Skip to main content

Multimodality Monitoring Correlates of Seizures

  • Chapter
  • First Online:
Seizures in Critical Care

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Continuous EEG (cEEG) in critically ill patients has shown a high incidence of electrographic seizures, but the underlying pathophysiology is unclear and the aggressiveness of management controversial. Increasing use of invasive multimodality monitoring (MMM) provides a window into the brain physiology in real time. Insights into the pathophysiologic underpinnings of seizures may provide valuable information to better characterize these post-injury phenomena. In this chapter, following a brief review of different components, methods, and devices of MMM, we summarize the existing knowledge of MMM measures during seizures and other epileptiform patterns. We discuss these findings in the context of surface EEG (sEEG) and intracortical/depth EEG (dEEG) recordings. Lastly we highlight potential questions for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cEEG:

Continuous EEG

dEEG:

Depth/intracortical EEG

EEG:

Electroencephalography

MMM:

Multimodality monitoring

sEEG:

Surface EEG

References

  1. Rajshekhar V, Harbaugh RE. Results of routine ventriculostomy with external ventricular drainage for acute hydrocephalus following subarachnoid haemorrhage. Acta Neurochir. 1992;115:8–14.

    Article  CAS  PubMed  Google Scholar 

  2. Hasan D, Vermeulen M, Wijdicks EF, Hijdra A, van Gijn J. Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke. 1989;20:747–53.

    Article  CAS  PubMed  Google Scholar 

  3. Lescot T, Reina V, Le Manach Y, Boroli F, Chauvet D, Boch A-L, et al. In vivo accuracy of two intraparenchymal intracranial pressure monitors. Intensive Care Med. 2011;37:875–9.

    Article  PubMed  Google Scholar 

  4. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy G, et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European. Neurocrit Care. 2014;21(Suppl. 2):S282–96.

    Article  PubMed  Google Scholar 

  5. Sahjpaul R, Girotti M. Intracranial pressure monitoring in severe traumatic brain injury–results of a Canadian survey. Can J Neurol Sci. 2000;27:143–7.

    Article  CAS  PubMed  Google Scholar 

  6. Stocchetti N, Penny KI, Dearden M, Braakman R, Cohadon F, Iannotti F, et al. Intensive care management of head-injured patients in Europe: a survey from the European brain injury consortium. Intensive Care Med. 2001;27:400–6.

    Article  CAS  PubMed  Google Scholar 

  7. Le Roux PD, Elliott JP, Newell DW, Grady MS, Winn HR. Predicting outcome in poor-grade patients with subarachnoid hemorrhage: a retrospective review of 159 aggressively managed cases. J Neurosurg. 1996;85:39–49.

    Article  CAS  PubMed  Google Scholar 

  8. Ransom ER, Mocco J, Komotar RJ, Sahni D, Chang J, Hahn DK, et al. External ventricular drainage response in poor grade aneurysmal subarachnoid hemorrhage: effect on preoperative grading and prognosis. Neurocrit Care. 2007;6:174–80.

    Article  PubMed  Google Scholar 

  9. Badri S, Chen J, Barber J, Temkin NR, Dikmen SS, Chesnut RM, et al. Mortality and long-term functional outcome associated with intracranial pressure after traumatic brain injury. Intensive Care Med. 2012;38:1800–9.

    Article  PubMed  Google Scholar 

  10. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367:2471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sykora M, Czosnyka M, Liu X, Donnelly J, Nasr N, Diedler J, et al. Autonomic impairment in severe traumatic brain injury: a multimodal neuromonitoring study. Crit Care Med. 2016;44:1173.

    Google Scholar 

  12. Forsyth RJ, Raper J, Todhunter E. Routine intracranial pressure monitoring in acute coma. Cochrane Database Syst Rev. 2015;11:CD002043.

    Google Scholar 

  13. Helbok R, Olson DM, Le Roux PD, Vespa P. Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neurocrit Care. 2014;21(Suppl. 2):S85–94.

    Article  PubMed  Google Scholar 

  14. Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:408–16.

    Article  PubMed  Google Scholar 

  15. Lv Y, Wang D, Lei J, Tan G. Clinical observation of the time course of raised intracranial pressure after subarachnoid hemorrhage. Neurol Sci. 2015;36:1203–10.

    Article  PubMed  Google Scholar 

  16. Magni F, Pozzi M, Rota M, Vargiolu A, Citerio G. High-resolution intracranial pressure burden and outcome in subarachnoid hemorrhage. Stroke. 2015;46:2464–9.

    Article  PubMed  Google Scholar 

  17. Nagel A, Graetz D, Schink T, Frieler K, Sakowitz O, Vajkoczy P, et al. Relevance of intracranial hypertension for cerebral metabolism in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2009;111:94–101.

    Article  PubMed  Google Scholar 

  18. Hickey JV, Olson DM, Turner DA. Intracranial pressure waveform analysis during rest and suctioning. Biol Res Nurs. 2009;11:174–86.

    Article  PubMed  Google Scholar 

  19. Olson DM, Andrew Kofke W, O’Phelan K, Gupta PK, Figueroa SA, Smirnakis SM, et al. Global monitoring in the neurocritical care unit. Neurocrit Care. 2015;22:337–47.

    Article  PubMed  Google Scholar 

  20. Kolias AG, Kirkpatrick PJ, Hutchinson PJ. Decompressive craniectomy: past, present and future. Nat Rev Neurosci. 2013;9:405–15.

    CAS  Google Scholar 

  21. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25:E2.

    Article  PubMed  Google Scholar 

  22. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    Article  PubMed  Google Scholar 

  23. Gesang D, Zhang D, Zhao J, Wang S, Zhao Y, Wang R, et al. Laser Doppler flowmeter study on regional cerebral blood flow in early stage after standard superficial temporal artery-middle cerebral artery bypass surgery for moyamoya disease. Chin Med J. 2009;122:2412–8.

    PubMed  Google Scholar 

  24. Vajkoczy P, Roth H, Horn P, Lucke T, Thomé C, Hubner U, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    Article  CAS  PubMed  Google Scholar 

  25. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. Guidelines for the management of severe traumatic brain injury. IX. Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl. 1):S59–64.

    PubMed  Google Scholar 

  26. Schmidt JM, Ko S-B, Helbok R, Kurtz P, Stuart RM, Presciutti M, et al. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;42:1351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diedler J, Santos E, Poli S, Sykora M. Optimal cerebral perfusion pressure in patients with intracerebral hemorrhage: an observational case series. Crit Care. 2014;18:R51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Czosnyka M, Miller C. Monitoring of cerebral autoregulation. Neurocrit Care. 2014;21(Suppl. 2):S95–102.

    Article  PubMed  Google Scholar 

  29. Barth M, Woitzik J, Weiss C, Muench E, Diepers M, Schmiedek P, et al. Correlation of clinical outcome with pressure-, oxygen-, and flow-related indices of cerebrovascular reactivity in patients following aneurysmal SAH. Neurocrit Care. 2010;12:234–43.

    Article  PubMed  Google Scholar 

  30. Bijlenga P, Czosnyka M, Budohoski KP, Soehle M, Pickard JD, Kirkpatrick PJ, et al. “Optimal cerebral perfusion pressure” in poor grade patients after subarachnoid hemorrhage. Neurocrit Care. 2010;13:17–23.

    Article  PubMed  Google Scholar 

  31. Howells T, Elf K, Jones PA, Ronne-Engström E, Piper I, Nilsson P, et al. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg. 2005;102:311–7.

    Article  PubMed  Google Scholar 

  32. Rasulo FA, Girardini A, Lavinio A, De Peri E, Stefini R, Cenzato M, et al. Are optimal cerebral perfusion pressure and cerebrovascular autoregulation related to long-term outcome in patients with aneurysmal subarachnoid hemorrhage? J Neurosurg Anesthesiol. 2012;24:3–8.

    Article  PubMed  Google Scholar 

  33. Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg. 2014;120:1451–7.

    Article  PubMed  Google Scholar 

  34. Frontera J, Ziai W, O’Phelan K, Leroux PD, Kirkpatrick PJ, Diringer MN, et al. Regional brain monitoring in the neurocritical care unit. Neurocrit Care. 2015;22:348–59.

    Article  CAS  PubMed  Google Scholar 

  35. Dengl M, Jaeger M, Renner C, Meixensberger J. Comparing brain tissue oxygen measurements and derived autoregulation parameters from different probes (Licox vs. Raumedic). Acta Neurochir Suppl. 2012;114:165–8.

    Article  CAS  PubMed  Google Scholar 

  36. Maas AI, Fleckenstein W, de Jong DA, van Santbrink H. Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir Suppl (Wien). 1993;59:50–7.

    CAS  Google Scholar 

  37. Purins K, Enblad P, Sandhagen B, Lewén A. Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of Neurovent-PTO and Licox sensors. Acta Neurochir. 2010;152:681–8.

    Article  PubMed  Google Scholar 

  38. Stewart C, Haitsma I, Zador Z, Hemphill JC, Morabito D, Manley G, et al. The new Licox combined brain tissue oxygen and brain temperature monitor: assessment of in vitro accuracy and clinical experience in severe traumatic brain injury. Neurosurgery. 2008;63:1159–64. discussion 1164–5

    Article  PubMed  Google Scholar 

  39. Orakcioglu B, Sakowitz OW, Neumann J-O, Kentar MM, Unterberg A, Kiening KL. Evaluation of a novel brain tissue oxygenation probe in an experimental swine model. Neurosurgery. 2010;67:1716–22. discussion 1722–3

    Article  PubMed  Google Scholar 

  40. Dengler J, Frenzel C, Vajkoczy P, Wolf S, Horn P. Cerebral tissue oxygenation measured by two different probes: challenges and interpretation. Intensive Care Med. 2011;37:1809–15.

    Article  CAS  PubMed  Google Scholar 

  41. Dengler J, Frenzel C, Vajkoczy P, Horn P, Wolf S. The oxygen reactivity index and its relation to sensor technology in patients with severe brain lesions. Neurocrit Care. 2013;19:74–8.

    Article  CAS  PubMed  Google Scholar 

  42. Pennings FA, Schuurman PR, van den Munckhof P, Bouma GJ. Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values. J Neurotrauma. 2008;25:1173–7.

    Article  PubMed  Google Scholar 

  43. Chen HI, Stiefel MF, Oddo M, Milby AH, Maloney-Wilensky E, Frangos S, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery. 2011;69:53–63. discussion 63

    Article  PubMed  Google Scholar 

  44. Väth A, Kunze E, Roosen K, Meixensberger J. Therapeutic aspects of brain tissue pO2 monitoring after subarachnoid hemorrhage. Acta Neurochir Suppl. 2002;81:307–9.

    PubMed  Google Scholar 

  45. Ang BT, Wong J, Lee KK, Wang E, Ng I. Temporal changes in cerebral tissue oxygenation with cerebrovascular pressure reactivity in severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2007;78:298–302.

    Article  CAS  PubMed  Google Scholar 

  46. Stiefel MF, Udoetuk JD, Spiotta AM, Gracias VH, Goldberg A, Maloney-Wilensky E, et al. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurg. 2006;105:568–75.

    Article  PubMed  Google Scholar 

  47. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ. Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery. 2002;50:1213–21. discussion 1221–2

    PubMed  Google Scholar 

  48. Oddo M, Bösel J. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care. 2014;21(Suppl. 2):S103–20.

    Article  PubMed  CAS  Google Scholar 

  49. Bouzat P, Marques-Vidal P, Zerlauth J-B, Sala N, Suys T, Schoettker P, et al. Accuracy of brain multimodal monitoring to detect cerebral hypoperfusion after traumatic brain injury. Crit Care Med. 2015;43:445–52.

    Article  PubMed  Google Scholar 

  50. Palmer S, Bader MK. Brain tissue oxygenation in brain death. Neurocrit Care. 2005;2:17–22.

    Article  PubMed  Google Scholar 

  51. Bohman L-E, Pisapia JM, Sanborn MR, Frangos S, Lin E, Kumar M, et al. Response of brain oxygen to therapy correlates with long-term outcome after subarachnoid hemorrhage. Neurocrit Care. 2013;19:320–8.

    Article  CAS  PubMed  Google Scholar 

  52. Ungerstedt U. Microdialysis–principles and applications for studies in animals and man. J Intern Med. 1991;230:365–73.

    Article  CAS  PubMed  Google Scholar 

  53. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.

    Article  PubMed  Google Scholar 

  54. Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94:740–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hutchinson PJ. Microdialysis in traumatic brain injury–methodology and pathophysiology. Acta Neurochir Suppl. 2005;95:441–5.

    Article  CAS  PubMed  Google Scholar 

  56. Andrews PJD, Citerio G, Longhi L, Polderman K, Sahuquillo J, Vajkoczy P. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med. 2008;34:1362–70.

    Article  PubMed  Google Scholar 

  57. Bellander B-M, Cantais E, Enblad P, Hutchinson P, Nordström C-H, Robertson C, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.

    Article  PubMed  Google Scholar 

  58. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, et al. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg. 1996;84:606–16.

    Article  CAS  PubMed  Google Scholar 

  59. Timofeev I, Carpenter KLH, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134:484–94.

    Article  PubMed  Google Scholar 

  60. Hutchinson PJ, Jalloh I, Helmy A, Carpenter KLH, Rostami E, Bellander B-M, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41:1517–28.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nilsson OG, Brandt L, Ungerstedt U, Säveland H. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery. 1999;45:1176–84. discussion 1184–5

    Article  CAS  PubMed  Google Scholar 

  62. Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9. discussion 709–10

    CAS  PubMed  Google Scholar 

  63. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21:894–906.

    Article  PubMed  Google Scholar 

  64. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, et al. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke. 2003;34:1382–8.

    Article  CAS  PubMed  Google Scholar 

  65. Helbok R, Schmidt JM, Kurtz P, Hanafy KA, Fernandez L, Stuart RM, et al. Systemic glucose and brain energy metabolism after subarachnoid hemorrhage. Neurocrit Care. 2010;12:317–23.

    Article  CAS  PubMed  Google Scholar 

  66. Ko S-B, Choi HA, Parikh G, Helbok R, Schmidt JM, Lee K, et al. Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke. 2011;42:3087–92.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Oddo M, Milby A, Chen I, Frangos S, MacMurtrie E, Maloney-Wilensky E, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1275–81.

    Article  CAS  PubMed  Google Scholar 

  68. Claassen J, Vespa P. Electrophysiologic monitoring in acute brain injury. Neurocrit Care. 2014;21:129.

    Article  Google Scholar 

  69. Moura LMVR, Shafi MM, Ng M, Pati S, Cash SS, Cole AJ, et al. Spectrogram screening of adult EEGs is sensitive and efficient. Neurology. 2014;83:56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tanner AEJ, Särkelä MOK, Virtanen J, Viertiö-Oja HE, Sharpe MD, Norton L, et al. Application of subhairline EEG montage in intensive care unit: comparison with full montage. J Clin Neurophysiol. 2014;31:181–6.

    Article  PubMed  Google Scholar 

  71. Suzuki A, Mori N, Hadeishi H, Yoshioka K, Yasui N. Computerized monitoring system in neurosurgical intensive care. J Neurosci Methods. 1988;26:133–9.

    Article  CAS  PubMed  Google Scholar 

  72. Agarwal R, Gotman J, Flanagan D, Rosenblatt B. Automatic EEG analysis during long-term monitoring in the ICU. Electroencephalogr Clin Neurophysiol. 1998;107:44–58.

    Article  CAS  PubMed  Google Scholar 

  73. Claassen J, Hirsch LJ, Kreiter KT, Du EY, Connolly ES, Emerson RG, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115:2699–710.

    Article  PubMed  Google Scholar 

  74. Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed. 2008;93:F187–91.

    Article  CAS  PubMed  Google Scholar 

  75. Sackellares JC, Shiau D-S, Halford JJ, LaRoche SM, Kelly KM. Quantitative EEG analysis for automated detection of nonconvulsive seizures in intensive care units. Epilepsy Behav. 2011;22(Suppl. 1):S69–73.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stewart CP, Otsubo H, Ochi A, Sharma R, Hutchison JS, Hahn CD. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75:1501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akman CI, Micic V, Thompson A, Riviello JJ. Seizure detection using digital trend analysis: factors affecting utility. Epilepsy Res. 2011;93:66–72.

    Article  PubMed  Google Scholar 

  78. Behrens E, Zentner J, van Roost D, Hufnagel A, Elger CE, Schramm J. Subdural and depth electrodes in the presurgical evaluation of epilepsy. Acta Neurochir. 1994;128:84–7.

    Article  CAS  PubMed  Google Scholar 

  79. Stuart RM, Schmidt M, Kurtz P, Waziri A, Helbok R, Mayer SA, et al. Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit Care. 2010;12:188–98.

    Article  PubMed  Google Scholar 

  80. Waziri A, Claassen J, Stuart RM, Arif H, Schmidt JM, Mayer SA, et al. Intracortical electroencephalography in acute brain injury. Ann Neurol. 2009;66:366–77.

    Article  PubMed  Google Scholar 

  81. Vespa P, Tubi M, Claassen J, Blanco M, McArthur D, Velazquez AG, et al. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann Neurol. 2016;79:579.

    Google Scholar 

  82. Sandsmark DK, Kumar MA, Park S, Levine JM. Multimodal monitoring in subarachnoid hemorrhage. Stroke. 2012;43:1440–5.

    Article  PubMed  Google Scholar 

  83. Sakowitz OW, Santos E, Nagel A, Krajewski KL, Hertle DN, Vajkoczy P, et al. Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2013;44:220–3.

    Article  PubMed  Google Scholar 

  84. Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89:971–82.

    Article  CAS  PubMed  Google Scholar 

  85. Claassen J, Perotte A, Albers D, Kleinberg S, Schmidt JM, Tu B, et al. Nonconvulsive seizures after subarachnoid hemorrhage: multimodal detection and outcomes. Ann Neurol. 2013;74:53–64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nangunoori R, Maloney-Wilensky E, Stiefel M, Park S, Andrew Kofke W, Levine JM, et al. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care. 2012;17:131–8.

    Article  CAS  PubMed  Google Scholar 

  87. De Marchis GM, Pugin D, Meyers E, Velasquez A, Suwatcharangkoon S, Park S, et al. Seizure burden in subarachnoid hemorrhage associated with functional and cognitive outcome. Neurology. 2016;86:253–60.

    Google Scholar 

  88. Claassen J, Hirsch LJ, Frontera JA, Fernandez A, Schmidt M, Wittman J, et al. Prognostic significance of continuous eeg monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4:103–12.

    Article  PubMed  Google Scholar 

  89. Rossetti AO, Urbano LA, Delodder F, Kaplan PW, Oddo M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14:R173.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Claassen J, Jetté N, Chum F, Green R, Schmidt M, Choi H, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1356–65.

    Article  CAS  PubMed  Google Scholar 

  91. Vespa PM, O’Phelan K, Shah M, Mirabelli J, Starkman S, Kidwell C, et al. Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology. 2003;60:1441–6.

    Article  CAS  PubMed  Google Scholar 

  92. Vespa PM, Nuwer MR, Nenov V, Ronne-Engstrom E, Hovda DA, Bergsneider M, et al. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg. 1999;91:750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ronne-Engstrom E, Winkler T. Continuous EEG monitoring in patients with traumatic brain injury reveals a high incidence of epileptiform activity. Acta Neurol Scand. 2006;114:47–53.

    Article  CAS  PubMed  Google Scholar 

  94. Carrera E, Claassen J, Oddo M, Emerson RG, Mayer SA, Hirsch LJ. Continuous electroencephalographic monitoring in critically ill patients with central nervous system infections. Arch Neurol. 2008;65:1612–8.

    Article  PubMed  Google Scholar 

  95. Kurtz P, Gaspard N, Wahl AS, Bauer RM, Hirsch LJ, Wunsch H, et al. Continuous electroencephalography in a surgical intensive care unit. Intensive Care Med. 2014;40:228–34.

    Article  PubMed  Google Scholar 

  96. Oddo M, Carrera E, Claassen J, Mayer SA, Hirsch LJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37:2051.

    Article  PubMed  Google Scholar 

  97. Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22:79–91.

    Article  PubMed  Google Scholar 

  98. Claassen J, Albers D, Schmidt JM, De Marchis GM, Pugin D, Falo CM, et al. Nonconvulsive seizures in subarachnoid hemorrhage link inflammation and outcome. Ann Neurol. 2014;75:771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Snyder JV, Nemoto EM, Carroll RG, Safar P. Global ischemia in dogs: intracranial pressures, brain blood flow and metabolism. Stroke. 6:21–7.

    Google Scholar 

  100. Oddo M, Villa F, Citerio G. Brain multimodality monitoring: an update. Curr Opin Crit Care. 2012;18:111–8.

    Article  PubMed  Google Scholar 

  101. Penfield W, von Sántha K, Cipriani A. Cerebral blood flow during induced epileptiform seizures in animals and man. J Neurophysiol. 1939;2:257–67.

    Google Scholar 

  102. Meldrum BS, Nilsson B. Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain. 1976;99:523–42.

    Article  CAS  PubMed  Google Scholar 

  103. Suzuki R, Nitsch C, Fujiwara K, Klatzo I. Regional changes in cerebral blood flow and blood-brain barrier permeability during epileptiform seizures and in acute hypertension in rabbits. J Cereb Blood Flow Metab. 1984;4:96–102.

    Article  CAS  PubMed  Google Scholar 

  104. Choy M, Wells JA, Thomas DL, Gadian DG, Scott RC, Lythgoe MF. Cerebral blood flow changes during pilocarpine-induced status epilepticus activity in the rat hippocampus. Exp Neurol. 2010;225:196–201.

    Article  CAS  PubMed  Google Scholar 

  105. Meldrum BS, Vigouroux RA, Brierley JB. Systemic factors and epileptic brain damage. Prolonged seizures in paralyzed, artificially ventilated baboons. Arch Neurol. 1973;29:82–7.

    Article  CAS  PubMed  Google Scholar 

  106. Freund TF, Buzsáki G, Prohaska OJ, Leon A, Somogyi P. Simultaneous recording of local electrical activity, partial oxygen tension and temperature in the rat hippocampus with a chamber-type microelectrode. Effects of anaesthesia, ischemia and epilepsy. Neuroscience. 1989;28:539–49.

    Article  CAS  PubMed  Google Scholar 

  107. Kreisman NR, Sick TJ, Rosenthal M. Concepts of brain oxygen sufficiency during seizures. Adv Exp Med Biol. 1984;180:381–92.

    Article  CAS  PubMed  Google Scholar 

  108. Kreisman NR, Sick TJ, LaManna JC, Rosenthal M. Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo. Brain Res. 1981;218:161–74.

    Article  CAS  PubMed  Google Scholar 

  109. Gonzalez H, Hunter CJ, Bennet L, Power GG, Gunn AJ. Cerebral oxygenation during postasphyxial seizures in near-term fetal sheep. J Cereb Blood Flow Metab. 2005;25:911–8.

    Article  PubMed  Google Scholar 

  110. Goitein KJ, Shohami E. Intracranial pressure during prolonged experimental convulsions in cats. J Neurol. 1983;230:259–66.

    Article  CAS  PubMed  Google Scholar 

  111. Zweckberger K, Simunovic F, Kiening KL, Unterberg AW, Sakowitz OW. Anticonvulsive effects of the dopamine agonist lisuride maleate after experimental traumatic brain injury. Neurosci Lett. 2010;470:150–4.

    Article  CAS  PubMed  Google Scholar 

  112. Imran I, Hillert MH, Klein J. Early metabolic responses to lithium/pilocarpine-induced status epilepticus in rat brain. J Neurochem. 2015;135:1007–18.

    Article  CAS  PubMed  Google Scholar 

  113. Blennow G, Folbergrova J, Nilsson B, Siesjö BK. Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res. 1979;179:129–46.

    Article  CAS  PubMed  Google Scholar 

  114. Millan MH, Obrenovitch TP, Sarna GS, Lok SY, Symon L, Meldrum BS. Changes in rat brain extracellular glutamate concentration during seizures induced by systemic picrotoxin or focal bicuculline injection: an in vivo dialysis study with on-line enzymatic detection. Epilepsy Res. 1991;9:86–91.

    Article  CAS  PubMed  Google Scholar 

  115. Nahorski SR, Roberts DJ, Stewart GG. Some neurochemical aspects of pentamethylenetetrazole convulsive activity in rat brain. J Neurochem. 1970;17:621–31.

    Article  CAS  PubMed  Google Scholar 

  116. Nilsson P, Ronne-Engström E, Flink R, Ungerstedt U, Carlson H, Hillered L. Epileptic seizure activity in the acute phase following cortical impact trauma in rat. Brain Res. 1994;637:227–32.

    Article  CAS  PubMed  Google Scholar 

  117. Liu Z, Stafstrom CE, Sarkisian MR, Yang Y, Hori A, Tandon P, et al. Seizure-induced glutamate release in mature and immature animals: an in vivo microdialysis study. Neuroreport. 1997;8:2019–23.

    Article  CAS  PubMed  Google Scholar 

  118. Stephens ML, Pomerleau F, Huettl P, Gerhardt GA, Zhang Z. Real-time glutamate measurements in the putamen of awake rhesus monkeys using an enzyme-based human microelectrode array prototype. J Neurosci Methods. 2010;185:264–72.

    Article  CAS  PubMed  Google Scholar 

  119. Kuhl DE, Engel J, Phelps ME, Selin C. Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann Neurol. 1980;8:348–60.

    Article  CAS  PubMed  Google Scholar 

  120. Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:114.

    PubMed  PubMed Central  Google Scholar 

  121. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Devinsky O. Effects of seizures on autonomic and cardiovascular function. Epilepsy Curr. 2004;4:43–6.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sutherland GR, Ross BD, Lesiuk H, Peeling J, Pillay N, Pinsky C. Phosphate energy metabolism during domoic acid-induced seizures. Epilepsia. 34:996–1002.

    Google Scholar 

  124. Vespa PM, McArthur D, O’Phelan K, Glenn T, Etchepare M, Kelly D, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.

    Article  CAS  PubMed  Google Scholar 

  125. Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.

    Article  CAS  PubMed  Google Scholar 

  126. During MJ, Fried I, Leone P, Katz A, Spencer DD. Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem. 1994;62:2356–61.

    Article  CAS  PubMed  Google Scholar 

  127. Dienel GA. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab. 2014;34:1736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Meldrum BS. The role of glutamate in epilepsy and other CNS disorders. Neurology. 1994;44:S14–23.

    CAS  PubMed  Google Scholar 

  129. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol. 2005;57:226–35.

    Article  CAS  PubMed  Google Scholar 

  130. Ronne-Engström E, Hillered L, Flink R, Spännare B, Ungerstedt U, Carlson H. Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab. 1992;12:873–6.

    Article  PubMed  Google Scholar 

  131. Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10:2145–52.

    Article  CAS  PubMed  Google Scholar 

  132. Vespa P, Martin NA, Nenov V, Glenn T, Bergsneider M, Kelly D, et al. Delayed increase in extracellular glycerol with post-traumatic electrographic epileptic activity: support for the theory that seizures induce secondary injury. Acta Neurochir Suppl. 2002;81:355–7.

    CAS  PubMed  Google Scholar 

  133. Pearl J. Interpretation and identification of causal mediation. Psychol Methods. 2014;19:459–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.W.’s work was supported by Deutsche Forschungsgemeinschaft (Research Fellowship Wi 4300/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Claassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Witsch, J., Morris, N.A., Roh, D., Frey, HP., Claassen, J. (2017). Multimodality Monitoring Correlates of Seizures. In: Varelas, P., Claassen, J. (eds) Seizures in Critical Care. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49557-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49557-6_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-49555-2

  • Online ISBN: 978-3-319-49557-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics