Skip to main content

Geophysical Aspects

  • Chapter
  • First Online:
Convection in Porous Media
  • 5653 Accesses

Abstract

Most of the studies of convection in porous media published before 1970 were motivated by geophysical applications and many published since have geophysical ramifications; see, for example, the reviews by Cheng (1978a, b, 1985b). On the other hand, geothermal reservoir modeling involves several features that are outside the scope of this book, and it usually involves specialist computer packages and techniques. Relevant reviews include those by Donaldson (1982), Grant (1983), O’Sullivan (1985a), Bodvarsson et al. (1986), Bjornsson and Stefansson (1987), McKibbin (1998, 2005), and O’Sullivan et al. (2000, 2001). An important book dealing with geological fluid dynamics is that by Phillips (2009). In this book, the emphasis is on flow patterns and specifically geological processes, involving dissolution, chemical reaction, and deposition. Some examples are discussed below in Sect. 11.12. Another important book is that by Woods (2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aatif, H., Allali, K. and Karouni, K. 2010 Influence of vibrations on convective instability of reaction fronts in porous media. Math. Modell. Natural Phen. 5, 123-137. [6.24, 11.12.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasi, B. and Kwon, T. H. 2014 Diffusive and convective transport of disposed CO2 in porous media: A numerical approach. Geotech. Spec. Publ. (234GSP) 534-543. [11.11]

    Google Scholar 

  • Abidoye, L. K., Khudaida, K. J. and Das, D. B. 2015 Geological carbon sequestration in the context of two-phase flow in porous media: a review. Crit. Rev. Envir. Sci. Tech. 45, 1105-1147. [11.11]

    Article  Google Scholar 

  • Ackerson, B. J., Beirer, R. A. and Martin, D. L. 2015 Ground level air convection produces frost damage patterns in turfgrass. Int. J. Biometeorology 59, 1655-1665. [11.2]

    Article  Google Scholar 

  • Albert, M. R. 1995 Advective-diffusive heat transfer in snow. ASME Int. Mech. Cong. Expos., San Francisco, Paper 95-Wa/HT-44. [11.1]

    Google Scholar 

  • Allali, K. and Belhaq, M. 2013a Effect of amplitude modulation of gravitational vibration on convective instability of reaction fronts in porous media Appl. Math. Sci. 7, 1007-1022. [6.24, 11.12.1]

    Article  MathSciNet  Google Scholar 

  • Allali, K. and Belhaq, M. 2013b Influence of periodic and quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media. Understanding Complex Systems 71-93. [6.24, 11.12.1]

    Google Scholar 

  • Allali, K., Ducrat, A., Taik, A. and Volpert, V. 2007 Convective instability of reaction fronts in porous media. Math. Modell. Natural Phen. 2, 20-39. [11.12.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Almarcha, C., Trevalyan, P. M. J., Grodfils, P. and de Wit, A. 2013 Thermal effects on the diffusive layer convection instability of an exothermic acid-base reaction front. Phys. Rev. E 88, UNSP003009. [11.12.1]

    Google Scholar 

  • Amili, P. and Yortsos, Y. C. 2003 Stability of heat pipes in vapor-dominated systems. Int. J. Heat Mass Transfer 47, 1233-1246. [11.9.2]

    Article  MATH  Google Scholar 

  • Andres, J. T. H. and Cardoso, S. S. S. 2011 Onset of convection in a porous medium in the presence of chemical reaction. Phys. Rev. E 83, #046312. [6.11.2, 11.1]

    Article  Google Scholar 

  • Andres, J. T. H. and Cardoso, S. S. S. 2012 Convection and reaction in a diffusive boundary layer in a porous medium: Nonlinear dynamics. Chaos 22, 037113. [11.12.1]

    Article  MathSciNet  Google Scholar 

  • Audigane, P., Gaus, I., Czerichowski-Lauriol, I., Pruess, K. and Xu, T. 2007 Two-dimensional reactive transport modelling of CO2 injection in a saline aquifer at the Sleipner Site, North Sea. Am. J. Sci. 307, 974-1008. [11.11]

    Article  Google Scholar 

  • Azin, R. and Raad, S. M. J. 2013 Onset of instability in CO2 sequestration into saline aquifer: scaling relationship and the effect of perturbed boundary. Heat Mass Transfer 49, 1603-1612. [11.11]

    Article  Google Scholar 

  • Bai, W. M., Xu, W. Y. and Lowell, R. P. 2003 The dynamics of submarine geothermal heat pipes. Geophsy. Res. Lett. 30, art. no. 1108. [11.9.2]

    Google Scholar 

  • Barba Rossa, G., Cliffe, K. A. and Power, H. 2016 Effects of hydrodynamic dispersion on the stability of buoyancy-driven porous media convection in the presence of first order chemical reaction. J. Engrg. Math., to appear. [11.11]

    Google Scholar 

  • Bartelt, P., Buser, O. and Sokratov, S. A. 2004 A nonequilibrium treatment of heat and mass transfer in alpine snowcovers. Cold Regions Sci. Tech. 39, 219-242. [11.1]

    Article  Google Scholar 

  • Bau, H. H. and Torrance, K. E. 1982a Boiling in low permeability porous materials. Int. J. Heat Mass Transfer 25, 45-55. [11.9.2]

    Article  Google Scholar 

  • Bejan, A. 2000 Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, UK. [1.5.2, 4.18, 6.2, 6.26, 11.10]

    MATH  Google Scholar 

  • Bejan, A., Ikegami, Y. and Ledezma, G. A. 1998 Constructal theory of natural crack pattern formation for fastest cooling. Int. J. Heat Mass Transfer 41, 1945-1954. [11.10]

    Article  MATH  Google Scholar 

  • Bejan, A., Lorente, S., Miguel, A. F., Pumain, D. and Reis, A. H. 2005 Along with Constructal Theory, Faculty of Geosciences and the Environment, University of Lausanne, Switzerland. [11.10]

    Google Scholar 

  • Bergman, M. I. and Fearn, D. R. 1994 Chimneys on the Earth’s inner-outer core boundary? Geophys. Res. Lett. 21, 477-480. [6.21,11.8.2]

    Article  Google Scholar 

  • Bestehorn, M. and Firoozabadi, A. 2012 Effect of fluctuations on the onset of density-driven convection in porous media. Phys. Fluids 24, 114102. [11.11]

    Article  Google Scholar 

  • Bjørlykke, K., Mo, A. and Palm, E. 1988 Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar. Petr. Geol. 5, 338-351. [11.5]

    Article  Google Scholar 

  • Bjornsson, S. and Stefansson, V. 1987 Heat and mass transport in geothermal reservoirs. Advances in Transport Phenomena in Porous Media (eds. J. Bear and M. Y. Corapcioglu), Martinus Nijhoff, The Netherlands, 145-153. [11]

    Google Scholar 

  • Bodvarsson, G. S., Pruess, K. and Lippmann, M. J. 1986 Modeling of geothermal systems. J. Petrol. Tech. 38, 1007-1021. [11]

    Article  Google Scholar 

  • Bolster, D. 2014 The fluid mechanics of dissolution trapping in geologic storage of CO2. J. Fluid Mech. 740, 1-4. [11.11]

    Article  MathSciNet  Google Scholar 

  • Bouzgarrou, S., Harzallah, H. S. and Slimi, K. 2013 Unsteady double diffusive natural convection in porous media—application to CO2 storage in deep saline aquifer reservoirs. Energy Procedia 36, 756-765. [11.11]

    Article  Google Scholar 

  • Budu, P. 2001 Stability results for convection in thawing subsea permafrost. Cont. Mech. Thermodyn. 13, 269-285. [11.3]

    Article  MATH  Google Scholar 

  • Chen, C., Zeng, L. Z. and Shi, L. S. 2013b Continuum-scale convective mixing in geological CO2 sequestration in anisotropic and heterogeneous saline aquifers. Adv. Water Res. 53, 175-187. [11.11]

    Article  Google Scholar 

  • Cheng, P. 1978 Convective heat transfer in porous layers by integral methods. Lett. Heat Mass Transfer 5, 243-252. [6.3]

    Google Scholar 

  • Cheng, P. 1978 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1-105. [3.5, 6.9.1, 6.26, 11, 11.7]

    Article  Google Scholar 

  • Cheng, P. 1985b Geothermal heat transfer. Handbook of Heat Transfer Applications (eds. W. M. Rohsenow et al.), 2nd edition, McGraw-Hill, New York, Chapter 11. [11, 11.7]

    Google Scholar 

  • Cheng, P. and Teckchandani, L. 1977 Numerical solutions for transient heating and fluid withdrawal in a liquid-dominated geothermal reservoir. The Earth’s Crust (ed. J. G. Heacock), Amer. Geophys. Union, Washington, DC, 705-721. [11.7]

    Google Scholar 

  • Cheng, W. T., Huang, E. N., Chuo, M. H. and Du, S. W. 2012a Transient natural convective heat transfer in porous medium with solidification of binary mixture. Int. Comm. Heat Mass Transfer 39, 1132-1137. [10.2.3]

    Article  Google Scholar 

  • Cherkaoui, A.S.M. and Wilcock, W.S.D. 1999 Characteristics of high Rayleigh number two-dimensional convection in an open-top porous layer heated from below. J. Fluid Mech. 394, 241-260. [2.5, 11.8]

    Article  MATH  Google Scholar 

  • Cherkaoui, A.S.M. and Wilcock, W.S.D. 2001 Laboratory studies of high Rayleigh number circulation in an open-top Hele-Shaw cell: an analogue to mid-ocean ridge hydrothermal systems. J. Geophys. Res. 106, 10983-11000. [11.8]

    Article  Google Scholar 

  • Chevalier, S., Faisal, T. F., Bernabe, Y., Juanes, R. and Sassi, M. 2015 Numerical sensitivity analysis of density driven CO2 convection with respect to different modeling and boundary conditions. Heat Mass Transfer 51, 941-952. [11.11]

    Article  Google Scholar 

  • Cinar, Y. and Riaz, A. 2014 Carbon dioxide sequestration in saline formations: Part 2. Review of multiphase flow modelling. J. Petrol. Sci. Engng. 124, 381-398. [11.11]

    Article  Google Scholar 

  • Cox, B. L. and Pruess, K. 1990 Numerical experiments on convective heat transfer in water-saturated porous media at near-critical conditions. Transport in Porous Media 5, 299-323. [11.8]

    Article  Google Scholar 

  • Czechowski, L. and Kossacki, K. 2009 Thermal convection in the porous methane-soaked regolith of Titan: Investigation of stability. Icarus 202, 599-606. [11.8]

    Article  Google Scholar 

  • Daniel, D. and Riaz, A. 2014 Effect of viscosity contrast on gravitationally unstable diffusive layers in porous media. Phys. Fluids 26, 116601. [11.11]

    Article  Google Scholar 

  • Davis, S. H., Rosenblat, S., Wood, J. R. and Hewitt, T. A. 1985 Convective fluid flow and diagenetic patterns in domed sheets. Amer. J. Sci. 285, 207-223. [11.5]

    Article  Google Scholar 

  • De Paoli, M., Zonta, F. and Soldati, A. 2016 Influence of anisotropic permeability on convection in porous media: Implications for geological CO2 sequestration. Phys. Fluids 28, 056601. [11.11]

    Article  Google Scholar 

  • Dempsey, D. E., Rowland, J. V., Zyvolski, G. A. and Archer, R. A. 2012 Modelling the effects of silica deposition and fault rupture on natural geothermal systems. J. Geophys. Res. Solid Earth. 117, B05297. [11.8]

    Article  Google Scholar 

  • Donaldson, I. G. 1982 Heat and mass circulation in geothermal systems. Ann. Rev. Earth Planet Sci. 10, 377-395. [11]

    Article  Google Scholar 

  • Doughty, C. and Pruess, K. 1990 A similarity solution for the two-phase fluid and heat flow near high-level nuclear waste packages emplaced in porous media. Int. J. Heat Mass Transfer 33, 1205-1222. [11.9.1]

    Article  Google Scholar 

  • Doughty, C. and Pruess, K. 1992 A similarity solution for two-phase water, air and heat flow near a linear heat source in a porous medium. J. Geophys. Res, 97, 1821-1838. [11.9.1]

    Article  Google Scholar 

  • Dunn, J. C. and Hardee, H. C. 1981 Superconvecting geothermal zones. J. Volcanol. Geotherm. Res. 11, 189-201. [11.8]

    Article  Google Scholar 

  • Duval, F., Fichet, F. and Quintard, M. 2004 A local thermal non-equilibrium model for two-phase flows with phase change in porous media. Int. J. Heat Mass Transfer 47, 613-639. [11.9.3]

    Article  MATH  Google Scholar 

  • Emami-Meybodi, H. 2012a Comments on “Quantification of density–driven natural convection for dissolution mechanism in CO2 sequestration” by R. Nazari Moghaddan et al. (2011). Transp. Porous Media 93, 171-174. [11.11]

    Article  Google Scholar 

  • Emami-Meybodi, H. 2012b Nazari Moghaddam and Rostami’s reply to my comment on their paper “Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration. Transp. Porous Media 93, 655-656. [11.11]

    Article  Google Scholar 

  • Emami-Meybodi, H. and Hassanzadeh, H. 2013a Mixing induced by buoyancy-driven flows in porous media. AIChE J. 59, 1378-1389. [11.11]

    Article  Google Scholar 

  • Emami-Meybodi, H. and Hassanzadeh, H. 2013b Stability analysis of two-phase buoyancy-driven flow in the presence of capillary transition zone. Phys. Rev. E 87, 33009. [11.11]

    Article  Google Scholar 

  • Emami-Meybodi, H. and Hassanzadeh, H. 2015 Two-phase convective mixing under a buoyant plume of CO2 in deep saline aquifers. Adv. Water Resources 76, 55-71. [11.11]

    Article  Google Scholar 

  • Emami-Meybodi, H., Hassanzadeh, H., Green, C. P. and Ennis-King, J. 2015 Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments. Int. J. Greenhouse Gas Control 40, 238-266. [11.11]

    Article  Google Scholar 

  • Emmanuel, S. and Berkovitz, B. 2006a An experimental analogue for convection and phase separation in hydrothermal systems. J. Geophys. Res. –Solid Earth 111, #09103. [11.8]

    Article  Google Scholar 

  • Emmanuel, S. and Berkovitz, B. 2006b Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration. Earth Planet. Sci. Lett. 243, 657-668. [11.8]

    Article  Google Scholar 

  • Emmanuel, S. and Berkovitz, B. 2007a Continuous time random walks and heat transfer in porous media. Transp. Porous Media 67, 413-430. [11.8]

    Article  MathSciNet  Google Scholar 

  • Emmanuel, S. and Berkovitz, B. 2007b Phase separation and convection in heterogeneous porous media: Implications for seafloor hydrothermal systems. J. Geophys. Res. –Solid Earth 112, #B05210. [11.8]

    Article  Google Scholar 

  • Ennis-King, J. and Paterson, L. 2003 Rate of dissolution due to convective mixing in the underground storage of carbon dioxide. Greenhouse Gas Control Tech. 1&2, 507-510 and 1653-1656. [11.11]

    Google Scholar 

  • Ennis-King, J. and Paterson, L. 2005 Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J. 10, 349-356. [6.11.3, 11.11]

    Article  Google Scholar 

  • Ennis-King, J. and Paterson, L. 2007 Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide. Int. J. Greenhouse Gas Control 1, 86-93. [11.11]

    Article  Google Scholar 

  • Ennis-King, J., Preston, I. and Paterson, J. 2005 Onset of convection in anisotropic porous media subject to a rapid change of boundary conditions. Phys. Fluids 17, art. no. 084107. [6.11.3]

    Article  MATH  Google Scholar 

  • Evans, D. G. and Nunn, J. A. 1989 Free thermohaline convection in sediments surrounding a salt column. J. Geophys. Res. 94, 12413-12422. [11.8]

    Article  Google Scholar 

  • Faisal, T. F., Chevalier, S. and Sassi, M. 2013 Experimental and numerical studies of density driven natural convection in saturated porous media with application to CO2 geological storage. Energy Procedia 37, 5323-5330. [11.11]

    Article  Google Scholar 

  • Faisal, T. F., Chevalier, S., Bernabe, Y, Juanes, R. and Sassi, M. 2015 Quantitative and qualitative study of density driven CO2 mass transfer in a vertical Hele-Shaw cell. Int. J. Heat Mass Transfer 81, 901-914. [11.11]

    Article  Google Scholar 

  • Farajzadeh, R., Meulenbroek, B., Daniel, D., Riaz, A. and Bruning, J. 2013 An empirical theory for gravitationally unstable flow in porous media. Comput. Geosci. 17, 515-527. [11.11]

    Article  MathSciNet  Google Scholar 

  • Farajzadeh, R., Ranganathan, P., Zitha, P. L. J. and Bruining, J. 2011 The effect of heterogeneity on the character of density-driven convection of CO2 overlying a brine layer. Adv. Water Res. 34, 327-339. [11.11]

    Article  Google Scholar 

  • Farajzadeh, R., Salimi, H., Zithna, P. L. J. and Bruining, H. 2007 Numerical simulation of density-driven natural convection in porous media with application for CO2 injection. Int. J. Heat Mass Transfer 50, 5054-5064. [11.11]

    Article  MATH  Google Scholar 

  • Farajzadeh, R., Zitha, P. L. J. and Bruning, J. 2009 Enhanced mass transfer of CO2 into water: Experiment and modelling. Ind. Eng. Chem. Res. 48, 6423-6431. [11.11]

    Article  Google Scholar 

  • Fard, M. H. 2010 CFD modeling of heat transfer of CO2 at supercritical pressures flowing vertically in porous tubes. Int. Comm. Heat Mass Transfer 37, 98-102. [11.11]

    Article  Google Scholar 

  • Fernandez, J., Kurowski, P., Peteitjeans, P. and Meiburg, E. 2002 Density-driven unstable flows of miscible fluids in a Hele-Shaw cell. J. Fluid Mech. 451, 239-260. [11.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Fontaine, F. J., Rabinowicz, M. and Boulegue J. 2001 Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges. Earth Planet. Sci. Lett. 184, 407-425. [11.5]

    Article  Google Scholar 

  • Fu, X. J., Cueort-Feigueroso, L. and Juanes, R. 2013 Pattern formation and coarsening dynamics in three-dimensional convective mixing in porous media. Phil. Trans. Roy. Soc. A. 371, 20120355. [11.11]

    Article  Google Scholar 

  • Fu, X. J., Cueort-Feigueroso, L., Bolster, D. and Juanes, R. 2015 Rock dissolution patterns and geological shutdown of CO2–brine-carbonate reactions during convective mixing in porous media. J. Fluid Mech. 764, 296-315. [11.11]

    Article  Google Scholar 

  • Galdi, G. P., Payne, L. E., Proctor, M. R. E. and Straughan, B. 1987 Convection in thawing subsea permafrost. Proc. Roy. Soc. London Ser. A 414, 83-102. [11.3]

    Article  MATH  Google Scholar 

  • Ganot, Y., Dragila, M. I. and Weisbrod, N. 2014 Impact of thermal convection on CO2 flux across the earth-atmosphere boundary in high-permeability soils. Agricult. Foreste Meteor. 184, 12-24. [11.11]

    Article  Google Scholar 

  • Geiger, S., Driesner, T., Heinrich, C. A. and Matthäi, S. K. 2006a Multiphase thermohaline convection in the Earth’s crust: I. A new finite element–finite volume solution technique combined with a new equation of state for NaCl-H2O. Transport Porous Media 63, 399-434. [11.9.3]

    Article  Google Scholar 

  • Geiger, S., Driesner, T., Heinrich, C. A. and Matthäi, S. K. 2006b Multiphase thermohaline convection in the Earth’s crust: II. Benchmarking and application of a finite element–finite volume technique with a NaCl-H2O equation of state. Transport Porous Media 63, 431-461. [11.9.3]

    Google Scholar 

  • Geiger, S., Driesner, T., Heinrich, C. A. and Matthäi, S. K. 2005 On the dynamics of NaCl-H2O fluid convection in the Earth’s crust. J. Geophys. Res. 110, Art. No. B07101. [11.8]

    Google Scholar 

  • George, J. H., Gunn, R. D., and Straughan, B. 1989 Patterned ground formation and penetrative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46, 135-158. [11.2]

    Article  MATH  Google Scholar 

  • Ghesmat, K., Hassanzadeh, H. and Abedi, J. 2011 The impact of geochemistry on convective mixing in a gravitationally unstable diffusive boundary layer in porous media: CO2 storage in saline aquifers. J. Fluid Mech. 678, 480-512. [11.11]

    Article  MATH  Google Scholar 

  • Ghesmat, K., Hassanzadeh, H. and Abedi, J. 2011b The effect of anisotropic dispersion on the convective mixing in long term CO2 storage in saline aquifers. AIChE J. 57, 561-570. [11.11]

    Article  MATH  Google Scholar 

  • Gilman, A. and Bear, J. 1996 The influence of free convection on soil salinization in arid regions. Transport Porous Media 23, 275-301. [9.1.6.4, 11.8]

    Article  Google Scholar 

  • Gleason, K. J., Krantz, W. B., Caine, N., George, J. H. and Gunn, R. D. 1986 Geometrical aspects of sorted patterned ground in recurrently frozen soil. Science 232, 216-220. [11.2]

    Article  Google Scholar 

  • Gosink, J. P. and Baker, G. C. 1990 Salt fingering in subsea permafrost: some stability and energy considerations. J. Geophys. Res. 95, 9575-9583. [11.3]

    Article  Google Scholar 

  • Gouze, P., Coudrain-Ribstein, A. and Bernard, D. 1994 Computation of porosity redistribution resulting from thermal convection in slanted porous layers. J. Geophys. Res. Solid Earth 99, B1, 697-706. [11.5]

    Article  Google Scholar 

  • Graf, F., Meiburg, E. and Hartel, C. 2002 Density-driven instabilities of miscible fluid in a Hele-Shaw cell: Linear stability analysis of the three-dimensional Stokes equations. J. Fluid Mech. 451, 261-282. [11.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Graf, T. and Therrien, R. 2007a Coupled thermohaline groundwater flow and single-species reactive solute transport in fractured porous media. Adv. Water Resour. 30, 742-771. [11.8]

    Article  Google Scholar 

  • Graf, T. and Therrien, R. 2007b Variable-density groundwater flow and solute transport in irregular 2D fracture networks. Adv. Water Resour. 30, 455-468. [11.8]

    Article  Google Scholar 

  • Graf, T. and Therrien, R. 2009 Stable-unstable flow of geothermal fluids in fractured rock. Geofluids 9, 138-152. [11.8]

    Article  Google Scholar 

  • Grant, M. A. 1983 Geothermal reservoir modeling. Geothermics 12, 251-263. [11]

    Article  Google Scholar 

  • Green, C. P. and Ennis-King, J. 2010 Effect of vertical heterogeneity on long-term migration of CO2 in saline formations. Transp. Porous Media 82, 31-47. [11.11]

    Article  Google Scholar 

  • Green, C. P. and Ennis-King, J. 2014 Steady dissolution rate due to convective mixing in anisotropic porous media. Adv. Water Res. 73, 65-73. [11.11]

    Article  Google Scholar 

  • Green, C., Ennis-King, J. and Pruess, K. 2009 Effect of vertical heterogeneity on long-term migration of CO2 in saline formations. Energy Procedia 1, 1823-1830. [11.11]

    Article  Google Scholar 

  • Green, L. L. and Foster, T. D. 1975 Secondary convection in a Hele-Shaw cell. J. Fluid Mech. 71, 675-687. [2.5, 11.11]

    Google Scholar 

  • Hartline, B. K. and Lister, C. R. B. 1981 Topographic forcing of supercritical convection in a porous medium such as the oceanic crust. Earth Planet. Sci. Lett. 55, 75-86. [2.5, 11.6.2]

    Article  Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2005 Modelling of convective mixing in CO2 storage. J. Cand. Petrol. Tech. 44, 43-51. [11.11]

    Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2006 Stability of a fluid in a horizontal porous layer: effect of nonlinear concentration profile, initial and boundary conditions. Transport Porous Media 65, 193-211. [6.11.3]

    Article  MathSciNet  Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2007 Scaling behaviour of convective mixing with application to geological storage of CO2. AIChE J. 53, 1121-1131. [11.1]

    Article  Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2009a The effect of natural flow of aquifers and associated dispersion on the onset of buoyancy-induced convection in a saturated porous medium. AIChE J. 55, 475-485. [6.6, 11.11]

    Article  Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2009b Accelerating CO2 dissolution in saline aquifers for geological storage—mechanistic and sensitivity studies. Energy Fuels 23, 3328-3336. [11.11]

    Article  Google Scholar 

  • Hesse, M. A., Tchelepi, H. A., Cantwel, B. J. and Orr, Jr., F. M. 2007 Gravity currents in horizontal porous layers: Transition from early to late self-similarity. J. Fluid Mech. 577, 363–383. [11.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Hesse, M. A., Orr, Jr., F. M. and Tchelepi, H. A. 2008 Gravity waves with residual trapping. J. Fluid Mech. 611, 35–60. [11.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Hidalgo, J. J. and Carrera, J. 2009 Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441-452. [11.11]

    Article  MATH  Google Scholar 

  • Hill, A. A. and Morad, M. R. 2014 Convective stability of carbon sequestration in anisotropic porous media. Proc. Roy. Soc. Lond. A 470, 20140373. [11.11]

    Article  Google Scholar 

  • Holzbecher, E. and Yusa, Y. 1995 Numerical experiments on free and forced convection in porous media. Int. J. Heat Mass Transfer 38, 2109-2115. [11.8.2]

    Article  Google Scholar 

  • Horne, R. N. and O’Sullivan, M. J. 1974b Oscillatory convection in a porous medium: the effect of through flow. Proc. 5th Australasian Conf. Hydraulics Fluid Mech., Univ. Canterbury, Christchurch, New Zealand, vol.2, pp. 234-237. [11.7]

    Google Scholar 

  • Huppert, H. E. and Neufeld, J. A. 2014 The fluid mechanics of carbon dioxide sequestration. Ann. Rev. Fluid. Mech. 46, 256-272. [11.11]

    Article  MATH  Google Scholar 

  • Huppert, H. E. and Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 55–69. [11.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Hutter, K. and Straughan, B. 1997 Penetrative convection in thawing subsea permafrost. Cont. Mech. Thermodyn. 9, 259-272. [11.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Hutter, K. and Straughan, B. 1999 Models for convection in thawing porous media in support for the subsea permafrost equations. J. Geophys. Res. 104, 29249-29260. [11.3]

    Article  Google Scholar 

  • Ingebritsen, S. E. and Hayba, D. O. 1994 Fluid-flow and heat-transport near the critical-point of H2O. Geophys. Res. Lett. 21, 2199-2202. [11.8]

    Article  Google Scholar 

  • Ingebritsen, S. E., Geiger, S., Hurwitz, S. and Priesner, T. 2010 Numerical simulation of magmatic hydrothermal systems. Rev. Geophysics 47, #RG1002. [11.8]

    Google Scholar 

  • Ingham, D. B., Al-Hadhrami, A. K., Elliottt, L. and Wen, X. 2006 Fluid flows through some geological discontinuities. ASME J. Appl. Mech. 73, 34-40. [11.8]

    Article  MATH  Google Scholar 

  • Islam, A. and Sun, A. Y. 2015 Quantification of CO2 masses trapped through free convection process in isothermal brine saturated reservoir. Int. J. Heat Mass Transfer 87, 128-137. [11.11]

    Article  Google Scholar 

  • Islam, A. W., Lashgari, H. R. and Sepehrnoori, K. 2014a Double diffusive convection of CO2 in brine-saturated geothermal reservoir: Study of non-modal growth of perturbations and heterogeneity effects. Geothermics 51, 325-336. [11.11]

    Article  Google Scholar 

  • Islam, A. W., Meckel, T. A., Sun, A. Y. and Krishnamurthy, P. G. 2016 Numerical experiments of density driven CO2 saturated brine migration in heterogeneous two-dimensional geologic fabric materials. Int. Comm. Heat Mass Transfer 71, 148-156. [11.11]

    Article  Google Scholar 

  • Islam, A. W., Sharif, M. A. R. and Carlson, E. S. 2013 Numerical investigation of CO2 in a brine saturated geothermal reservoir. Geothermics 48, 101-111. [11.11]

    Article  Google Scholar 

  • Islam, A., Korrani, A. K. N., Sepehrnoori, K. and Patzek, T. 2014b Effects of geochemical reaction on double diffusive natural convection of CO2 in brine saturated geothermal reservoir. Int. J. Heat Mass Transfer 77, 519-528. [11.11]

    Article  Google Scholar 

  • Itamura, M. T., Francis, N. D., Webb, S. W. and James, D. L. 2004 In-drift natural convection analysis of the low-temperature operating mode design. Nuclear Tech. 148, 115-124. [11.8]

    Google Scholar 

  • Javadpour, F. and Nicot, J. P. 2011 Enhanced CO2 storage and sequestration in deep saline aquifers by nanoparticles: Commingled disposal of depleted uranium and CO2. Transp. Porous Media 89, 265-284. [11.11]

    Article  Google Scholar 

  • Javaheri, M., Abedi, J. and Hassanzadeh, H. 2009 Onset of convection in CO2 sequestration in deep saline aquifers. J. Canad. Petrol. Tech. 48, 22-47. [11.11]

    Article  Google Scholar 

  • Javaheri, M., Abedi, J. and Hassanzadeh, H. 2010 Linear stability analysis of double-diffusive convection in porous media, with application to geological storage of CO2. Transp. Porous Medai 84, 441-456. [11.11]

    Article  Google Scholar 

  • Jupp, T. E. and Schultz, A. 2000 A thermodynamic explanation for black smoker temperatures. Nature 403, 880-883. [11.8]

    Article  Google Scholar 

  • Jupp, T. E. and Schultz, A. 2004 Physical balances in subseafloor hydrothermal convection cells. J. Geophys. Res.— Solid Earth 109, Art # B05101. [11.8]

    Google Scholar 

  • Kawada, Y., Yoshida, S. and Watanabe, S. 2004 Numerical simulations of mid-ocean ridge hydrothermal circulation including the phase separation of sea water. Earth Planets Space 56, 193-215. [11.8]

    Article  Google Scholar 

  • Kessler, M. A. and Werner, B. T. 2003 Self-organization of sorted patterned ground. Science 299, 380-383. [11.2]

    Article  Google Scholar 

  • Kim, M. C. 2014d Miscible gravitational instability of initially stable horizontal interface in a porous medium: Non-monotonic density profiles. Phys. Fluids 26, 114102. [11.11]

    Article  Google Scholar 

  • Kim, M. C. 2015 The effect of boundary conditions on the onset of buoyancy-driven convection in a brine-saturated porous medium. Transp. Porous Media 107, 469-487. [6.2]

    Article  MathSciNet  Google Scholar 

  • Kim, M. C. 2016a Effect of swelling on the onset of buoyancy-driven convection during the CO2 dissolution process in a porous medium. Int. J. Heat Mass Transfer. 100, 779-789. [11.11]

    Article  Google Scholar 

  • Kim, M. C. and Choi, C. K. 2012 Linear stability analysis on the onset of buoyancy-driven convection in liquid-saturated porous medium. Phys. Fluids 24, 044102. [6.11.3, 9.1.6.4,11.11]

    Article  Google Scholar 

  • Kissling, W. M. and Weir, G. J. 2005 The spatial distribution of the geothermal fields in the Taupo Volcanic Zone, New Zealand. J. Volcan. Geotherm. Res. 145, 136-150. [11.8]

    Article  Google Scholar 

  • Kissling, W., Ellis, S., Charpentier, F. and Bibby, H. 2009 Convective flows in a TVZ-like setting with a brittle/ductile transition. Transp. Porous Media 77, 335-355. [11.8]

    Article  Google Scholar 

  • Kissling, W., McGuinness, M. J., McNabb, A., Weir, G., White, S. and Young, R. 1992a Analysis of one-dimensional horizontal two-phase flow in geothermal reservoirs. Transport in Porous Media 7, 223-253. [11.9.1]

    Article  Google Scholar 

  • Kissling, W., McGuinness, M.J., Weir, G., White, S. and Young, R. 1992b Vertical two-phase flow in porous media. Transport in Porous Media 8, 99-131. [11.9.1]

    Article  Google Scholar 

  • Kneafsey, T. J. and Pruess, K. 2010 Laboratory flow experiments for visualizing carbon-dioxide-induced, density-driven brine convection. Transp. Porous Media 82, 123-139. [11.11]

    Article  Google Scholar 

  • Kong, X. Z. and Saar, M. O. 2013 Numerical study of the effects of permeability heterogeneity on density-driven convective mixing during CO2 dissolution storage. Int. J. Greenhouse Gas Control 19, 160-173. [11.11]

    Article  Google Scholar 

  • Krantz, W. B., Gleason, K. J. and Caine, N. 1988 Patterned ground. Sci. Amer. 159, 44-50. [11.2]

    Google Scholar 

  • Kuhn, M. and Gessner, K. 2009 Coupled process models of fluid flow and heat transfer in hydrothermal systems in three dimensions. Surv. Geophys. 30, 193-210. [11.8]

    Article  Google Scholar 

  • Lewins, J. 2003 Bejan’s constructal theory of equal potential distribution. Int. J. Heat Mass Transfer 46, 1541-1543. [4.18, 4.20, 6.26, 11.10]

    Article  MATH  Google Scholar 

  • Li, D., Jiang, X., Meng, Q. L. and Xie, Q. 2015a Numerical analyses of the effects of nitrogen on the dissolution trapping mechanism of carbon dioxide storage. Comput. Fluids 114, 1-11. [11.11]

    Article  Google Scholar 

  • Lopez, D. L. and Smith, L. 1995 Fluid flow at fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour. Res. 31, 1489-1503. [11.8]

    Article  Google Scholar 

  • Lowell, R. P. 1980 Topographically driven subcritical hydrothermal convection in the oceanic crust. Earth Planet. Sci. Lett. 49, 21-28. [11.4, 11.6.2]

    Article  Google Scholar 

  • Lowell, R. P. 1985 Double-diffusive convection in partially molten silicate systems: its role during magma production and in magma chambers. J. Volcanol. Geotherm. Res. 26, 1-24. [11.4]

    Article  Google Scholar 

  • Lowell, R. P. 1991 Modeling continental and submarine hydrothermal systems. Rev. Geophys. 29, 457-476. [11.8.1]

    Article  Google Scholar 

  • Lowell, R. P. 2007 Numerical simulations of single-pass hydrothermal convection at mid-ocean ridges: Effects of the extrusive layer and temperature-dependent permeability. Geochem. Geophys. Geosystems 8, #10. [11.8]

    Article  Google Scholar 

  • Lowell, R. P. and Burnell, D. K. 1991 Mathematical modeling of conductive heat-transfer from a freezing, convecting magma chamber to a single pass hydrothermal system — Implications for sea-floor black smokers. Earth Planet. Phys. 104, 59-69. [11.8]

    Article  Google Scholar 

  • Lowell, R. P., Rona, P. A. and von Herzen, R. P. 1995 Seafloor hydrothermal systems. J. Geophys. Res. 100, 327-352. [11.8]

    Article  Google Scholar 

  • Lu, N. 2001 An analytical assessment on the impact of covers on the onset of air convection in mine wastes. Int. J. Numer. Anal. Meth. Geomech. 25, 347-364. [11.8]

    Article  MATH  Google Scholar 

  • MacMinn, C. W., Neufeld, J. A., Hesse, M. A. and Huppert, H. E. 2012 Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resources Res. 48, W11516. [11.11]

    Article  Google Scholar 

  • Massmann, G., Simmons, C., Love, A., Ward, J. and James-Smith, J. 2006 On the variable density surface water-groundwater interaction: a theoretical analysis of mixed convection in a stably-stratified fresh surface water saline groundwater discharge zone. J. Hydrol. 329, 390-402. [11.8]

    Article  Google Scholar 

  • McGuinness, M. J. 1996 Steady solution selection and existence in geothermal heat pipes — I. The convective case. Int. J. Heat Mass Transfer 39, 259-274. [11.9.2]

    Article  Google Scholar 

  • McGuinness, M. J., Blakely, M., Pruess, K. and O'Sullivan, M. J. 1993 Geothermal heat pipe stability: solution selection by upstreaming and boundary conditions. Transport in Porous Media 11, 71-100. [11.9.2]

    Article  Google Scholar 

  • McKay, G. 1992 Patterned ground formation and solar radiation ground heating. Proc. Roy. Soc. Lond. A 438, 249-263. [11.2]

    Article  MATH  Google Scholar 

  • McKay, G. 1996 Patterned ground formation and convection in porous media with phase change. Contin. Mech. Thermodyn. 8, 189-199. [11.2]

    Article  MATH  Google Scholar 

  • McKay, G. and Straughan, B. 1991 The influence of a cubic density law on patterned ground formation. Math. Models Meth. Appl. Sci. 1, 27-39. [11.2]

    Article  MathSciNet  MATH  Google Scholar 

  • McKay, G. and Straughan, B. 1993 Patterned ground formation under water. Continuum Mech. Thermodyn. 5, 145-162. [11.2]

    MathSciNet  MATH  Google Scholar 

  • McKibbin, R. 1998 Mathematical models for heat and mass transport in geothermal systems. Transport Phenomena in Porous Media (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 131-154. [11]

    Chapter  Google Scholar 

  • McKibbin, R. 2005 Modeling heat and mass transport processes in geothermal systems. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 545-571. [11]

    Google Scholar 

  • McLellan, J. G., Oliver, N. H. S., Hobbs, B. E. and Rowland, J. V. 2010 Modelling fluid convection stability in continental faulted rifts with applications to the Taupo Volcanic Zone, New Zealand. J. Vulcan. Geotherm. Res. 190, 109-122. [11.8]

    Article  Google Scholar 

  • Meng, Q. L. and Jiang, X. 2014 Numerical analyses of the solubility trapping of CO2 storage in geological formations. Appl. Energy 130, 581-591. [11.11]

    Article  Google Scholar 

  • Meulenbroek, B., Farajzadeh, R. and Bruining, H. 2013 The effect of interface movement and viscosity variation on the stability of a diffusing interface between aqueous and gaseous CO2. Phys. Fluids 25, 074103. [11.11]

    Article  MATH  Google Scholar 

  • Michael, K., Arnot, M., Cook, P., Ennis-King, J., Funnell, R., Kaldi, J., Kirtse, D., Paterson, L., Gale, J., Herzog, H., and Braitsh, J. 2009 CO2 storage in saline aquifers I – current state of scientific knowledge. Greenhouse Gas Control Tech. 9, 3197-3204. [11.11]

    Google Scholar 

  • Mullis, A. M. 1995 Natural convection in porous, permeable media æ sheets, wedges and lenses. Marine Petrol. Geol. 12, 17-25. [11.8.2]

    Article  Google Scholar 

  • Myint, P. C. and Firoozabadi, A. 2013 Onset of buoyancy-driven convection in Cartesian and cylindrical geometries. Phys. Fluids 25, 094105. [11.11]

    Article  Google Scholar 

  • Nasrabadi, H., Ghorayeb, K. and Firoozabadi, A. 2006 Two-phase multicomponent diffusion and convection for reservoir initialization. SPE Reservoir Eval. Engng. 9, 530-542. [11.9.3]

    Article  Google Scholar 

  • Nazari Moghaddam, R., Rostami, B. and Pourafshary, P. 2013 A method for dissolution rate quantification of convection-diffusion mechanism during CO2 storage in saline aquifers. Spec. Top. Rev. Porous Media 4, 13-21. [11.11]

    Article  Google Scholar 

  • Nazari Moghaddam, R., Rostami, B. and Pourafshary, P. 2015 Scaling analysis of the convective mixing in porous media for geological storage of CO2: An experimental approach. Chem. Engng. Comm. 202, 815-822. [11.11]

    Article  Google Scholar 

  • Nazari Moghaddam, R., Rostami, B., Pourafshary, P. and Fallahzadeh, Y. 2012 Quantification of density-driven natural convection for dissolution mechanism in CO2 sequestration. Transp. Porous Media 92, 439-456; (comments by H. Emami-Meybodi, 93, 171-174; reply by Nazari Moghaddam and Rostami, 93, 655-656). [11.11]

    Google Scholar 

  • Nekhamkina, O. and Sheintuch, M. 2014 Hydrodynamic instability of thermal fronts in reactive porous media: Spinning patterns. Phys. Rev. E 89, 032908. [11.12.1]

    Article  Google Scholar 

  • Neufeld, J. A. and Huppert, H. E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353-370. [11.11]

    Article  MATH  Google Scholar 

  • Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A. and Huppert, H. E. 2010 Convective dissolution of carbon dioxide on saline aquifers. Geophys. Res. Let. 37, L22404. [11.11]

    Article  Google Scholar 

  • Nield, D. A. 1968 Onset of thermohaline convection in a porous medium. Water Resources Res. 4, 553-560. [6.2, 9.1.1, 11.4]

    Article  Google Scholar 

  • Nield, D. A., Simmons, C. T., Kuznetsov, A. V. and Ward, J. D. 2008c On the evolution of salt lakes: Episodic convection beneath an evaporating salt lake. Water Resor. Res. 44, #W02439. [11.8]

    Google Scholar 

  • Nordbotten, J. M. and Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307-327. [11.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Nordbotten, J. M., Celia, M. A. and Bachu, S. 2005 Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Tranps. Porous Media 58, 339-360. [11.11]

    Article  Google Scholar 

  • O’Sullivan, M. J., Pruess, K. and Lippman, M. J. 2000 Geothermal reservoir simulation: the state-of-practice and emerging trends. Proc. World Geothermal Congr. 2000, Kyushu-Tohoku, Japan, pp. 4065-4070. [11]

    Google Scholar 

  • O’Sullivan, M. J., Pruess, K. and Lippman, M. J. 2001 State of the art of geothermal reservoir simulation. Geothermics 30, 395-429. [11]

    Article  Google Scholar 

  • Oldenburg, C. M. and Pruess, K. 1998 Layered thermohaline convection in hypersaline geothermal systems. Transport Porous Media 33, 29-63. [11.8]

    Article  Google Scholar 

  • Oldenburg, C. M. and Pruess, K. 1999 Plume separation by transient thermohaline convection in porous media. Geophys. Res. Lett. 26, 2997-3000. [11.8]

    Article  Google Scholar 

  • Ormond, A. and Genthon, P. 1993 3-D thermoconvection in an anisotropic inclined sedimentary layer. Geophys. J. Int. 112, 257-263. [11.8]

    Article  Google Scholar 

  • Ormond, A. and Ortoleva, P. 2000 Numerical modeling of reaction-induced cavities in a porous rock. J. Geophys. Res. –Solid Earth 105, 16737-16747. [11.8]

    Article  Google Scholar 

  • O'Sullivan, M. J. 1985a Geothermal reservoir simulation. Int. J. Energy Res. 9, 319-332. An edited version was reprinted in Applied Geothermics (eds. M. Economides and P. Ungemash), Wiley, New York, 1987. [11]

    Google Scholar 

  • Ouakad, H. M. 2013 Modeling the CO2 sequestration convection problem using the lattice Boltzmann method. Math. Prob. Engng 846854. [11.11]

    Google Scholar 

  • Palm, E. 1990 Rayleigh convection, mass transport, and change in porosity in layers of sandstone. J. Geophys. Res. 95, 8675-8679. [11.5]

    Article  Google Scholar 

  • Palm, E. and Tveitereid, M. 1979 On heat and mass flux through dry snow. J. Geophys. Res. 84, 745-749. [11.1, 11.5]

    Article  Google Scholar 

  • Paterson, I. and Schlanger, H. P. 1992 Convection in a porous thermosyphon imbedded in a conducting medium. Int. J. Heat Mass Transfer 35, 877-886. [11.8]

    Article  Google Scholar 

  • Pau, G. S. H., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J. and Zhang, K. N. 2010 High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Res. 33, 443-455. [11.11]

    Article  Google Scholar 

  • Payne, L. E. and Straughan, B. 2000a A naturally efficient numerical technique for porous convection stability with non-trivial boundary conditions. Int. J. Numer. Anal. Meth. Geomech. 24, 815-836. [11.8]

    Article  MATH  Google Scholar 

  • Payne, L. E., Song, J. C. and Straughan, B. 1988 Double-diffusive porous penetrative convection – thawing subsea permafrost. Int. J. Engng. Sci. 26, 797-809. [11.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Payne, L., Song, J. and Straughan, B. 1999 Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proc. Roy. Soc. London A 455, 2173-2190. [1.5.3]

    Article  MathSciNet  MATH  Google Scholar 

  • Pestov, I. 1997 Structured geothermal systems: application of dimensional methods. Mathl. Comput. Modelling 25, 43-63. [11.9.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Pestov, I. 1998 Stability of vapour-liquid counterflow in porous media. J. Fluid Mech. 364, 273-295. [11.9.1]

    Article  MathSciNet  MATH  Google Scholar 

  • Peterson, G. P. and Chang, C. S. 1997 Heat transfer analysis and evaluation for two-phase flow in porous-channel heat sinks. Numer. Heat Transfer A 31, 113-130. [11.9.3]

    Article  Google Scholar 

  • Peterson, G. P. and Chang, C. S. 1998 Two-phase heat dissipation utilizing porous-channels of high-conductivity material. ASME J. Heat Transfer 120, 243-252. [11.9.3]

    Article  Google Scholar 

  • Phillips, O. M. 1991 Flow and Reactions in Permeable Rocks, Cambridge Univ. Press, New York. [11.5]

    Google Scholar 

  • Phillips, O. M. 2009 Geological Fluid Dynamics: Subsurface Flow and Reactions, Cambridge University Press, Cambridge, UK. [11], [11.12]

    Book  MATH  Google Scholar 

  • Powers, D., O'Neill, K. and Colbeck, S. C. 1985 Theory of natural convection in snow. J. Geophys. Res. 90, 10641-10649. [11.1]

    Article  Google Scholar 

  • Prasad, A. and Simmons, C. T. 2003 Unstable density-driven flow in heterogeneous porous media: A stochastic study of the Elder [1967b] “short heater” problem. Water Resour. Res. 39, Art. No. 1007. [11.8]

    Google Scholar 

  • Pruess, K. 2008 Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth. Int. J. Greenhouse Gass Control 2, 37-46. [11.11]

    Article  Google Scholar 

  • Pruess, K. and Zhang, K. 2008 Numerical modeling studies of the dissolution-diffusion-convective process during storage in saline aquifers. Lawrence Berkeley National Laboratory, http://escholarship.org/uc/item/2fc5v69p. [11.11]

    Book  Google Scholar 

  • Ranganathan, P., Farjzadeh, R., Bruining, H. and Zitha, P. L. J. 2012 Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transp. Porous Media 95, 25-54. [11.11]

    Article  Google Scholar 

  • Rappoldt, C. Pieters, G. J. J. M., Adema, E. B., Baaijens, G. J., Grootjans, A. P. and van Duijn, C. J. 2003 Buoyancy –driven flow in a peat moss layer as a mechanism for solute transport. Proc. Nat. Acad. Sci. 100, 14937-14942. [6.11.3, 11.8]

    Article  Google Scholar 

  • Ray, R. J., Krantz, W. B., Caine, T. N. and Gunn, R. D. 1983 A model for sorted ground regularity. J. Glaciology 29, 317-337. [11.2]

    Article  Google Scholar 

  • Riaz, A. and Cinar, Y. 2014 Carbon dioxide sequestration in saline formations. Part 1. Review of the modeling of solubility trapping. J. Petrol. Sci. Engng. 124, 367-380. [11.11]

    Article  Google Scholar 

  • Riaz, A., Hesse, M., Tchelepi, H. A. and Orr, F. M. 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87-111. [6.11.3, 11.11]

    Article  MathSciNet  Google Scholar 

  • Ribando, R. J., Torrance, K. E. and Turcotte, D. L. 1976 Numerical models for hydrothermal circulation in the oceanic crust. J. Geophys. Res. 81, 3007-3012. [11.6.1]

    Article  Google Scholar 

  • Ritchie, L. T. and Prichard, D. 2011 Natural convection and the evolution of a reactive porous medium. J. Fluid Mech. 673, 286-317. [11.8]

    Article  MathSciNet  MATH  Google Scholar 

  • Sandeep, V. R., Chaudhuri, A. and Kelkar, S. 2016 Permeability and flow field evolution due to dissolution of calcite in 3-D porous rock under geothermal gradient and Through-flow. Transp. Porous Media 112, 39-52. [11.5]

    Google Scholar 

  • Satik, C., Parlar, M. and Yortsos, Y. C. 1991 A study of steady-state, steam-water counterflow in porous media. Int. J. Heat Mass Transfer, 34, 1755-1771. [11.9.1,11.9.2]

    Article  Google Scholar 

  • Schincariol, R. A., Schwartz, F. W. and Mendoza, C. A. 1997 Instabilities in variable density flows: stability analyses for homogeneous and heterogeneous media. Water Resour. Res. 33, 31-41. [11.8]

    Article  Google Scholar 

  • Schoofs, S. and Hansen, U. 2000 Depletion of a brine layer at the base of ridge-crest hydrothermal systems. Earth Planet. Sci. Lett. 180, 341-353. [11.8]

    Article  Google Scholar 

  • Schoofs, S., Trompert, R. A. and Hansen, U. 1998 The formation and evolution of layered structures in porous media. J. Geophys. Res. 103, 20843-20858. [11.8]

    Article  Google Scholar 

  • Schoofs, S., Trompert, R. A. and Hansen, U. 2000a The formation and evolution of layered structures in porous media: effects of porosity and mechanical dispersion. Phys. Earth Planet. Inter. 118, 205-225. [11.8]

    Article  Google Scholar 

  • Schoofs, S., Trompert, R. A. and Hansen, U. 2000b Thermochemical convection in and between intracratonic basins: Onset and effects. J. Geophys. Res. 105, 25567-25585. [11.8]

    Article  Google Scholar 

  • Seyyedi, M., Rostami, B., Nazari-Moghaddam, R. and Rezai, M. 2014 Experimental study of density-driven convection effects on CO2 dissolution rate in formation water for geological storage. J. Natur. Gas Sci. Engrg. 21, 600-607. [11.11]

    Article  Google Scholar 

  • Sharp, J. M. and Shi, M. 2009 Heterogeneity effects on a possible salinity-driven free convection in low-permeability strata. Geofluids 9, 263-274. [11.8]

    Article  Google Scholar 

  • Shi, R., Jiang, P. and Zhang, Y. 2006 Experimental investigation on convection heat transfer of supercritical CO2 in porous media. J. Xi’an Jiaotung Univ. 40, 1254-1257. [11.11]

    Google Scholar 

  • Simmons, C. T., Fenstemaker, T. R. and Sharp, J. M. 2001 Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J. Contam. Hydrol. 52, 245-275. [11.8]

    Article  Google Scholar 

  • Simmons, C. T., Sharp, J. M. and Nield, D. A. 2008 Modes of free convection in fractured porous media. Water Resour. Res. 44, #W03431. [11.8]

    Article  Google Scholar 

  • Simms, M. A. and Garven, G. 2004 Thermal convection in faulted extensional sedimentary basins: Theoretical results from finite-element modeling. Geofluids 4, 109-130. [11.8]

    Article  Google Scholar 

  • Slim, A. C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech. 741, 461-491. [11.5]

    Article  Google Scholar 

  • Slim, A. C. and Ramakrishnan, T. S. 2010 Onset and cessation of time-dependent dissolution-driven convection in porous media. Phys. Fluids 22, #124103. [11.11]

    Article  Google Scholar 

  • Slim, A. C., Bandi, M. M., Miller, J. C. and Mahadevan, L. 2013 Dissolution-driven convection in a Hele-Shaw cell. Phys. Fluids 25, 024101. [11.11]

    Article  Google Scholar 

  • Sommerfeld, R. A. and Rocchio, J. E. 1993 A study of the effects of macrosegregation and buoyancy-driven flow in binary mixture solidification. Water Resour. Res. 29, 2485-2490. [11.1]

    Article  Google Scholar 

  • Stevens, J. D., Sharp, J. M., Simmons, C. T. and Fenstemaker, J. R. 2009 Evidence of free convection in groundwater: Field-based experiments near wind-tidal flats. J. Hydrol. 375, 394-409. [11.8]

    Article  Google Scholar 

  • Straughan, B. 2004b The Energy Method, Stability, and Nonlinear Convection, 2nd ed., Springer, New York.

    Book  MATH  Google Scholar 

  • Stubos, A. K., Pérez Caseiras, C., Buchlin, J. M. and Kannelopoulos, N. K. 1997 Numerical investigation of vapor-liquid flow and heat transfer in capillary porous media. Numer. Heat Transfer A 31, 143-166. [11.9.1]

    Article  Google Scholar 

  • Stubos, A. K., Satik, C. and Yortsos, Y. C. 1993a Critical heat flux hysteresis in vapor-liquid counterflow in porous media. Int. J. Heat Mass Transfer 36, 227-231. [11.9.2]

    Article  MATH  Google Scholar 

  • Stubos, A. K., Satik, C. and Yortsos, Y. C. 1993b Effects of capillary heterogeneity on vapo-liquid counterflow in porous media. Int. J. Heat Mass Transfer 36, 967-976. [11.9.1]

    Article  MATH  Google Scholar 

  • Sturm, M. and Johnson, J. B. 1991 Natural convection in the subarctic snow cover. J. Geophys. Res. 96, 11657-11671. [11.1]

    Article  Google Scholar 

  • Suekane, T., Kitani, T., Kusano, K. and Deguchi, Y. 2012 Natural convection of miscible two phases due to density difference in saturated porous media. AIP Conf. Proc. 1453, 173-178. [11.11]

    Article  Google Scholar 

  • Swift, D. W. and Harrison, W. D. 1984 Convective transport of brine and thaw of subsea permafrost: result of numerical simulations. J. Geophys. Res. 89, 2080-2086. [11.3]

    Article  Google Scholar 

  • Szulczewski, M. L. and Juanes, R. 2013 The evolution of miscible gravity currents in horizontal porous layers. J. Fluid Mech. 719, 82-96. [11.11]

    Article  MATH  Google Scholar 

  • Thompson, S. E. and Daniels, K. E. 2010 A porous convection model for grass patterns. American Naturalist 175, E10-E15. [11.2]

    Article  Google Scholar 

  • Tilton, N. and Riaz, A. 2014 Nonlinear stability of gravitationally unstable, transient, diffusive boundary layers in porous media. J. Fluid Mech. 745, 251-278. [11.11]

    Article  MathSciNet  Google Scholar 

  • Tilton, N., Daniel, D. and Riaz, A. 2013 The initial transient period of gravitationally unstable diffusive boundary layers developing in porous media Phys. Fluids 25, 092107. [11.11]

    Article  Google Scholar 

  • Travis, B. J. and Schubert, G. 2005 Hydrothermal convection in carbonaceous chondrite parent bodies. Earth Planet. Sci. Lett. 240, 234-250. [11.8]

    Article  Google Scholar 

  • Tsai, P. A., Riesing, K. and Stone, H. A. 2013 Density-driven convection enhanced by an inclined boundary: implications for geological CO2 storage. Phys. Rev. E. 87, 011003. [2.5, 11.11]

    Article  Google Scholar 

  • Turcotte, D. L., Ribando, R. J. and Torrance, K. E. 1977 Numerical calculation of two-temperature thermal convection in a permeable layer with application to the Steamboat Springs thermal system, Nevada. The Earth's Crust (ed. J. G. Heacock), Amer. Geophys. Union, Washington, DC, pp. 722-736. [11.7]

    Google Scholar 

  • Van Dam, R. L., Simmons, C. T., Hyndman, D. W. and Wood, W. W. 2009 Natural free convection in porous media: First field documentation in groundwater. Geophys. Res. Lett. 36, L 11403. [11.8]

    Google Scholar 

  • Vosper, H., Kirk, K., Rochelle, C., Noy, D. and Chadwick, A. 2014 Does numerical modelling of the onset of dissolution-convection reliably reproduce this key stabilization process in CO storage? Energy Procedia 63, 5341-5348. [2.5, 11.11]

    Article  Google Scholar 

  • Voss, C. I., Simmons, C. T. and Robinson, N. I. 2010 Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box. Hydrogeology J. 18, 5-23. [11.8]

    Article  Google Scholar 

  • Waite, M. W. and Amin, M. R. 1999 Numerical investigation of two-phase fluid flow and heat transfer in porous media heated from the side. Numer. Heat Transfer A 35, 271-290. [11.9.3]

    Article  Google Scholar 

  • Wang, L., Hyodo, A., Sakai, S. and Suekane, T. 2016b Three-dimensional visualization of natural convection in porous media. Energy Procedia 86, 460-468. [11.11]

    Article  Google Scholar 

  • Wangen, M. 2012 Stability and width of reaction fronts in 3-D porous media. J. Porous Media 15, 1093-1103. [11.12.1]

    Article  Google Scholar 

  • Wangen, M. 2013 Stability of reaction fronts in porous media. Appl. Math. Modell. 37, 4860-4873. [11.12.1]

    Article  MathSciNet  Google Scholar 

  • Ward, J. D., Simmons, C. T. and Dillon, P. J. 2008 Variable-density modelling of multiple-cycle aquifer storage and recovery (ASR): Importance of anisotropy and layered heterogeneity in brackish aquifers. J. Hydrology 356, 93-105. [11.8]

    Article  Google Scholar 

  • Ward, T. J., Cliffe, K. A., Jensen, O. E., Power, H. 2014a Dissolution-driven porous-medium convection in the presence of chemical reaction. J. Fluid Mech. 747, 316-349. [11.5]

    Article  MathSciNet  MATH  Google Scholar 

  • Ward, T. J., Jensen, O. E., Power, H. and Riley, D. S. 2014b High Rayleigh-number convection of a reactive solute in a porous medium. J. Fluid Mech. 760, 95-126. [11.11]

    Article  MathSciNet  Google Scholar 

  • Webb, S. W., Francis, N. D., Dunn, S. D., Itamura, M. T. and James, D. L. 2003 Thermally induced natural convection effects in Yucca mountain drifts. J. Contam. Hydrol. 62, 713-730. [11.8]

    Article  Google Scholar 

  • Weir, G. J. 1991 Geometric properties of two phase flow in geothermal reservoirs. Transport in Porous Media 6, 501-517. [11.9.1]

    Article  Google Scholar 

  • Weir, G. J. 1994a The relative importance of convective and conductive effects in two-phase geothermal fields. Transport in Porous Media 16, 289-295. [11.9.1]]

    Article  Google Scholar 

  • Weir, G. J. 1994b Nonreacting chemical transport in two-phase reservoirs — factoring diffusive and wave properties. Transport in Porous Media 17, 201-220. [11.9.1]

    Article  Google Scholar 

  • Wessel-Berg, D. 2009 On a linear stability problem related to underground CO2 storage. SIAM J. Appl. Math. 70, 1219-1238. [11.11]

    Article  MathSciNet  MATH  Google Scholar 

  • Wilcock, W. S. D. 1998 Cellular convection models of mid-ocean ridge hydrothermal circulation and the temperatures of black smoker fluids. J. Geophys. Res. 103, 2585-2596. [11.8]

    Article  Google Scholar 

  • Wilson, A. and Ruppel, C. 2007 Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport. Geofluids 7, 377-386. [11.8]

    Article  Google Scholar 

  • Wood, J. R. and Hewett, T. A. 1982 Fluid convection and mass transfer in porous limestone: a theoretical model. Geochim. Cosmochim. Acta 46, 1707-1713. [11.12.2]

    Article  Google Scholar 

  • Wooding, R. A. 1959 The stability of a viscous liquid in a vertical tube containing porous material. Proc. Roy. Soc. London Ser. A 252, 120-134. [6.16.1, 11.3].

    Article  MathSciNet  MATH  Google Scholar 

  • Wooding, R. A. 1969 Growth of fingers at an unstable diffusing interface in a porous medium or Hele-Shaw cell. J. Fluid Mech. 39, 477-495. [ 9.1.3]

    Article  Google Scholar 

  • Woods, A. W. 1999 Liquid and vapor flow in superheated rock. Ann. Rev. Fluid Mech. 31, 171-199. [11.9.3]

    Article  Google Scholar 

  • Woods, A. W. 2014 Flow in Porous Rocks, Cambridge University Press, Cambridge, UK. [11]

    Google Scholar 

  • Woods, A. W., Hesse, M., Berkowitz, R. and Chang, K. W. 2015 Multiple steady states in exchange faults and the dissolution of CO2. J. Fluid Mech. 769, 229-241. [11.11]

    Article  Google Scholar 

  • Xu, W. and Lowell, R. P. 1998 Oscillatory instability of one-dimensional two-phase hydrothermal flow in heterogeneous porous media. J. Geophys. Res. 103, 20859-20868. [11.9.1]

    Article  Google Scholar 

  • Xu, X. F., Chen, S. Y. and Zhang, D. X. 2006 Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resources 29, 397-407. [11.11]

    Article  Google Scholar 

  • Yadav, D. and Kim, M. C. 2014a The effect of rotation on the onset of transient Soret-driven buoyancy convection in a porous layer saturated by a nanofluid. Microfluidics Nanofluidics 17, 1085-1093. [9.7.2]

    Article  Google Scholar 

  • Yadav, D. and Kim, M. C. 2014b Theoretical and numerical analyses on the onset and growth of convective instabilities in a horizontal anisotropic porous medium. J. Porous Media 17, 1061-1074. [11.11]

    Article  Google Scholar 

  • Yang, C. and Gu, Y. 2006 Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Ind. Eng. Chem. Res. 45, 2430-2436. [11.11]

    Article  Google Scholar 

  • Yang, D., Zeng, R. and Zhang, D. 2011c Numerical simulation of convective stability of short-term storage of CO2 in saline aquifers. Int. J. Greenhouse Gas Control. 5, 986-994. [11.11]

    Article  Google Scholar 

  • Young, R. 1993a Two-phase brine mixtures in the geothermal context and the polymer flood model. Transport in Porous Media 11, 179-185. [11.9.1]

    Article  Google Scholar 

  • Young, R. 1993b Two-phase geothermal flows with conduction and the connection with Buckley-Leverett theory. Transport in Porous Media 12, 261-278. [11.9.1]

    Article  Google Scholar 

  • Young, R. and Weir, G. 1994 Constant rate production of geothermal fluid from a two-phase vertical column. I: Theory. Transport in Porous Media 14, 265-286. [11.9.1]

    Article  Google Scholar 

  • Young, R. M. 1996a Phase transitions in one-dimensional steady state hydrothermal flows. J. Geophys. Res. 101, 18011-18022. [11.9.2]

    Article  Google Scholar 

  • Young, R. M. 1996b A basic model for vapour-dominated geothermal reservoirs. Proceedings of the 18th NZ Geothermal Workshop, University of Auckland, Auckland, New Zealand, 301-304. [11.9.2]

    Google Scholar 

  • Young, R. M. 1998a Classification of one-dimensional steady-state two-phase geothermal flows including permeability variations: Part 1. Theory and special cases. Int. J. Heat Mass Transfer 41, 3919-3935. [11.9.2]

    Article  MATH  Google Scholar 

  • Young, R. M. 1998b Classification of one-dimensional steady-state two-phase geothermal flows including permeability variations: Part 2. The general case. Int. J. Heat Mass Transfer 41, 3937-3948. [11.9.2]

    Article  Google Scholar 

  • Yuan, H. Z. and Zhang, X. R. 2013 Numerical simulation with adaptive finite element methods for CO2 storage in saline aquifers. Int. Comm. Heat Mass Transfer 45. 55-63. [11.11]

    Article  Google Scholar 

  • Yue, L. and Lipinski, W. 2015 A numerical model of transient phenomena in a high-temperature solid-gas reacting system for CO2 capture applications. Int. J. Heat Mass Transfer 85, 1058-1068. [11.11]

    Article  Google Scholar 

  • Zhang, W. 2013a Effect of modeling factors on the dissolution-diffusion-convection process during CO2 geological storage in deep saline formations. Front. Earth Sci. 7, 238-256. [11.11]

    Article  Google Scholar 

  • Zhang, W. 2013b Density-driven enhanced dissolution of injected CO2 during long term CO2 geological storage. J. Earth System Sci. 122, 1387-1397. [11.11]

    Article  Google Scholar 

  • Zhang, W., Li, Y. and Omambia, A. N. 2011 Reactive transport modeling of effects of convective mixing on long-term CO2 geological storage in deep saline formations. Int. J. Greenhouse Gas Control 5, 241-256. [11.11]

    Article  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Ord, A., Hornby, P. and Peng, S. L. 2008d Morphological evolution of three-dimensional chemical dissolution front in fluid-saturated porous media: a numerical simulation approach. Geofluids 8, 113-127. [11.12.1]

    Article  Google Scholar 

  • Zhao, C. B., Hobbs, B. E. and Mühlhaus, H. B. 1998a Finite element modeling of temperature gradient driven rock alteration and mineralization in porous rock masses. Comput. Meth. Appl. Math. 165, 175-187. [11.8]

    MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E. and Mühlhaus, H. B. 1999a Effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in deformable fluid-saturated porous media heated from below. Comput. Meth. Appl. Mech. Engng. 173, 41-54. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E. and Ord, A. 2008a Convective and Advective Heat Transfer in Geological Systems, Springer, Berlin. [11.8]

    MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Ord, A., Mühlhaus, H. B. and Lin, G. 2003a Effect of material anisotropy on the onset of convective flow in three-dimensional fluid-saturated faults. Math. Geology 35, 141-154. [11.8]

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Baxter, K., Mühlhaus, H. B. and Ord, A. 1999c A numerical study of pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. Engng. Comput. 16, 202-214. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Hornby, P., Ord, A. and Peng, S. L., 2006a Numerical modeling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated rocks. Int. J. Numer. Meth. Engng. 66, 1061-1078. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Mühlhaus, H. B. and Ord, A. 1999d Finite-element analysis of flow problems near geological lenses in hydrodynamic and hydrothermal systems. Geophys. J. Inter. 138, 146-158. [11.8]

    Article  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Muhlhaus, H. B., Ord, A. and Lin, G. 2002 Analysis of steady-state heat transfer through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. Int. J. Numer. Anal. Meth. Geomech. 26, 1477-1491. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Mühlhaus, H. B., Ord, A. and Lin, G. 2000a Numerical modeling of double diffusion driven reactive flow transport in deformable fluid-saturated porous media with particular consideration of temperature-dependent chemical reaction rates. Engng. Comput. 17, 367-385. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Mühlhaus, H. B., Ord, A. and Lin, G. 2001a Finite element modeling of three-dimensional convection problems in fluid-saturated porous media heated from below. Comm. Numer. Methods Engng. 17, 101-114. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Mühlhaus, H. B., Ord, A. and Lin, G. 2003b Convective instability of 3-D fluid-saturated geological fault zones heated from below. Geophys. J. Int. 155, 213-220. [11.8]

    Article  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Ord, A., Kuhn, M., Mulhaus, H. B. and Peng, S. l. 2006b Numerical simulation of double-diffusion driven convective flow and rock alteration in three-dimensional fluid-saturated geological fault zones. Comput. Meth. Appl, Mech. Engng. 195, 2816-2840. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Ord, A., Peng, S. L., Mühlhaus, H. B. and Liu, L. M. 2004a Theoretical investigation of convective instability in inclined and fluid-saturated three-dimensional fault zones. Tectonophysics 387, 47-64. [11.8]

    Article  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Ord, A., Peng, S. L., Mühlhaus, H. B. and Liu, L. M. 2005a Double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones heated from below. Math. Geology 37, 373-391. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Hobbs, B. E., Walshe, J. L., Mühlhaus, H. B., and Ord, A. 2001b Finite element modeling of fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. Comput. Meth. Appl. Mech. Engng. 190, 2277-2293. [11.8]

    Article  MATH  Google Scholar 

  • Zhao, C. B., Mühlhaus, H. B. and Hobbs, B. F. 1997 Finite element analysis of steady state natural convection problems in fluid-saturated porous media heated from below. Int. J. Numer. Anal. Methods Geomech. 21, 863-881. [11.8]

    Article  Google Scholar 

  • Zhao, C. B., Peng, S. L., Liu, L. M., Hobbs, B. E. and Ord, A. 2011a Computational simulation of convective flow in the Earth crust under consideration of dynamic crust-mantle interactions. J. Central South Univ. Tech. 18, 2080-2084. [11.8]

    Article  Google Scholar 

  • Zhao, C., Mühlhaus, H. B. and Hobbs, B. F. 1998b Effects of geological inhomogeneity on high Rayleigh number steady state heat and mass transfer in fluid-saturated porous media heated from below. Numer. Heat Transfer A 33, 415-431. [11.8]

    Article  Google Scholar 

  • Zhao, C.B., Schaubs, P. and Hobbs, B. E. 2016a Computational simulation of seepage instability in fluid-saturated porous rocks: Potential dynamic mechanism for controlling mineralization patterns. Ore Geology Reviews 79, 180-188. [11.8]

    Article  Google Scholar 

  • Zhao, F. Y., Liu, D. and Tang, G. F. 2008b Natural convection in a porous enclosure with a partial heating and salting element. Int. J. Therm. Sci. 47, 569-583. [9.1.6.4]

    Article  Google Scholar 

  • Zhao, F. Y., Liu, D. and Tang, G. F. 2008c Natural convection in an enclosure with localized heating and salting from below. Int. J. Heat Mass Transfer 51, 2889-2904. [9.1.6.4]

    Article  MATH  Google Scholar 

  • Zhao, S. C., Liu, Q. S., Nguyen-Thi, H. and Billia, B. 2011 Gravity-driven instability in a liquid film overlying an inhomogeneous porous layer. Chinese Phys. Lett. 28, #024702. [6.19.3]

    Google Scholar 

  • Zhao, T. S., Cheng, P. and Wang, C. Y. 2000b Buoyancy-induced flows and phase-change heat transfer in a vertical capillary structure with symmetric heating. Chem. Engng. Sci. 55, 2653-2661. [11.9.3]

    Article  Google Scholar 

  • Zhao, T. S., Liao, Q. and Cheng, P. 1999e Variations of buoyancy-induced mass flux from single-phase to two-phase flow in a vertical porous tube with constant heat flux. ASME J. Heat Transfer 121, 646-652. [11.9.3]

    Article  Google Scholar 

  • Zhekamukhov, M. K. and Zhekamukhova, I. M. 2002 On convective instability of air in the snow cover. J. Engng. Phys. Thermophys. 75, 849-858. [11.1]

    Article  Google Scholar 

  • Zhu, N. and Vafai, K. 1999 Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non-Darcian transport -- a closed form solution. Int. J. Heat Mass Transfer 42, 3405-3418. [11.9.2]

    Article  MATH  Google Scholar 

  • Zimmerman, W., Painter, B. and Behringer, R. 1998 Pattern formation in an inhomogeneous environment. Europ. Phys. J. B 5, 757-770. [11.2]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nield, D.A., Bejan, A. (2017). Geophysical Aspects. In: Convection in Porous Media. Springer, Cham. https://doi.org/10.1007/978-3-319-49562-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49562-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49561-3

  • Online ISBN: 978-3-319-49562-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics