrifugal forces. Fluid Dynamics 47, 10-19.

    Article  MathSciNet  MATH  Google Scholar 

  • Backhaus, S., Turitsyn, K. and Ecke, R. E. 2011 Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett 106, #104501. [2.5]

    Article  Google Scholar 

  • Bahrami, M., Culham, J. R. and Yovanovich, M. M. 2006 Effective thermal conductivity of rough spherical packed beds. Int. J. Heat Mass Transfer 49, 3691-3701. [2.2.1]

    Article  MATH  Google Scholar 

  • Barletta, A. 2008 Comments on a paradox of viscous dissipation in relation to the Oberbeck-Boussinesq approach. Int. J. Heat Mass Transfer 51, 6312-6316. [2.2.2]

    Article  MATH  Google Scholar 

  • Barletta, A. 2009 Local energy balance, specific heats and the Oberbeck-Boussinesq approximation. Int. J. Heat Mass Transfer 52, 5266-5270. [2.3]

    Article  MATH  Google Scholar 

  • Bejan, A. 2004a Convection Heat Transfer, 3rd ed., Wiley, New York. [1.5.2, 2.1, 4.17, 4.18, 4.20]

    MATH  Google Scholar 

  • Bejan, A., Dincer, I., Lorente, S., Miguel, A. F. and Reis, A. H. 2004 Porous and Complex Flow Structures in Modern Technologies. Springer, New York. [1.5.2, 2.1, 3.3, 3.7, 4.18, 4.19, 6.26, 10.1.7]

    Book  Google Scholar 

  • Belmiloudi, A. 2016 Parameter identification problems and analysis of the impact of porous media in biofluid heat transfer in biological tissues during thermal therapy. Nonlinear Anal. Real World Appl. 11, 1345-1363.

    Article  MathSciNet  MATH  Google Scholar 

  • Betchen, L., Straatman, A. G. and Thompson, B. E. 2006 A non-equilibrium finite-volume model for conjugate fluid/porous/solid domains. Numer. Heat Transfer A 49, 543-565. [2.4]

    Article  Google Scholar 

  • Bhadauria, B. S., Bhatia, P. K. and Debnath, L. 2005 Convection in Hele-Shaw cell with parametric excitation. Int. J. Non-Linear Mech. 40, 476-484. [2.5]

    Article  MATH  Google Scholar 

  • Bhownik, A., Singh, R., Repaka, R. and Mishra, S. C. 2013 Conventional and newly developed bioheat transport models in vascularized tissues: A review. J. Thermal Biology 38, 107-125. [2.6]

    Article  Google Scholar 

  • Bories, S. A. 1987 Natural convection in porous media. Advances in Transport Phenomena in Porous Media (eds. J. Bear and M. Y. Corapcioglu), Martinus Nijhoff, The Netherlands, 77-141. [6.3, 6.5]

    Chapter  Google Scholar 

  • Boussinesq, J. 1903 Théorie Analytique de la Chaleur, Vol. 2, Gauthier-Villars, Paris. [2.3]

    Google Scholar 

  • Braverman, L. M. 1991 Concerning thermal convection in a Hele-Shaw cell. Heat Transfer Soviet Research 23, 1085-1091. [2.5]

    Google Scholar 

  • Breugem, W. P. and Rees, D. A. S. 2006 A derivation of the volume-averaged Boussinesq equations for flow in porous media with viscous dissipation. Transport Porous Media 63, 1-12. [2.2.2]

    Article  MathSciNet  Google Scholar 

  • Buikis, A. and Ulanova, N. 1996 Modelling of non-isothermal gas flow through a heterogeneous medium. Int. J. Heat Mass Transfer 39, 1743-1748. [2.7]

    Article  MATH  Google Scholar 

  • Buonanno, G. and Carotenuto, A. 1997 The effective thermal conductivity of a porous medium with interconnected particles. Int. J. Heat Mass Transfer 40, 393-405. [2.2.1]

    Article  MATH  Google Scholar 

  • Carrillo, L. P. 2005 Convective heat transfer for viscous fluid flow through a metallic packed bed. Interciencia 30, 81-86 and 109-111. [2.2.3]

    Google Scholar 

  • Carson, J. K., Lovattt, S. J., Tanner, D. J. and Cleland, A. C. 2005 Thermal conductivity bounds for isotropic porous materials. Int. J. Heat Mass Transfer 48, 2150-2158. [2.2.1]

    Article  MATH  Google Scholar 

  • Cattaneo, C. 1948 Sulla conduzione del calore. Atti Sem. Mat. Fis. Modena 3, 83-101. [2.2.6]

    MathSciNet  MATH  Google Scholar 

  • Catton, I., Georgiadis, J. G. and Adnani, P. 1988 The impact of nonlinear convective processes in transport phenomena in porous media. ASME HTD 96, Vol. 1, 767-777. [2.2.4]

    Google Scholar 

  • Chen, L. E., Feng, H. J., Xie, Z. H. and Sun, F. R. 2014 “Disk-point” mass transfer constructal optimizations with Darcy and Hagen-Poiseuille flows in porous media. Applied Math. Modell. 38, 1288-1299. [4.18.5]

    Article  Google Scholar 

  • Cheng, G. J., Yu, A. B. and Zulli, P. 1999 Evaluation of effective thermal conductivity from the structure of a packed bed. Chem. Eng.Sci. 54, 4199-4209. [2.2.1]

    Article  Google Scholar 

  • Cheng, P. and Hsu, C. T. 1998 Heat conduction. Transport Phenomena in Porous Media I (eds. D. B. Ingam and I. Pop), Elsevier, Oxford, pp. 57-76. [2.2.1]

    Chapter  Google Scholar 

  • Cheng, P. and Hsu, C. T. 1999 The effective stagnant thermal conductivity of porous media with periodic structure. J. Porous Media. 2, 19-38. [2.2.1, 4.16.4]

    Article  MATH  Google Scholar 

  • Cherkaoui, A.S.M. and Wilcock, W.S.D. 2001 Laboratory studies of high Rayleigh number circulation in an open-top Hele-Shaw cell: an analogue to mid-ocean ridge hydrothermal systems. J. Geophys. Res. 106, 10983-11000. [11.8]

    Article  Google Scholar 

  • Combarnous, M. 1972 Description du transfert de chaleur par convection naturelle dans une couche poreuse horizontale à l’aide d’un coefficient de transfert solide-fluide. C. R. Acad. Sci. Paris A 275, 1375-1378. [6.5, 6.9.2]

    Google Scholar 

  • Cooper, C. A., Glass, R. J. and Tyler, S. W. 1997 Experimental investigation of the stability boundary for double-diffusive finger convection in a Hele-Shaw cell. Water Resources Res. 33, 517-526. [2.5, 9.1.1]

    Article  Google Scholar 

  • Cooper, C. A., Glass, R. J. and Tyler, S. W. 2001 Effect of buoyancy ratio on the development of double-diffusive finger convection in a Hele-Shaw cell. Water Resources Res. 37, 2323-2332. [9.1.1]

    Article  Google Scholar 

  • Costa, V. A. F. 2009 Discussion: “The modeling of viscous dissipation in a saturated porous medium” (Nield, D. A., 2007, ASME J. Heat Transfer, 129, pp 1459-1463.). ASME J. Heat Transfer 131, #025501. [2.2.2]

    Article  Google Scholar 

  • Costa, V. A. F. 2010 Comment on the paper I. A.Badruddin, Z. A., Zainal, Z. A. Khan, and Z. Mallick, Z. “Effect of viscous dissipation and radiation on natural convection in a porous medium embedded within vertical annulus.” IJTS 46(3) (2007) 221-227. Int. J. Therm. Sci. 49, 1874-1875. [2.2.2]

    Google Scholar 

  • Costa, V. A. F. 2013 On the energy conservation formulation for flows in porous media including viscous dissipation effects. Springer Proc. Math. Stat. 28, 55-66. [2.2.2]

    Article  MathSciNet  Google Scholar 

  • d’Hueppe, A., Chanddesris, M., Jamte, D. and Goyeau, B. 2012 Coupling a two-temperature model and a one-temperature model at a fluid-porous interface. Int. J. Heat Mass Transfer 55, 2510-2523. [1.6]

    Article  Google Scholar 

  • d’Hueppe, A., Chandesris, M., Jamet, D. and Goyeau, B. 2011 Boundary conditions at a fluid-porous interface for a convective heat transfer problem: Analysis of the jump relations flux. Int. J. Heat Mass. Transfer 54, 3683-3693. [2.4]

    Article  MATH  Google Scholar 

  • d’Hueppe, M., Chandesris, M., Jamet, D. and Goyeau, B. 2012 Coupling a two-temperature model and a one-temperature model at a fluid-porous interface. Int. J. Heat Mass Transfer 55, 2510-2523. [2.4]

    Article  Google Scholar 

  • de Lemos, M. J. S. 2005a Turbulent kinetic energy distribution across the interface between a porous medium and a clear region. Int. Comm. Heat Mass Transfer 32, 107-115. [1.8]

    Article  Google Scholar 

  • de Lemos, M. J. S. 2005b Mathematical modeling and applications of turbulent heat and mass transfer in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 409-454. [1.8]

    Google Scholar 

  • de Lemos, M. J. S. 2008 Analysis of turbulent flows in fixed and moving permeable media. Acta Geophys. 56, 562-583. [1.8]

    Article  Google Scholar 

  • Deléglise, M., Binéntruy, C., Castaing, P. and Krawczak, P. 2007 Use of non-equilibrium theory to predict transient temperature during non-isothermal resin flow in a fibrous porous medium. Int. J. Heat Mass Transfer 50, 2317-2324. [2.2.3]

    Article  MATH  Google Scholar 

  • Dixon, A. G. and Cresswell, D. L. 1979 Theoretical predictions of effective heat transfer mechanisms in regular shaped packed beds. AIChE Journal 25, 663-676. [2.2.3]

    Article  Google Scholar 

  • Elder, J. W. 1967a Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 29-48. [2.5, 6.9.1, 6.18]

    Article  Google Scholar 

  • Ene, H. J. and Sanchez-Palencia, E. 1982 On thermal equation for flow in porous media. Int. J. Engng. Sci. 20, 623-630. [2.2.3]

    Article  MATH  Google Scholar 

  • Erglis, K., Tatulcenkov, A., Kitenbergs, G., Petrichenko, O., Ergin, F. G., Watz, B. B. and Cebers, A. 2013 J. Fluid Mech. 714, 612-633. [2.5]

    Article  MathSciNet  Google Scholar 

  • Fan, J. and Wang, L. 2011a A general bioheat model at microscale. Int. J. Heat Mass Transfer 54, 722-726. [2.6]

    Article  MATH  Google Scholar 

  • Fan, J. and Wang, L. 2011b Analytical theory of bioheat transport. J. Appl. Phys. 109, 104702. [2.6]

    Article  Google Scholar 

  • Fourie, J. G. and Du Plessis, J. P. 2003a A two-equation model for heat conduction in porous media. (I. Theory) Transport Porous Media 53, 145-161. [2.2.3]

    Article  MathSciNet  Google Scholar 

  • Fourie, J. G. and Du Plessis, J. P. 2003b A two-equation model for heat conduction in porous media. (II. Application) Transport Porous Media 53, 163-174. [2.2.3]

    Article  MathSciNet  Google Scholar 

  • Fu, X., Viskanta, R. and Gore, J. P. 1998 Prediction of effective thermal conductivity for cellular ceramics. Int. Comm. Heat Mass Transfer 25, 151-161. [2.2.1]

    Article  Google Scholar 

  • Frick, H. and Müller, U. 1983 Oscillatory Hele-Shaw convection. J. Fluid Mech. 126, 521–532. [2.5]

    Article  MATH  Google Scholar 

  • Fomin, S., Shimizu, A. and Hashida, T. 2002 Mathematical modeling of convection heat transfer in a geothermal reservoir of fractal geometry. Heat Transfer 2002, Proc. 12th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 809–814. [2.7]

    Google Scholar 

  • Gamrat, G., Favre-Marinet, M. and Le Person, S. 2008 Numerical study of heat transfer over banks of rods in small Reynolds number cross-flow. Int. J. Heat Mass Transfer 51, 853-864. [2.7]

    Article  MATH  Google Scholar 

  • Goldstein, R. E., Pesci, A. I. and Shelley, M. J. 1998 Instabilities and singularities in Hele-Shaw flow. Phys. Fluids 10, 2701-2723. [2.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Golfier, F., Quintard, M. and Whitaker, S. 2002 Heat and mass transfer in tubes: an analysis using the method of volume averaging. J. Porous Media 5, 169-185. [2.2.3]

    Article  MATH  Google Scholar 

  • Gorin, A. V., Sikovskiy, D. F. and Khoruzhenko, A. G. 1993 Convective heat transfer from a horizontal cylinder in a porous medium and a narrow slot. Heat Transfer Res. 25, 970-974. [2.5, 5.5.1]

    Google Scholar 

  • Gorin, A. V., Sikovsky, D. P., Mikhailova, T. N. and Mukhin, V. A. 1998 Forced convection heat and mass transfer from a circular cylinder in a Hele-Shaw cell. Heat Transfer 1998, Proc. 11th IHTC, 3, 109-114. [2.5]

    Google Scholar 

  • Graham, M., Müller, U. and Steen, P. 1992 Time-periodic thermal convection in Hele-Shaw slots: The diagonal oscillation. Phys. Fluids A. 4, 2382-2393. [2.5, 6.4]

    Article  MATH  Google Scholar 

  • Grangeot, G., Quintard, M. and Whitaker, S. 1994 Heat transfer in packed beds: interpretation of experiments in terms of one- and two-equation models. Heat Transfer 1994, Inst. Chem. Engrs, Rugby, vol. 5, pp. 291-296. [2.2.3]

    Google Scholar 

  • Greenkorn, R. A. 1983 Flow Phenomena in Porous Media, Marcel Dekker, New York. [2.2.4]

    Google Scholar 

  • Griffiths, R. W. 1981 Layered double-diffusive convection in porous media. J. Fluid Mech. 102, 221-248. [2.5, 9.1.3]

    Article  Google Scholar 

  • Guo, Z. L. and Zhao, T. S. 2005a A lattice Boltzmann model for convective heat transfer in porous media. Numer. Heat TransferB, 47, 157-177. [2.7]

    Article  Google Scholar 

  • Guo, Z. L. and Zhao, T. S. 2005b Lattice Boltzmann simulation of natural convection with temperature-dependent viscosity in a porous cavity. Prog. Comput. Fluid Dyn. 5, 110-117. [2.7]

    Article  Google Scholar 

  • Haddad, S. A. M. 2013 Thermal convection in a Cattaneo-Fox porous material with Guyer-Krumhansl effects. Transp. Porous Media 100, 363-375. [2.2.6, 6.23]

    Article  MathSciNet  Google Scholar 

  • Haddad, S. A. M. 2014b Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux. Int. J. Heat Mass Transfer 68, 659-668. [2.2.6, 6.6]

    Article  Google Scholar 

  • Haddad, S. A. M. and Straughan, B. 2012 Porous convection and thermal oscillations. Ricerche di Matematica 61, 307-320. [2.2.6, 6.23]

    Article  MathSciNet  MATH  Google Scholar 

  • Haji-Sheikh, A. and Minkowycz, W. J. 2008 Heat transfer analysis under local thermal non-equilibrium conditions. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 39-62. [2.2.3, 4.10]

    Chapter  Google Scholar 

  • Handley, D. and Heggs, P. J. 1968 Momentum and heat transfer mechanisms in regular shaped packings. Trans. Inst. Chem. Engrs. 46, T251-T264. [2.2.3]

    Google Scholar 

  • Hartline, B. K. and Lister, C. R. B. 1977 Thermal convection in a Hele-Shaw cell. J. Fluid Mech. 79, 379-389. [2.5]

    Article  MATH  Google Scholar 

  • Hartline, B. K. and Lister, C. R. B. 1981 Topographic forcing of supercritical convection in a porous medium such as the oceanic crust. Earth Planet. Sci. Lett. 55, 75-86. [2.5, 11.6.2]

    Article  Google Scholar 

  • Hassanpour, S. and Saboonchi, A. 2014 Interstitial hyperthermia treatment of counter current vascular tissue: A comparison of Pennes, WJ and porous media bioheat models. J. Thermal Biology 46, 47-55. [2.6]

    Article  Google Scholar 

  • He, X. S. and Georgiadis, J. G. 1992 Direct numerical solution of diffusion problems with intrinsic randomness. Int. J. Heat Mass Flow 35, 3141-3151. [2.7]

    Article  Google Scholar 

  • Howell, J. R. 2000 Radiative transfer in porous media. Handbook of Porous Media (K. Vafai, ed.) Marcel Dekker, New York, pp. 663-698. [2.7]

    Google Scholar 

  • Hsiao, K. T. and Advani, S. G. 1999 Modified effective thermal conductivity due to heat dispersion in fibrous porous media. Int. J. Heat Mass Transfer 42, 1237-1254. [2.1.1]

    Article  MATH  Google Scholar 

  • Hsieh, W. H. and Lu, S. F. 2000 Heat-transfer analysis and thermal dispersion in thermally-developing region of a sintered porous metal channel. Int. J. Heat Mass Transfer 43, 3001-3011. [2.2.4]

    Article  MATH  Google Scholar 

  • Hsu, C. T. 1999 A closure model for transient heat conduction in porous media. ASME J. Heat Transfer 121, 733-739. [2.2.1]

    Article  Google Scholar 

  • Hsu, C. T. 2000 Heat conduction in porous media. Handbook of Porous Media (K Vafai, ed.) Marcel Dekker, New York, pp. 171-200. [2.2.1]

    Google Scholar 

  • Hsu, C. T. 2005 Dynamic modeling of convective heat transfer in porous media. Handbook of Porous Media (K Vafai, ed.), 2nd ed., Taylor and Francis, New York, pp. 39-80. [2.2.1, 2.5, 2.6]

    Google Scholar 

  • Hsu, C. T. and Cheng, P. 1990 Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33, 1587-1597. [1.5.2, 1.5.3, 2.2.4, 4.9]

    Article  MATH  Google Scholar 

  • Hsu, C. T., Cheng, P. and Wong, K. W. 1994 Modified Zehner-Schundler models for stagnant thermal conductivity of porous media. Int. J. Heat Mass Transfer 37, 2751-2759. [2.2.1]

    Article  MATH  Google Scholar 

  • Hsu, C. T., Cheng, P. and Wong, K. W. 1995 A lumped-parameter model for stagnant thermal conductivity of spatially periodic media. ASME J. Heat Transfer 117, 264-269. [2.2.1]

    Article  Google Scholar 

  • Hu, W. and Steen, P. H. 1996 Transition to chaotic natural convection in tall Hele-Shaw slots. Phys. Fluids 8, 1929-1937. [2.5]

    Article  MATH  Google Scholar 

  • Hu, X. J., Du, J. H. , Lei, S. Y. and Wang, B. X. 2001 A model for the thermal conductivity of unconsolidated porous media based on capillary pressure-saturation relation. Int. J. Heat Mass Transfer 44, 247-251 (corrigendum 1267-1268). [2.2.1]

    Article  MATH  Google Scholar 

  • Hu, Y., Li, D., Shu, S. and Niu, X. 2017 A multiple-relaxation time lattice Boltzmann model for the flow and heat transfer in hydrodynamically and thermally anisotropic porous medium. Int. J. Heat Mass Transfer 104, 544-568. [2.7]

    Article  Google Scholar 

  • Hwang, S. H. and Chang, H. C. 1989 Non-Boussinesq effects on transitions in Hele-Shaw convection. Phys. Fluids A 1, 924-937. [2.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Imadojemu, H. E. and Porter, L. H. 1995 Effective thermal conductivity of a saturated porous medium. AIAA J. Thermophys. Heat Transfer 9, 573-575. [2.2.1]

    Article  Google Scholar 

  • Imani, G., Maerefat, M. and Hooman, K. 2013 Pore-scale numerical experiment on the effect of the pertinent parameters on heat flux splitting at the boundary of a porous medium. Transp. Porous Media 98, 631-649. [2.2.3]

    Article  Google Scholar 

  • Johannsen, K. 2003 On the validation of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7, 169-182. [2.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph, D. D. 1976 Stability of Fluid Motions II, Springer, Berlin. [2.3, 6.3, 6.4]

    MATH  Google Scholar 

  • Keller, I. O. and Tarunin, E. L. 1995 Convection in a Hele-Shaw cell with allowance for heat exchange on the wide faces. Fluid Dyn. 30, 175-182. [2.5]

    Article  MATH  Google Scholar 

  • Khaled, A. R. A. and Vafai, K. 2003 The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transfer 46, 4989-5003. [1.9, 2.6]

    Article  MATH  Google Scholar 

  • Khanafer K. and Vafai, K. 2008 Macromolecular transport in arterial walls: Current and future directions. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 219-235. [1.9]

    Chapter  Google Scholar 

  • Khanafer K. and Vafai, K. 2009 Synthesis of mathematical models representing bioheat transport. In Advances in Numerical Heat Transfer, Volume III, (ed. W. J. Minkowycz, E. M. Sparrow, J. P. Abraham), CRC Press, Boca Raton FL., pp. 1-28. [2.6]

    Chapter  Google Scholar 

  • Khanafer, K., Al-Amiri, A., Pop, I. and Bull, J. L. 2008a Flow and heat transfer in biological tissues: Applications of porous media theory. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 237-259. [1.9, 2.6]

    Chapter  Google Scholar 

  • Khanafer, K., Al-Amiri, A. and Pop, I. 2008b Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porous substrate. Int. J. Heat Mass Transfer 51, 1613-1627 [7.3.3]

    Article  MATH  Google Scholar 

  • Khanafer, K., Vafai, K. and Kangarlu, A. 2003 Computational modeling of cerebral diffusion – application to stroke imaging. Magnet. Reson. Imag. 21, 651-661. [2.6]

    Article  Google Scholar 

  • Kim, M. C. 2014c The onset of Soret-driven convection of a nanoparticles suspension confined within a Hele-Shaw cell or in a porous medium. Int. J. Non-Linear Mech. 67, 291-299. [2.5, 9.7.3]

    Article  Google Scholar 

  • Kim, M. C. 2016b Magnetic field effect on the onset of Soret-driven convection of a nanofluid confined within a Hele-Shaw cell. Korean J. Chem. Engng. , to appear [2.5]

    Google Scholar 

  • Kim, S. J. and Kim, D. 2001 Thermal interaction at the interface between a porous medium and an impermeable wall. ASME J. Heat Transfer 123, 527-533. [2.4]

    Article  Google Scholar 

  • Kimura, S., Okajima, A. and Kiwata, T. 2002 Natural convection heat transfer in an anisotropic porous cavity heated from the side. (2nd Report. Experiment using a Hele-Shaw cell.) Heat Transfer -- Asian Res. 31, 463-474. [2.5, 7.1.7, 7.3.2]

    Article  Google Scholar 

  • Kitenbergs, G., Tatulcenkov, A., Erglis, K., Petrichenkov, O., Perzynski, R. and Cebers, A. 2015 Magnetic field driven micro-convection in the Hele-Shaw cell: The Brinkman model and its comparison with experiment. J. Fluid Mech. 774, 170-191. [2.5]

    Article  Google Scholar 

  • Kuwahara, F. and Nakayama, A. 1999 Numerical determination of thermal dispersion coefficients using periodic porous structure. ASME J. Heat Transfer 121, 160-163. [2.2.4]

    Article  Google Scholar 

  • Kuwahara, F. and Nakayama, A. 2005 Three-dimensional flow and heat transfer within highly anisotropic porous media. Handbook of Porous Media (K Vafai, ed.), 2nd ed., Taylor and Francis, New York, pp. 235-266. [2.2.4]

    Google Scholar 

  • Kuwahara, F., Nakayama, A. and Koyama, H. 1994 Numerical modelling of heat and fluid flow in a porous medium. Heat Transfer 1994, Inst. Chem. Engrs, Rugby, vol. 5, pp. 309-314. [2.7]

    Google Scholar 

  • Kuwahara, F., Nakayama, A. and Koyama, H. 1996 A numerical study of thermal dispersion in porous media. ASME J. Heat Transfer 118, 756-761. [2.2.4]

    Article  Google Scholar 

  • Kuwahara, F., Shirota, M. and Nakayama, A. 2001 A numerical study of interfacial convective heat transfer coefficient in two-energy model for convection in porous media. Int. J. Heat Mass Transfer 44, 1153-1159. [2.2.3]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. 1998d Analytical investigation of Couette flow in a composite channel partially filled with a porous medium and partially with a clear fluid. Int. J. Heat Mass Transfer 41, 2556-2560. [4.16.1]

    Article  MATH  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2009a Forced convection with counterflow in a circular tube occupied by a porous medium. J. Porous Media 12, 657-666. [2.6, 4.16.2]

    Article  Google Scholar 

  • Kuznetsov, A. V. and Nield, D. A. 2009b Forced convection with laminar pulsating counterflow in a saturated porous circular tube. Transp. Porous Media 77, 447-462. [2.6, 4.16.2]

    Article  MathSciNet  Google Scholar 

  • Kvernvold, O. 1979 On the stability of nonlinear convection in a Hele-Shaw cell. Int. J. Heat Mass Transfer 22, 395-400. [2.5]

    Article  Google Scholar 

  • Kvernvold, O. and Tyvand, P. A. 1981 Dispersion effects on thermal convection in a Hele-Shaw cell. Int. J. Heat Mass Transfer 24, 887-990. [2.5]

    Article  MATH  Google Scholar 

  • Landman, A. J. and Scotting, R. J. 2007 Heat and brine transport in porous media: The Oberbeck-Boussinesq approximation revisited. Transp. Porous Media 70, 355–373. [2.3]

    Article  MathSciNet  Google Scholar 

  • Lee, S. L. and Yang, J. H. 1998 Modelling of effective thermal conductivity for a nonhomogeneous anisotropic porous medium. Int. J. Heat Mass Transfer 41, 931-937. [2.2.1]

    Article  MATH  Google Scholar 

  • Liu, S. and Masliyah, J. H. 2005 Dispersion in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, Boca Raton, FL, pp. 81-140. [1.5.1, 2.2.4]

    Google Scholar 

  • Ma, X. and Zabaras, N. 2008 A stabilized stochastic finite-element second-order projection method for modeling natural convection in random porous media. J. Comput. Phys. 227, 8448-8471. [2.7]

    Article  MathSciNet  MATH  Google Scholar 

  • Magyari, E., Rees, D. A. S. and Keller, B. 2005b Effect of viscous dissipation on the flow in fluid saturated porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 373-406. [2.2.2, 5.1.9.4, 6.6]

    Google Scholar 

  • Mahjoob, S. and Vafai, K. 2009 Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. Int. J. Heat Mass Transfer 52, 1608-1618. [2.6]

    Article  MATH  Google Scholar 

  • Mahjoob, S. and Vafai, K. 2010 Analysis of bioheat transport through a dual layer biological media. ASME J. Heat Transfer 132, #031101. [2.6]

    Article  Google Scholar 

  • Mahjoob, S. and Vafai, K. 2011 Analysis of heat transfer in consecutive variable cross-sectional domains: Applications in biological media and thermal management. ASME J. Heat Transfer 133, #011006. [2.6]

    Article  Google Scholar 

  • Majchrzak, E. and Turchan, l. 2013 Numerical analysis of tissue heating using the bioheat transfer porous medium model. Comp. Assist. Mech. Engng. Sci. 20, 123-131. [2.6]

    Google Scholar 

  • Majchrzak, E. and Turchan, l. 2014 A numerical analysis of heating tissue using the two-temperature model. WIT Trans. Engng. Sci. 83, 477-488. [2.6]

    Article  Google Scholar 

  • Malviya, C. and Dwivedi, A. K. 2013 Heat transfer in porous media: A review. J. Indust. Pollut. Control 29, 123-128. [2.6]

    Google Scholar 

  • Martins-Costa, M. L. 1996 A local model for a packed-bed heat exchanger with a multiphase matrix. Int. Comm. Heat Mass Transfer 23, 1133-1142. [2.7]

    Article  Google Scholar 

  • Martins-Costa, M. L. and Saldanha da Gama, R.M. 1994 Local model for the heat transfer process in two distinct flow regions. Int. J. Heat Fluid Flow 15, 477-485. [2.7]

    Article  Google Scholar 

  • Martins-Costa, M. L., Sampaio, R. and Saldanha da Gama, R.M. 1992 Modelling and simulation of energy transfer in a saturated flow through a porous medium. Appl. Math. Model. 16, 589-597. [2.7]

    Article  MATH  Google Scholar 

  • Martins-Costa, M. L., Sampaio, R. and Saldanha da Gama, R.M. 1994 Modeling and simulation of natural convection flow in a saturated porous cavity. Meccanica 29, 1-13. [2.7]

    Article  MATH  Google Scholar 

  • McCarthy, J. F. 1994 Flow through arrays of cylinders: lattice gas cellular automata simulations. Phys. Fluids 6, 435-437. [2.7]

    Article  Google Scholar 

  • Merrikh, A. A. and Lage, J. L. 2005 From continuum to porous continuum: The visual resolution impact on modeling natural convection in heterogeneous media. In Transport Phenomena in Porous Media III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 60-96. [2.2.1]

    Chapter  Google Scholar 

  • Merrikh, A. A., Lage, J. L. and Mohamad, A. A. 2002 Comparison between pore-level and porous medium models for natural convection in a nonhomogeneous enclosure. AMS Contemp. Math. 295, 387-396. [2.2.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Merrikh, A. A., Lage, J. L. and Mohamad, A. A. 2005a Natural convection in an enclosure with disconnected and conducting solid blocks. Int. J. Heat Mass Transfer 46, 1361-1372. [2.2.1]

    Article  MATH  Google Scholar 

  • Merrikh, A. A., Lage, J. L. and Mohamad, A. A. 2005b Natural convection in non-homogeneous heat generating media: Comparison of continuum and porous-continuum models. J. Porous Media 8, 149-163. [2.2.3]

    Article  Google Scholar 

  • Miansari, M., Gorgi, M., Ganji, D. D. and Hooman, K. 2015 Comparison between continuum and porous continuum models in studying natural convection in porous cavity with random distribution of solid obstacles. Int. J. Numer. Meth. Heat Fluid Flow 25, 484-503. [2.2.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Min, J. Y. and Kim, S. J. 2005 A novel methodology for thermal analysis of a composite system consisting of a porous medium and an adjacent fluid layer. ASME J. Heat Transfer 127, 648-656. [1.6, 2.4]

    Article  Google Scholar 

  • Miyauchi, H., Kataoka, H. and Kikuchi, T. 1976 Gas film coefficients of mass transfer in low Péclet number region for sphere packed beds. Chem. Engng. Sci. 31, 9-13. [2.2.3]

    Article  Google Scholar 

  • Muralidhar, K. and Misra, D. 1997 Determination of dispersion coefficients in a porous medium using the frequency response method. Expt. Heat Transfer 10, 109-118. [2.2.4]

    Article  Google Scholar 

  • Nagouda, S. S. and Maruthamanikandan, S. 2013 Stability of porous medium convection in polarized dielectric fluids with non-classical heat conduction. Int. J. Mater. Arch. 4, 136-144. [2.2.6, 6.21]

    Google Scholar 

  • Nagouda, S. S. and Pranesh, S. 2012 Rayleigh-Bénard convection in a second order fluid with Maxwell-Cattaneo law. Bull. Soc. Meth. Servises Standards 1, 33-48. [2.2.6, 6.21]

    Google Scholar 

  • Nakayama, A. 2014 A note on confusion associated with the interfacial heat transfer coefficient for forced convection in porous media. Int. J. Heat Mass Transfer 79, 1-2. [2.2.3]

    Article  Google Scholar 

  • Nakayama, A. and Kuwahara, F. 2004 Closure to discussion [by B. Yu]. ASME Heat Transfer 126, 1062. [2.2.4]

    Google Scholar 

  • Nakayama, A. and Kuwahara, F. 2008 A general bioheat transfer model based on the theory of porous media. Int. J. Heat Mass Transfer 51, 3190-3199. [2.6]

    Article  MATH  Google Scholar 

  • Nakayama, A. and Kuwahara, F. 2008 A general macroscopic turbulence model for flows in packed beds, channels, pipes and rod bundles. ASME J. Fluids Engng. 130, #101205. [1.8]

    Article  Google Scholar 

  • Nakayama, A., Kuwahara, F. and Kodama, Y. 2006 An equation for thermal dispersion-flux transport and its mathematical modeling for heat and fluid flow in a porous medium. J. Fluid Mech. 563, 81-96. [2.2.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Nakayama, A., Kuwahara, F. and Liu, W. 2009 A macroscopic model for counter current bioheat transfer in a circulatory system. J. Porous Media 12, 289-300. [2.6]

    Article  Google Scholar 

  • Nakayama, A., Kuwahara, F. and Liu, W. 2011 A general set of bioheat transfer equations based on volume averaging theory. In K. Vafai (ed.), Porous Media: Applications in Biological Systems and Biotechnology, CRC Press, Baton Roca, FL, pp. 535-567. [2.6]

    Google Scholar 

  • Nakayama, A., Sano, Y. and Yoshikawa, K. 2010 A rigorous derivation of the bioheat equation for local tissue heat transfer based on volume averaging theory. Heat Mass Transfer 46, 739-746. [2.6]

    Article  Google Scholar 

  • Nakoryakov, V. E., Reznichenko, M. P. and Chupin, V. M. 1993 Influence of Prandtl number and slot height on free convection in a narrow slot. Expt. Thermal Fluid Sci. 7, 103-110. [2.5]

    Article  Google Scholar 

  • Narasimhan, A. 2011 The role of porous medium modeling in biothermofluids. J. Indian Inst. Sci. 91, 243-266. [2.6]

    Google Scholar 

  • Narasimhan, A. 2013 Essentials of Heat and Fluid Flow in Porous Media, CRC Press, Boca Raton, FL. [2.6]

    MATH  Google Scholar 

  • Narasimhan, A. 2014 Porous medium bio-heat transfer modeling of hypothermia treatment in human brain. 3rd Int. Conf. ComputerMethods Thermal Problems. [2.6]

    Google Scholar 

  • Narasimhan, A. and Raju, K. S. 2007 Effect of variable permeability porous medium inter-connector on the thermo-hydraulics of heat exchanger modelled as porous media. Int. J. Heat Mass Transfer 50, 4052-4062. [2.7]

    Article  MATH  Google Scholar 

  • Narasimhan, A. and Sadavisam, S. 2013 Non-Fourier bio heat transfer modelling during retinal surgery. Int. J. Heat Mass Transfer 60, 591-597. [2.6]

    Article  Google Scholar 

  • Narasimhan, A., Jha, K. K. and Gopal, l. 2010 Transient simulations of heat transfer in human eye undergoing laser surgery. Int. J. Heat Mass Transfer 53, 482-490. [2.6]

    Google Scholar 

  • Nazari, M., Maghrebi, M. J., Armaghani, T. and Chamkha, A. J. 2014b New models for heat flux spitting at the boundary of a porous medium: Three energy equations for nanofluid flow under local thermal non-equilibrium condition. Canad. J. Phys. 92, 1312-1319. [2.2.3]

    Article  Google Scholar 

  • Ngo, C. C. and Lai, F. C. 2007 Study of natural convection from a buried pipe with backfill. Proc ASME/JSME Thermal Enrg. Summer Heat Transfer Confer. 3, 227-234. [2.5, 7.11]

    Google Scholar 

  • Nguyen-Quang, T., Nguyen, H, Guichard, F., Nicolau, A., Szatmari, G., LePalec, G., Dusser, M., Lafossee, J., Bonnet, J. L. and Bohatier, J. 2009 Two-dimensional gravitactic bioconvection in a protozoan (Tetrahymena pyriformis) culture. Zoological Science 26, 54-65. [2.5, 6.25]

    Article  Google Scholar 

  • Nicholson, C. 2001 Diffusion and related transport mechanisms in brain tissue. Reports Prog. Phys. 64, 815-884. [2.6]

    Article  Google Scholar 

  • Nield, D. A. 1991b Estimation of the stagnant thermal conductivity of saturated porous media. Int. J. Heat Mass Transfer 34, 1575-1576. [2.2.1]

    Article  Google Scholar 

  • Nield, D. A. 1998a Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Media 1, 181-186. [2.2.3, 4.10]

    MATH  Google Scholar 

  • Nield, D. A. 2000 Resolution of a paradox involving viscous dissipation and nonlinear drag in a porous medium. Transport Porous Media 41, 349-357. [2.2.2]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. 2002 A note on the modeling of local thermal non-equilibrium in a structured porous medium. Int. J. Heat Mass Transfer 45, 4367-4368. [4.10]

    Article  MATH  Google Scholar 

  • Nield, D. A. 2004b Comments on ‘A new model for viscous dissipation in porous media across a range of permeability values’. Transport in Porous Media 55, 253-254. [2.2.2]

    Google Scholar 

  • Nield, D. A. 2007a Comment on the effect of anisotropy on the onset of convection in a porous medium. Adv. Water Resources 30, 696-697. [6.12]

    Article  Google Scholar 

  • Nield, D. A. 2007b The modeling of viscous dissipation in a saturated porous medium. ASME J. Heat Transfer 129, 1459-1463. [2.2.2]

    Article  Google Scholar 

  • Nield, D. A. 2009c The Beavers-Joseph boundary condition and related matters: A historical and critical note. Transp. Porous Media 78, 537-540. [1.6]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. 2012 A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transp. Porous Media 95, 581-584. [2.2.3]

    Article  MathSciNet  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010e The effect of local thermal non-equilibrium on the onset of convection in a nanofluid. ASME Journal of Heat Transfer 132, 052405,.

    Article  Google Scholar 

  • Nield, D. A. and Barletta, A. 2010b Extended Oberbeck-Boussinesq approximation study of convective instabilities in a porous layer with horizontal flow and bottom heating. Int. J. Heat Mass Transfer 53, 577-585. [6.10.1]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 1999 Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem. Int. J. Heat Mass Transfer 42, 3245-3252. [4.10]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2008a A bioheat transfer model: forced convection in a channel occupied by a porous medium with counterflow. Int. J. Heat Mass Transfer 51, 5534-5541. [2.6. 4.16.2]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2009b The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792-5795. [9.7.3]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010b Forced convection with phase-lagged oscillatory counterflow in a saturated porous channel. J. Porous Media 13, 601-611. [2.6, 4.16.2]

    Article  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2010c Forced convection in cellular porous materials: Effect of temperature-dependent conductivity arising from radiative transfer. Int. J. Heat Mass Transfer 53, 2680-2684. [2.2.5]

    Article  MATH  Google Scholar 

  • Nield, D. A. and Kuznetsov, A. V. 2011h Forced convection in a channel partly occupied by a bidisperse porous medium: Symmetric case. ASME J. Heat Transfer 133, 072601. [4.16.4]

    Article  Google Scholar 

  • Niu, Y., Simon, T. and Ibrahim, M. 2006 Direct measurements of eddy transport and thermal dispersion in high-porosity matrix. J. Thermophys. Heat Transfer 20, 101-106. [2.2.4]

    Article  Google Scholar 

  • Nnanna, A. G. A., Haji-Sheikh, A. and Harris, K. T. 2004 Experimental study of local thermal equilibrium phenomena during phase change in porous media. Int. J. Heat Mass Transfer 47, 4365-4375. [2.2.3]

    Article  Google Scholar 

  • Nnanna, A. G. A., Harris, K. T. and Haji-Sheikh, A. 2005 An experimental study of non-Fourier thermal response in porous media. J. Porous Media 8, 31-44. [2.2.3]

    Article  Google Scholar 

  • Nouri-Borujerdi, A., Noghrehabadi, A. R. and Rees, D. A. S. 2007b The effect of local thermal non-equilibrium on conduction in porous channels with a uniform heat source. Transport Porous Media 69, 281-288. [2.2.3]

    Article  MATH  Google Scholar 

  • Oberbeck, A. 1879 Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271-292. [2.3]

    Article  MATH  Google Scholar 

  • Ochoa-Tapia, J. A. and Whitaker, S. 1997 Heat transfer at the boundary between a porous medium and a heterogeneous fluid. Int. J. Heat Mass Transfer 40, 2691-2707. [2.4]

    Article  MATH  Google Scholar 

  • Ochoa-Tapia, J. A. and Whitaker, S. 1998 Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: Inertia effects. J. Porous Media 1, 201-207. [1.6]

    MATH  Google Scholar 

  • Ouyang, X. L., Jiang, P. X. and Xu, R. N. 2013a Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media. Int. J. Heat Mass Transfer 60, 31-40. [2.2.3]

    Article  Google Scholar 

  • Ozawa, M., Müller, U., Kimura, S. and Takamori, T. 1992 Flow and temperature measurement of natural convection in a Hele-Shaw cell using a thermo-sensitive liquid-crystal tracer. Experiments in Fluids 12, 213-222. [2.5]

    Google Scholar 

  • Ozgumus, T., Mobedi, M., Ozkol, U. and Nakayama, A. 2013 Thermal dispersion in porous media – A review on the experimental studies of packed beds. Appl. Mech. Rev. 65, 031001. [2.2.4]

    Article  Google Scholar 

  • Paek, J. W., Kang, B. H., Kim, S. Y. and Hyun, J. M. 2000 Effective thermal conductivity and permeability of aluminum foam materials. Int. J. Thermophys. 21, 435-464. [2.2.1]

    Article  Google Scholar 

  • Pallares, J. and Grau, F. X. 2010 A modification of a Nusselt number correlation for forced convection in porous media. Int. Comm. Heat Mass Transfer 37, 1187-1190. [2.2.3]

    Article  Google Scholar 

  • Passarella, F., Straughan, B. and Zampoli, V. 2015 Structural stability in local thermal non-equilibrium porous media. Acta Applic. Math. 136, 43-53. [2.2.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Petit, F., Fichot, F. and Quintard, M. 1999a Écoulement diphasique en milieu poreux: modèle á non-équilibre local. Int. J. Therm. Sci. 38, 239-249. [2.2.3, 6.5]

    Article  Google Scholar 

  • Petit, F., Fichot, F. and Quintard, M. 1999b Two-phase flow in porous media: local non-equilibrium model. Rev Gén. Therm. 38, 250-257. [2.2.3, 6.5]

    Google Scholar 

  • Petrasch, J., Meier, F., Friess, H. and Steinfeld, A. 2008 Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics. Int. J. Heat Fluid Flow 29, 315-326. [2.7]

    Article  Google Scholar 

  • Polyaev, V. M., Mozhaev, A. P., Galitseysky, B. A. and Lozhkin, A. L. 1996 A study of internal heat transfer in nonuniform porous structures. Expt. Therm. Fluid Sci. 12, 426-432. [2.2.3]

    Article  Google Scholar 

  • Pourshaghaghy, A., Hakkaki-Fard, A. and Mahdavi-Nejad, A. 2007 Direct simulation of natural convection in a square porous enclosure. Energy Conv. Manag. 48, 1579-1589. [2.7]

    Article  Google Scholar 

  • Prasad, V., Kladias, N., Bandyopadhaya, A. and Tian, Q. 1989b Evaluation of correlations for stagnant thermal conductivity of liquid-saturated porous beds of spheres. Int. J. Heat Mass Transfer 32, 1793-1796. [2.2.1]

    Article  Google Scholar 

  • Prax, C., Sadat, H and Slagnac, P. 1996 Diffuse approximation method for solving natural convection in porous media. Transport in Porous Media 22, 215-223. [2.7]

    Article  Google Scholar 

  • Pringle, S. E., Glass, R. J. and Cooper, C. A. 2002 Double-diffusive finger convection in a Hele-Shaw cell: An experiment exploring the evolution of concentration fields, length scales and mass transfer. Transport Porous Media 47, 195-214. [9.1.6.4]

    Article  Google Scholar 

  • Qu, Z. G., Wang, T. S., Tan, W. G. and Lu, T. J. 2012a A theoretical octet-truss lattice unit cell model for effective thermal conductivity of consolidated porous materials saturated with fluid. Heat Mass Transfer 48, 1385-1395. [2.2.1]

    Article  Google Scholar 

  • Quintard, M. and Whitaker, S. 2000 Theoretical modeling of transport in porous media. Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York., pp. 1-52. [2.2.3]

    Google Scholar 

  • Quintard, M., Kaviany, M. and Whitaker, S. 1997 Two-medium treatment of heat results in porous media: Numerical results for effective properties. Adv. Water Resources 20, 77-94. [2.4]

    Article  Google Scholar 

  • Rahimian, M. H. and Poushaghagy, A. 2002 Direct simulation of forced convection in a parallel plate channel filled with porous media. Int. Comm. Heat Mass Transfer 29, 867-878. [2.7]

    Article  Google Scholar 

  • Rattanadecho, P. and Keangin, P. 2013 Numerical study of heat and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna. Int. J. Heat Mass Transfer 58, 457-470. [2.6]

    Article  Google Scholar 

  • Reddy, K. S. and Karhikeyan, P. 2009 Estimation of effective thermal conductivity of two-phase materials using collocated parameter model. Heat Transfer Engng. 30, 998-1011. [2.2.1]

    Article  Google Scholar 

  • Rees, D. A. S. 2010 Microscopic modeling of the two-temperature model for conduction in heterogeneous media J. Porous Media 13, 125-143. [2.2.3]

    Article  Google Scholar 

  • Rees, D. A. S. and Pop, I. 2005 Local thermal non-equilibrium in porous media convection. In Transport Phenomena in Porous Media III, (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 147-173. [5.1.9.3]

    Chapter  Google Scholar 

  • Richardson, S. 1971 A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49, 327-336. [1.6]

    Article  MATH  Google Scholar 

  • Roetzel, W. and Xuan, Y. 1998 Transient response to the human limb to an external stimulus. Int. J. Heat Mass Transfer 41, 229-239. [2.6]

    Article  MATH  Google Scholar 

  • Rong, F. M., Guo, Z. L., Chai, Z. H. and Shi, B. C. 2010a A lattice Boltzmann method for axisymmetric thermal flows through porous media. Int. J. Heat Mass Transfer 53, 5519-5527. [2.7]

    Article  MATH  Google Scholar 

  • Roussellet, V., Niu, X. D., Yamaguchi, H. and Magoules, F. 2011 Natural convection of temperature-sensitive magnetic fluids in porous media. Adv. Appl. Math. Mech. 3, 121-130. [2.6, 6.21]

    Article  MathSciNet  Google Scholar 

  • Rubin, H. 1974 Heat dispersion effect on thermal convection in a porous medium layer. J. Hydrol. 21, 173-184. [2.2.4]

    Article  Google Scholar 

  • Rudraiah, N. and Ng, C. O. 2007 Dispersion in porous media with and without reaction – a review. J. Porous Media 10, 219-248. [2.2.4]

    Article  Google Scholar 

  • Ryland, D. K. and Nandakumar, K. 1994 Bifurcation study of convective heat transfer in a Hele-Shaw cell. Canad. J. Chem. Engng. 72, 457-467. [2.5]

    Article  Google Scholar 

  • Safonov, S. A. 1991 Mixed convection around a circular cylinder in a Hele-Shaw cell. J. Appl. Mech. Tech. Phys. 32, 356-359. [2.5]

    Article  Google Scholar 

  • Sahraoui, M. and Kaviany, M. 1993 Slip and no-slip temperature boundary conditions at the interface of porous, plain media: conduction. Int. J. Heat Mass Transfer 36, 1019-1033. [2.4]

    Article  MATH  Google Scholar 

  • Sahraoui, M. and Kaviany, M. 1994 Slip and no-slip temperature boundary conditions at the interface of porous, plain media: convection. Int. J. Heat Mass Transfer 37, 1029-1044. [2.4]

    Article  MATH  Google Scholar 

  • Salama, A. 2011a On the Brinkman equation and the concept of viscous dissipation in porous media. Spec. Top. Rev. Porous Media 2, 83-89. [2.2.2]

    Article  Google Scholar 

  • Salama, A., Abbas, I. A., El-Amin, M. F. and Sun, S. Y. 2013 Comparison study between the effects of different terms contributing to viscous dissipation in saturated porous media. Int. J. Therm. Soc. 64, 195-203. [2.2.2, 5.1.9.4]

    Article  Google Scholar 

  • Samantray, P. K., Karthikeyan, P. and Reddy, K. S. 2006 Estimating effective thermal conductivity of two-phase materials. Int. J. Heat Mass Transfer 49, 4209-4219. [2.2.1]

    Article  MATH  Google Scholar 

  • Schöpf, W. 1992 Convection onset for a binary mixture in a porous medium and in a narrow cell: a comparison. J. Fluid Mech. 245, 263-278. [2.5]

    Article  MATH  Google Scholar 

  • Seta, T., Takegoshi, E. and Okui, K. 2006 Lattice Boltzmann simulation of natural convection in porous media. Math. Comput. Simult. 72, 195-200. [2.7]

    Article  MathSciNet  MATH  Google Scholar 

  • Shafahi, M. and Vafai, K. 2011 Human eye response to thermal disturbances. ASME J. Heat Transfer 133, 011009. [2.6]

    Article  Google Scholar 

  • Shao, H., He, Y. and Mu, L. 2014 Numerical analysis of dynamic temperature in response to different levels of reactive hyperaemia in three-dimensional image-based hand model. Comput. Meth. Biomech. Biomed. Engng. 17, 865-874. [2.6]

    Article  Google Scholar 

  • Shokouhmand, H., Jam, F. and Slimpour, M. R. 2009 Simulation of laminar flow and convective heat transfer in conduits filled with porous medium using Lattice Boltzmann method. Int. Comm. Heat Mass Transfer 36, 378-384. [2.7]

    Article  Google Scholar 

  • Singh, K. D. 2011 Hydromagnetic forced convective oscillatory slip flow through porous medium in a vertical channel with thermal radiation. Proc. Indian, Nat. Sci. Acad. 77, 19-30. [4.16.2]

    Google Scholar 

  • Singh, R. 2011 Predictions of thermal conductivity of complex materials. In Heat Transfer in Multiphase Materials (eds. A. Oechsner, G. E. Murch), Springer, pp. 235-274. [2.2.1]

    Google Scholar 

  • Souhar, M., Aniss, S. and Brancher, J. P. 1999 Convection de Rayleigh-Bénard dans les liquids magnetiques en cellule de Hele-Shaw annulaire. Int. J. Heat Mass Transfer 42, 61-72. [2.5]

    Article  MATH  Google Scholar 

  • Souhar, K., Aniss, S. and Ouazzani, M. T. 2011 Effect of temperature modulation on the onset of convection in a Hele-Shaw cell. J. Porous Media 14, 533-539. [2.5, 6.11.3]

    Article  Google Scholar 

  • Souto, H. P. A. and Moyne, C. 1997a Dispersion in two-dimensional periodic porous media. 1. Hydrodynamics. Phys. Fluids 9, 2243-2252. [2.2.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Souto, H. P. A. and Moyne, C. 1997b Dispersion in two-dimensional periodic porous media. 2. Dispersion tensor. Phys. Fluids 9, 2253-2263. [2.2.4]

    Article  MathSciNet  MATH  Google Scholar 

  • Spaid, M. A. A. and Phelan, F. R. 1997 Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids 9, 2468-2474. [2.7]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. 2010a Green-Naghdi fluid with non-thermal equilibrium effects. Proc Roy. Soc. Lond. A 466, 2021-2032. [6.23]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. 2010b Porous convection with Cattaneo heat flux. Int. J. Heat Mass Transfer 53, 2808-2812. [2.2.6, 6.6]

    Article  MATH  Google Scholar 

  • Straughan, B. 2010c Structure of the dependence of Darcy and Forchheimer coefficients on porosity. Int. J. Engng. Sci. 48, 1610-1621. [1.5.2]

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan, B. 2015a Exchange of stability in Cattaneo-LTNE porous convection. Int. J. Heat Mass Transfer 89, 792-798. .[2.2.6, 6.5]

    Article  Google Scholar 

  • Straughan, B. 2015d Convection with Local Thermal Non-equilibrium and Microfluidic Effects. Springer, New York. [6, 6.11.4]

    Google Scholar 

  • Takatsu, Y. and Masuoka, T. 2007 Slip boundary condition at interface between porous and fluid layers. Trans. Japan. Soc. Mech. Engnrs. B 73, 1710-1714. [2.2.1]

    Article  Google Scholar 

  • Taunton, J. W., Lightfoot, E. N. and Green, T. 1972 Thermohaline instability and salt fingers in a porous medium. Phys. Fluids 15, 748-753. [2.5, 9.1.3]

    Article  Google Scholar 

  • Tavman, I. H. 1996 Effective thermal conductivity of granular porous materials. Int. Comm. Heat Mass Transfer 23, 169-176. [2.2.1]

    Article  Google Scholar 

  • Teruel, F. E. 2016 Entrance effect on the interfacial heat transfer and the thermal dispersion in laminar flows through porous media. Int. J. Therm. Sci. 104, 172-185. [2.2.1]

    Article  Google Scholar 

  • Tyvand, P. A. 1977 Heat dispersion effect on thermal convection in anisotropic porous media. J. Hydrol. 34, 335-342. [2.2.4, 6.12]

    Article  Google Scholar 

  • Vadasz, P. 1998c Experimental confirmation and analytical result of centrifugally-driven free convection in rotating porous media. J. Porous Media 1, 227-241. [2.5, 6.22]

    Google Scholar 

  • Vadasz, P. 1998a Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech. 376, 351-375. [6.22]

    Article  MathSciNet  MATH  Google Scholar 

  • Vadasz, P. 1998b Free convection in rotating porous media. Transport Phenomena in Porous Media (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 285-312. [6.22]

    Google Scholar 

  • Vadasz, P. 2005a Explicit conditions for local thermal equilibrium in porous media heat conduction. Transport Porous Media 59, 341-355. [2.2.3]

    Article  Google Scholar 

  • Vadasz, P. 2005b Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature. Int. J. Heat Mass Transfer 48, 2822-2828. [2.2.3]

    Article  MATH  Google Scholar 

  • Vadasz, P. 2006b Exclusion of oscillations in heterogeneous and bi-composite media thermal conduction. Int. J. Heat Mass Transfer 49, 4886-4892. [2.2.3]

    Article  MATH  Google Scholar 

  • Vadasz, P. 2007 On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium. Int. J. Heat Mass Transfer 50, 4131-4140. [2.1.3]

    Article  MATH  Google Scholar 

  • Vadasz, P. 2008a Analytical transition to weak turbulence and chaotic natural convection in porous media. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 111-132. [6.4]

    Google Scholar 

  • Vafai, K. (ed.) 2011 Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Vafai, K. and Yang, K. 2013 A note on local thermal non-equilibrium in porous media and heat flux bifurcation phenomenon in porous media. Transp. Porous Media, 96, 169–172. [2.2.3]

    Article  Google Scholar 

  • Valdés-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009a Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Media 78, 439-457. [1.6]

    Article  Google Scholar 

  • Valdés-Parada, F. J., Alvarez-Ramirez, J., Goyeau, B. and Ochoa-Tapia, J. A. 2009b Jump condition for diffusive and convective mass transfer between a porous medium and a fluid involving adsorption and chemical reaction. Transp. Porous Media 78, 459-476. [2.4]

    Article  MathSciNet  Google Scholar 

  • Valdés-Parada, F. J., Lasseux, F. J. and Bellet, F. 2016 A new formulation of the dispersion tensor in homogeneous porous media. Adv. Water Resources 90, 70-82. [2.2.4]

    Article  Google Scholar 

  • Valencia-Lopez, J. J., Espinosa-Paredes, G. and Ochoa-Tapia, J. A. 2003 Mass transfer jump condition at the boundary between a porous medium and a homogeneous fluid. J. Porous Media 6, 33-49. [2.4]

    Article  MATH  Google Scholar 

  • Virto, L., Carbonell, M., Castilla, R. and Gamez-Montero, P. J. 2009 Heating of saturated porous media in practice: Several causes of local thermal non-equilibrium. Int. J. Heat Mass Transfer 52, 5412-5422. [2.2.3]

    Article  MATH  Google Scholar 

  • Vishnampet Ramanathan, Narasimhan, A. and Babu, V. 2011 High Rayleigh number natural convection inside 2D porous enclosures using the lattice Boltzmann method. ASME J. Heat Transfer 133, #062501. [2.7]

    Article  Google Scholar 

  • Viskanta, R. 2009 Overview of radiative transfer in cellular porous materials. HT2009: Proc ASME Summer Heat Transfer Conf. 2009, Vol. 1. pp.457-565. [2.2.5,6.27]

    Google Scholar 

  • Visser, C. J., Malan, A. G. and Meyer, J. P. 2008a An artificial compressibility algorithm for modelling natural convection in saturated packed pebble beds. Int. J. Numer. Meth. Engng. 75, 1214-1237 [2.7]

    Article  MATH  Google Scholar 

  • Visser, C. J., Malan, A. G. and Meyer, J. P. 2008b An artificial compressibility method for buoyancy-driven flow in heterogeneous saturated packed beds: A homogeneous approach. Int. J. Numer. Meth. Heat Fluid Flow 18, 900-918. [2.7]

    Article  MATH  Google Scholar 

  • Vorontsov, S.S., Gorin, A. V., Nakoyakov, V. Ye., Khoruzhenko, A.G. and Chupin, V.M. 1991 Natural convection in a Hele-Shaw cell. Int. J. Heat Mass Transfer 34, 703-709. [2.5]

    Article  Google Scholar 

  • Vosper, H., Kirk, K., Rochelle, C., Noy, D. and Chadwick, A. 2014 Does numerical modelling of the onset of dissolution-convection reliably reproduce this key stabilization process in CO storage? Energy Procedia 63, 5341-5348. [2.5, 11.11]

    Article  Google Scholar 

  • Vyas, D. C. M., Kumar, S. and Srivastava, A. 2016 Porous media based bio-heat transfer analysis and counter artery vein tissue phantoms: Applications in photo thermal therapy. Int. J. Heat Mass Transfer 99, 122-140.[2.6]

    Article  Google Scholar 

  • Wakao, N. and Kaguei, S. 1982 Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York. [2.2.3, 4]

    Google Scholar 

  • Wakao, N., Kaguei, S. and Funazkri, T. 1979 Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Chem. Engng. Sci. 34, 325-336. [2.2.3]

    Article  Google Scholar 

  • Wakao, N., Tanaka, K. and Nagai, H. 1976 Measurement of particle-to-gas mass transfer coefficients from chromatographic adsorption experiments. Chem. Engng Sci. 31, 1109-1113. [2.2.3]

    Article  Google Scholar 

  • Wang, G., Zeng, M., and Wang, Q.W. 2007d Numerical study of non-Darcian natural convection in a square enclosure filled with a heat-generating porous medium. Nuclear Power Engng. 28, 44-48. [6.11.2]

    Google Scholar 

  • Wang, K., Tavakkoli, F., Wang, S. and Vafai, K. 2015 Analysis and analytical characterization of bioheat transfer during radiofrequency ablation. J. Biomech. 48, 930-940. [2.6]

    Article  Google Scholar 

  • Wang, K., Tavakkoli, F. and Vafai, K. 2015a Analysis of gaseous slip flow in a porous micro-annulus under local thermal non-equilibrium condition – An exact solution. Int. J. Heat Mass Transfer 89, 1331-1341. [4.10]

    Article  Google Scholar 

  • Wang, K.Y., Tavakkoi, F., Wang, S. T. and Vafai, K. 2015b Forced convection gaseous slip flow in a porous circular microtube: An exact solution. Int. J. Thermal Sci. 97, 152-162. [4.10]

    Article  Google Scholar 

  • Wang, L. Q. and Fan, J. 2011 Modeling bioheat transfer at macroscale. ASME J. Heat Transfer 133, #011010. [2.6]

    Google Scholar 

  • Wang, L. Q., Zeng, Z., Zhang, L. Q. and Lu, Y. Y. 2016 A lattice Boltzmann model for thermal flows through porous media. Appl. Therm. Engng. 108, 66-75. [1.9]

    Article  Google Scholar 

  • Wang, P., Vafai, K., Liu, D. Y. and Xu, C. 2015d Analysis of collimated irradiation under local thermal non-equilibrium condition in a packed bed. Int. J. Heat Mass Transfer 80, 789-801. [4.10]

    Article  Google Scholar 

  • Wang, Y., Yang, J, Zhang, X. and Pan, Y. 2015c Effect of surface thermal radiation on natural convection and heat transfer in a cavity containing a horizontal porous layer. Procedia Engng. 121, 1193-1199. [7.7]

    Article  Google Scholar 

  • Wang, L., Xu, M. and Wei, X. 2008d Dual-phase-lagging and porous-medium heat conduction processes. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 1–37. [2.2.1]

    Chapter  Google Scholar 

  • Wen, C. Y. and Su, W. P. 2005 Natural convection of magnetic fluid in a rectangular Hele-Shaw cell. J. Magnet. Magnet. Mater. 289, 299-302. [2.5]

    Article  Google Scholar 

  • Wen, C. Y., Chen, C. Y. and Yang, S. F. 2002 Flow visualization of natural convection of a magnetic fluid in a rectangular Hele-Shaw cell. J. Magnet. Magnet. Mater. 252, 206-208. [2.5]

    Article  Google Scholar 

  • Wen, C. Y., Tsai, R. T. and Leong, K. P. 2010 Natural convection of magnetic fluid in a rectangular Hele-Shaw cell of different aspect ratios. Physics Procedia 9, 181-185. [2.5]

    Article  Google Scholar 

  • Wessapan, T. and Rattnanadecho, P. 2016 Flow and heat transfer in biological tissue due to electromagnetic near-field exposure. Int. J. Heat Mass Transfer 97, 174-184. [2.6]

    Article  Google Scholar 

  • Wood, B. D., Radakovich, K. and Golfier, F. 2007 Effective reaction at a fluid-solid interface: Applications to biotransformations in porous media. Adv. Water Resor. 30, 1630-1647. [2.6]

    Article  Google Scholar 

  • Wooding, R. A. 1963 Convection in a saturated porous medium at large Reynolds number or Péclet number. J. Fluid Mech. 15, 527-544. [2.5, 5.10.1.1, 5.11.1]

    Article  MATH  Google Scholar 

  • Wooding, R. A. 1964 Mixing layer flows in a saturated porous medium. J. Fluid Mech. 19, 103-112. [2.5, 9.1.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, W., Zhang, S. and Wang, S. 2017 A novel lattice Boltzmann model for the solid-liquid phase change with convection heat transfer in the porous media. Int. J. Heat Mass Transfer 104, 675-687. [2.7]

    Article  Google Scholar 

  • Xu, H. J., Gong, L., Zhao, C. Y. and Yin, Y. 2015a Nonequilibrium thermal response of porous media in unsteady heat conduction with sinusoidally changing boundary temperature. ASME J. Heat Transfer 137, 112601. [2.2.3]

    Article  Google Scholar 

  • Xu, H., Gong, L., Huang, S. and Xu, M. 2015b Flow and heat transfer characteristics of nanofluid flowing through metal foams. Int. J. Heat Mass Transfer 83, 399-407. [9.7.1]

    Article  Google Scholar 

  • Xu, Y. S., Liu, Y. and Huang, G. 2005 Lattice-Boltzmann simulation of momentum and energy transfer in a porous medium. Mod. Phys Lett. B 19, 1531-1534. [2.7]

    Article  MATH  Google Scholar 

  • Xuan, Y. and Roetzel, W. 1997 Bioheat equation of the human thermal system. Chem. Engrg. Tech. 20, 268-276. [2.6]

    Article  Google Scholar 

  • Yadav, D. and Kim, M. C. 2015b Linear and nonlinear analyses of Soret-driven buoyancy convection in a vertically oriented Hele-Shaw cell with nanoparticles suspension. Comput. Fluids 117, 139-148. [2.5]

    Article  MathSciNet  Google Scholar 

  • Yadav, D. and Lee, J. 2016 Onset of convection in a nanofluid layer confined within a Hele-Shaw cell. J. Appl. Fluid Mech. 9, 519-527. [2.5]

    Article  Google Scholar 

  • Yadav, D., Nam, D. and Lee, J. 2016 The onset of transient Soret-driven MHD convection confined within a Hele-Shaw cell with nanoparticle suspension. J. Taiwan Inst. Chem. Engnrs. 58, 235-244. [2.5]

    Article  Google Scholar 

  • Yan, W. W., Liu, Y., Guo, Z. L. and Xu, Y. S. 2006 Lattice Boltzmann simulation on natural convection heat transfer in a two-dimensional cavity filled with heterogeneous porous medium. Int. J. Modern Phys. C. 17, 771-783. [2.7]

    Article  MATH  Google Scholar 

  • Yang, C. and Nakayama, A. 2010 A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media. Int. J. Heat Mass Transfer 53, 3222-3230. [2.2.1]

    Article  MATH  Google Scholar 

  • Yang, H. and Krishnamurthi, R. 1999 Hele-Shaw convection with imposed shear flows: Boundary layer formulation. Stud. Appl. Math. 103, 1-24. [2.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J., Wang, J., Bu, S. S., Zeng, H., Wang, Q. W. and Nakayama, A. 2012b Experimental analysis of forced convective heat transfer in novel structured packed beds of particles. Chem. Engng. Sci. 71, 126-137. [2.2.3, 4.16.5]

    Article  Google Scholar 

  • Yang, K. and Vafai, K. 2010 Analysis of temperature gradient bifurcation in porous media: An exact solution. Int J. Heat and Mass Transfer 53, 4316-4325. [2.2.3, 4.10]

    Article  MATH  Google Scholar 

  • Yang, K. and Vafai, K. 2011a Transient aspects of heat flux bifurcation in porous media; A exact solution. ASME J. Heat Transfer 133, #052602. [2.2.3, 4.10]

    Google Scholar 

  • Yang, K. and Vafai, K. 2011b Analysis of heat flux bifurcation inside porous media incorporating inertial and dispersion effects: An exact solution. Int J. Heat and Mass Transfer 54, 5286-5297. [2.2.3, 4.10]

    Article  MATH  Google Scholar 

  • Yang, K. and Vafai, K. 2011c Restrictions on the validity of the thermal conditions at the porous-fluid interface – An exact solution. ASME J. Heat Transfer 133, #112601. [2.2.3, 4.10]

    Article  Google Scholar 

  • Yang, K., You, X., Wang, J. and Vafai, K. 2016 Analysis of two approaches for an adiabatic boundary condition in porous media. Int. J. Numer. Heat Fluid Flow 26, 977-998. [2.2.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Yao, H. and Gu, W. Y. 2007 Convection and diffusion in charged hydrated soft tissues: a mixture theory approach. Biomech. Model. Mechanobiol. 6, 63-72. [2.6]

    Article  Google Scholar 

  • Yoshino, M. and Inamura, T. 2003 Lattice Boltzmann simulations for flow and heat/mass transfer problems in a three-dimensional porous structure. Int. J. Numer. Meth. Fluids 43, 183-198. [2.7]

    Article  MATH  Google Scholar 

  • Yu, B. 2004 Discussion: “A numerical study of thermal dispersion in porous media” and “Numerical determination of thermal dispersion coefficients using a periodic porous structure.” ASME J. Heat Transfer 126, 1060-1061. [2.2.4]

    Google Scholar 

  • Yu, F., Wei, G. S., Zhang, X. X. and Chen, K. 2006a Two effective thermal conductivity models with porous media with hollow spherical agglomerates. Int. J. Thermophys. 27, 293-303. [2.2.1]

    Article  Google Scholar 

  • Yu, Q. J., Thompson, B. E. and Straatman, A. G. 2006b A unit cube-based model for heat transfer and fluid flow in porous carbon foam. ASME J. Heat Transfer 128, 352-360. [2.7]

    Article  Google Scholar 

  • Yuan, P., Yang, C. S. and Liu, S. F. 2014 Temperature analysis of a biological tissue during hyperthermal therapy in the thermal non-equilibrium model. Int. J. Therm. Sci. 78, 124-131. [2.6, 6.5]

    Article  Google Scholar 

  • Zhang, Y. 2009 Generalized dual-phase lag bioheat transfer in living biological tissues. Int. J. Heat Mass Transfer 52, 4829-4834. [2.6]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Ord, A., Peng, S. L., Mühlhaus, H. B. and Liu, L. M. 2005a Double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones heated from below. Math. Geology 37, 373-391. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. Y. 2012 Review of thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transfer 55, 3618-3632. [2.2.5]

    Article  Google Scholar 

  • Zhao, C. Y., Dai, L. N., Tang, G. H., Qu, Z. G. and Li, Z. Y. 2010a Numerical study of natural convection in porous media (metals) using lattice Boltzmann method. Int. J. Heat Fluid Flow 31, 925-934. [2.7]

    Article  Google Scholar 

  • Zhao, C. Y., Lu, T. J. and Hodson, H. P. 2005b Natural convection in metal foams with open cells. Int. J. Heat Mass Transfer 48, 2452-2463. [2.2.5].

    Article  MATH  Google Scholar 

  • Zhao, K., Xuan, Y. M. and Li, Q. A. 2010b Investigation on the mechanism of convective heat and mass transfer with double diffusive effect inside a complex porous medium using lattice Boltzmann method. Chinese Sci. Bull. 55, 3051-3059. [2.7]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nield, D.A., Bejan, A. (2017). Heat Transfer Through a Porous Medium. In: Convection in Porous Media. Springer, Cham. https://doi.org/10.1007/978-3-319-49562-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49562-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49561-3

  • Online ISBN: 978-3-319-49562-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics