Skip to main content

Diagnosing and Monitoring Seizures in the ICU: The Role of Continuous EEG for Detection and Management of Seizures in Critically Ill Patients, Including the Ictal-Interictal Continuum

  • Chapter
  • First Online:

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Advances in computer technology have made it possible to perform prolonged digital continuous video EEG monitoring of many critically ill patients simultaneously. Studies using continuous EEG monitoring (cEEG) have found that these patients often have nonconvulsive seizures (NCSzs) that may contribute to secondary brain injury. Improving quantitative EEG (qEEG) software speeds data review to allow screening of multiple prolonged recordings to detect NCSz and provides continuous information about changes in brain function in real time at the bedside and remotely. Optimal sensitivity and specificity of qEEG tools is obtained with full electrode montages and careful maintenance of scalp electrodes. Standardized nomenclature for EEG patterns seen in critically ill patients has been tested, published, and utilized for multicenter research on these patterns. Guidelines on when and how to perform cEEG have been published. New electrode technologies, such as MRI-compatible electrodes, help reduce the burden on EEG technologists while limiting interruptions in recordings. In addition to detecting NCSz, cEEG can also be used for dynamic detection of other changes in brain function such as ischemia and can be coupled with other modalities of monitoring brain physiology such as microdialysis, tissue oximetry, and intracranial electrophysiology. Together, these tools can allow for early detection of brain at risk for injury and alert the physician to intervene before the damage becomes irreversible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.

    Article  CAS  PubMed  Google Scholar 

  2. Westover MB, Shafi MM, Bianchi MT, et al. The probability of seizures during EEG monitoring in critically ill adults. Clin Neurophysiol. 2015;126:463–71.

    Article  PubMed  Google Scholar 

  3. Vespa PM, McArthur DL, Xu Y, et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology. 2010;75:792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vespa PM, O'Phelan K, Shah M, et al. Acute seizures after intracerebral hdeemorrhage: a factor in progressive midline shift and outcome. Neurology. 2003;60:1441–6.

    Article  CAS  PubMed  Google Scholar 

  5. Swisher CB, Shah D, Sinha SR, Husain AM. Baseline EEG pattern on continuous ICU EEG monitoring and incidence of seizures. J Clin Neurophysiol. 2015;32:147–51.

    Article  PubMed  Google Scholar 

  6. Jordan K. Nonconvulsive status epilepticus in acute brain injury. J Clin Neurophysiol. 1999;16:332–40.

    Article  CAS  PubMed  Google Scholar 

  7. Young GB, Jordan KG, Doig GS. An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology. 1996;47:83–9.

    Article  CAS  PubMed  Google Scholar 

  8. Walker M, Cross H, Smith S, et al. Nonconvulsive status epilepticus: epilepsy research foundation workshop reports. Epileptic Dis. 2005;7:253–96.

    Google Scholar 

  9. Topjian AA, Gutierrez-Colina AM, Sanchez SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children*. Crit Care Med. 2013;41:215–23.

    Article  PubMed  Google Scholar 

  10. Brophy G, Bell R, Claassen J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17:3–23.

    Article  PubMed  Google Scholar 

  11. Trinka E, Cock H, Hesdorffer D, et al. A definition and classification of status epilepticus—report of the ILAE task force on classification of status epilepticus. Epilepsia. 2015;56:1515–23.

    Article  PubMed  Google Scholar 

  12. Kaplan PW. Behavioral manifestations of nonconvulsive status epilepticus. Epilepsy Behav. 2002;3:122–39.

    Article  PubMed  Google Scholar 

  13. Husain AM, Horn GJ, Jacobson MP. Non-convulsive status epilepticus: usefulness of clinical features in selecting patients for urgent EEG. J Neurol Neurosurg Psychiatry. 2003;74:189–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jirsch J, Hirsch LJ. Nonconvulsive seizures: developing a rational approach to the diagnosis and management in the critically ill population. Clin Neurophysiol. 2007;118:1660–70.

    Article  CAS  PubMed  Google Scholar 

  15. Young GB, Ives JR, Chapman MG, Mirsattari SM. A comparison of subdermal wire electrodes with collodion-applied disk electrodes in long-term EEG recordings in ICU. Clin Neurophysiol. 2006;117:1376–9.

    Article  PubMed  Google Scholar 

  16. Mirsattari SM, Lee DH, Jones D, Bihari F, Ives JR. MRI compatible EEG electrode system for routine use in the epilepsy monitoring unit and intensive care unit. Clin Neurophysiol. 2004;115:2175–80.

    Article  PubMed  Google Scholar 

  17. Alvarez V, Rossetti AO. Clinical use of EEG in the ICU: technical setting. J Clin Neurophysiol. 2015;32:481–5.

    Article  PubMed  Google Scholar 

  18. Young GB, Campbell VC. EEG monitoring in the intensive care unit: pitfalls and caveats. J Clin Neurophysiol. 1999;16:40.

    Article  CAS  PubMed  Google Scholar 

  19. Hirsch LJ. Continuous EEG monitoring in the intensive care unit: an overview. J Clin Neurophysiol. 2004;21:332–40.

    PubMed  Google Scholar 

  20. Gaspard N, Hirsch LJ. Pitfalls in ictal EEG interpretation: critical care and intracranial recordings. Neurology. 2013;80:S26–42.

    Article  PubMed  Google Scholar 

  21. Snodgrass SM, Tsuburaya K, Ajmone-Marsan C. Clinical significance of periodic lateralized epileptiform discharges: relationship with status epilepticus. J Clin Neurophysiol. 1989;6:159–72.

    Article  CAS  PubMed  Google Scholar 

  22. Hirsch LJ, Claassen J, Mayer SA, Emerson RG. Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs): a common EEG phenomenon in the critically ill. Epilepsia. 2004;45:109–23.

    Article  PubMed  Google Scholar 

  23. Hirsch LJ, Pang T, Claassen J, et al. Focal motor seizures induced by alerting stimuli in critically ill patients. Epilepsia. 2008;49:968–73.

    Article  PubMed  Google Scholar 

  24. Vespa PM, Nuwer MR, Juhász C, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103:607–15.

    Article  CAS  PubMed  Google Scholar 

  25. Kull LL, Emerson RG. Continuous EEG monitoring in the intensive care unit: technical and staffing considerations. J Clin Neurophysiol. 2005;22:107.

    Article  PubMed  Google Scholar 

  26. Shellhaas RA, Soaita AI, Clancy RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics. 2007;120:770–7.

    Article  PubMed  Google Scholar 

  27. Kolls BJ, Husain AM. Assessment of hairline EEG as a screening tool for nonconvulsive status epilepticus. Epilepsia. 2007;48:959–65.

    Article  PubMed  Google Scholar 

  28. StatNet™. (Accessed 17 Nov 2015, at http://www.hydrodot.net/Products/statnet.html.)

  29. Hirsch LJ, Sinha SR. Continuous EEG monitoring in the intensive care unit. In: Ebersole JS, editor. Current practice of clinical electroencephalography. Philadelphia: LWW; 2014. p. 567.

    Google Scholar 

  30. Claassen J, Hirsch LJ, Kreiter KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115:2699–710.

    Article  PubMed  Google Scholar 

  31. Toet MC, van der Meij W, de Vries LS, Uiterwaal CS, van Huffelen KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics. 2002;109:772–9.

    Article  PubMed  Google Scholar 

  32. Akman CI, Micic V, Thompson A, Riviello Jr JJ. Seizure detection using digital trend analysis: factors affecting utility. Epilepsy Res. 93:66–72.

    Google Scholar 

  33. Sackellares JC, Shiau DS, Halford JJ, LaRoche SM, Kelly KM. Quantitative EEG analysis for automated detection of nonconvulsive seizures in intensive care units. Epilepsy Behav. 2011;22(Suppl 1):S69–73.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, Part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol. 2015;32:96–108.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eisenberg HM, Frankowski RF, Contant CF, Marshall LF, Walker MD. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg. 1988;69:15–23.

    Article  CAS  PubMed  Google Scholar 

  36. Simmons LE, Riker RR, Prato BS, Fraser GL. Assessing sedation during intensive care unit mechanical ventilation with the bispectral index and the sedation-agitation scale. Crit Care Med. 1999;27:1499–504.

    Article  CAS  PubMed  Google Scholar 

  37. Prichep LS, Gugino LD, John ER, et al. The patient state index as an indicator of the level of hypnosis under general anaesthesia. Br J Anaesth. 2004;92:393–9.

    Article  CAS  PubMed  Google Scholar 

  38. Al-Kadi MI, Reaz MBI, Ali MAM. Evolution of electroencephalogram signal analysis techniques during anesthesia. Sensors (Basel, Switzerland). 2013;13:6605–35.

    Article  Google Scholar 

  39. Roustan JP, Valette S, Aubas P, Rondouin G, Capdevila X. Can electroencephalographic analysis be used to determine sedation levels in critically ill patients? Anesth Analg. 2005;101:1141–51.

    Article  CAS  PubMed  Google Scholar 

  40. Bousselmi R, Lebbi A, Ferjani M. Bispectral index changes during generalised tonic-clonic seizures. Anaesthesia. 2013;68:1084–5.

    Article  CAS  PubMed  Google Scholar 

  41. Stewart CP, Otsubo H, Ochi A, Sharma R, Hutchison JS, Hahn CD. Seizure identification in the ICU using quantitative EEG displays. Neurology. 2010;75:1501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williamson C, Wahlster S, Shafi M, Westover MB. Sensitivity of compressed spectral arrays for detecting seizures in acutely ill adults. Neurocrit Care. 2014;20:32–9.

    Article  PubMed  Google Scholar 

  43. Swisher CB, White CR, Mace BE, et al. Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J Clin Neurophysiol. 2015;32:324–30.

    Article  PubMed  Google Scholar 

  44. Moura LMVR, Shafi MM, Ng M, et al. Spectrogram screening of adult EEGs is sensitive and efficient. Neurology. 2014;83:56–64.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Abou Khaled KJ, Hirsch LJ. Advances in the management of seizures and status epilepticus in critically ill patients. Crit Care Clin. 2006;22:637–59. abstract viii

    Article  CAS  PubMed  Google Scholar 

  46. Pandian JD, Cascino GD, So EL, Manno E, Fulgham JR. Digital video-electroencephalographic monitoring in the neurological-neurosurgical intensive care unit: clinical features and outcome. Arch Neurol. 2004;61:1090–4.

    Article  PubMed  Google Scholar 

  47. Towne AR, Waterhouse EJ, Boggs JG, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54:340–5.

    Article  CAS  PubMed  Google Scholar 

  48. Privitera M, Hoffman M, Moore JL, Jester D. EEG detection of nontonic-clonic status epilepticus in patients with altered consciousness. Epilepsy Res. 1994;18:155–66.

    Article  CAS  PubMed  Google Scholar 

  49. Clancy RR, Legido A, Lewis D. Occult neonatal seizures. Epilepsia. 1988;29:256–61.

    Article  CAS  PubMed  Google Scholar 

  50. Jette N, Claassen J, Emerson RG, Hirsch LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol. 2006;63:1750–5.

    Article  PubMed  Google Scholar 

  51. Vespa P. Continuous EEG monitoring for the detection of seizures in traumatic brain injury, infarction, and intracerebral hemorrhage: “to detect and protect”. J Clin Neurophysiol. 2005;22:99–106.

    Article  PubMed  Google Scholar 

  52. DeLorenzo RJ, Waterhouse EJ, Towne AR, et al. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia. 1998;39:833–40.

    Article  CAS  PubMed  Google Scholar 

  53. Oddo M, Carrera E, Claassen J, Mayer SA, Hirsch LJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37:2051–6.

    Article  PubMed  Google Scholar 

  54. Gilmore EJ, Gaspard N, Choi HA, et al. Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med. 2015;41:686–94.

    Article  PubMed  Google Scholar 

  55. Kurtz P, Gaspard N, Wahl AS, et al. Continuous electroencephalography in a surgical intensive care unit. Intensive Care Med. 2014;40:228–34.

    Article  PubMed  Google Scholar 

  56. Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32:87–95.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013;39:1337–51.

    Article  CAS  PubMed  Google Scholar 

  58. Young GB. The EEG in Coma. J Clin Neurophysiol. 2000;17:473.

    Article  CAS  PubMed  Google Scholar 

  59. Kaplan PW. The EEG in metabolic encephalopathy and coma. J Clin Neurophysiol. 2004;21:307–18.

    Article  PubMed  Google Scholar 

  60. Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol. 2005;22:79–91.

    Article  PubMed  Google Scholar 

  61. Claassen J, How I. Treat patients with EEG patterns on the ictal–interictal continuum in the neuro ICU. Neurocrit Care. 2009;11:437–44.

    Article  PubMed  Google Scholar 

  62. Hirsch LJ, Brenner RP, Drislane FW, et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. J Clin Neurophysiol. 2005;22:128–35.

    Article  PubMed  Google Scholar 

  63. Hirsch LJ, LaRoche SM, Gaspard N, et al. American clinical neurophysiology society's standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol. 2013;30:1–27.

    Article  CAS  PubMed  Google Scholar 

  64. Gaspard N, Hirsch LJ, LaRoche SM, Hahn CD, Westover MB, the Critical Care EEGMRC. Interrater agreement for Critical Care EEG Terminology. Epilepsia. 2014;55:1366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sen-Gupta I, Schuele SU, Macken MP, Kwasny MJ, Gerard EE. “Ictal” lateralized periodic discharges. Epilepsy Behav. 2014;36:165–70.

    Article  PubMed  Google Scholar 

  66. Handforth A, Cheng JT, Mandelkern MA, Treiman DM. Markedly increased mesiotemporal lobe metabolism in a case with PLEDs: further evidence that PLEDs are a manifestation of partial status epilepticus. Epilepsia. 1994;35:876–81.

    Article  CAS  PubMed  Google Scholar 

  67. Assal F, Papazyan JP, Slosman DO, Jallon P, Goerres GW. SPECT in periodic lateralized epileptiform discharges (PLEDs): a form of partial status epilepticus? Seizure. 2001;10:260–5.

    Article  CAS  PubMed  Google Scholar 

  68. Bozkurt MF, Saygi S, Erbas B. SPECT in a patient with postictal PLEDs: is hyperperfusion evidence of electrical seizure? Clin Electroencephalogr. 2002;33:171–3.

    Article  PubMed  Google Scholar 

  69. Terzano MG, Parrino L, Mazzucchi A, Moretti G. Confusional states with periodic lateralized epileptiform discharges (PLEDs): a peculiar epileptic syndrome in the elderly. Epilepsia. 1986;27:446–57.

    Article  CAS  PubMed  Google Scholar 

  70. Westmoreland BF, Klass DW, Sharbrough FW. Chronic periodic lateralized epileptiform discharges. Arch Neurol. 1986;43:494–6.

    Article  CAS  PubMed  Google Scholar 

  71. Brenner RP. Is it status? Epilepsia. 2002;43(Suppl 3):103–13.

    Article  PubMed  Google Scholar 

  72. Pohlmann-Eden B, Hoch DB, Cochius JI, Chiappa KH. Periodic lateralized epileptiform discharges—a critical review. J Clin Neurophysiol. 1996;13:519–30.

    Article  CAS  PubMed  Google Scholar 

  73. Hirsch LJ, Gaspard N. Status epilepticus. Continuum (Minneapolis, Minn). 2013;19:767–94.

    Google Scholar 

  74. Beniczky S, Hirsch LJ, Kaplan PW, et al. Unified EEG terminology and criteria for nonconvulsive status epilepticus. Epilepsia. 2013;54:28–9.

    Article  PubMed  Google Scholar 

  75. Fountain NB, Waldman WA. Effects of benzodiazepines on triphasic waves: implications for nonconvulsive status epilepticus. J Clin Neurophysiol. 2001;18:345–52.

    Article  CAS  PubMed  Google Scholar 

  76. Hopp JL, Sanchez A, Krumholz A, Hart G, Barry E. Nonconvulsive status epilepticus: value of a benzodiazepine trial for predicting outcomes. Neurologist. 2011;17:325–9.

    Article  PubMed  Google Scholar 

  77. O'Rourke D, Chen PM, Gaspard N, et al. Response rates to anticonvulsant trials in patients with triphasic-wave EEG patterns of uncertain significance. Neurocrit Care 2015.

    Google Scholar 

  78. Claassen J, Jette N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1356–65.

    Article  CAS  PubMed  Google Scholar 

  79. Claassen J, Hirsch LJ, Frontera JA, et al. Prognostic significance of continuous EEG monitoring in patients with poor-grade subarachnoid hemorrhage. Neurocrit Care. 2006;4:103–12.

    Article  PubMed  Google Scholar 

  80. Jaitly R, Sgro JA, Towne AR, Ko D, DeLorenzo RJ. Prognostic value of EEG monitoring after status epilepticus: a prospective adult study. J Clin Neurophysiol. 1997;14:326–34.

    Article  CAS  PubMed  Google Scholar 

  81. Sainju RK, Manganas LN, Gilmore EJ, et al. Clinical correlates and prognostic significance of lateralized periodic discharges in patients without acute or progressive brain injury: a case–control study. J Clin Neurophysiol. 2015;32:495–500.

    Article  PubMed  Google Scholar 

  82. Payne ET, Zhao XY, Frndova H, et al. Seizure burden is independently associated with short term outcome in critically ill children. Brain. 2014;137:1429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  83. De Marchis GM, Pugin D, Meyers E, et al. Seizure burden in subarachnoid hemorrhage associated with functional and cognitive outcome. Neurology. 2015; Epub ahead of print23

    Google Scholar 

  84. Punia V, Garcia CG, Hantus S. Incidence of recurrent seizures following hospital discharge in patients with LPDs (PLEDs) and nonconvulsive seizures recorded on continuous EEG in the critical care setting. Epilepsy Behav. 2015;49:250–4.

    Article  PubMed  Google Scholar 

  85. Frohlich F, Bazhenov M, Sejnowski TJ. Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex. J Neurosci. 2008;28:1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gaspard N, Manganas L, Rampal N, Petroff OA, Hirsch LJ. Similarity of lateralized rhythmic delta activity to periodic lateralized epileptiform discharges in critically ill patients. JAMA Neurol. 2013;70:1288–95.

    PubMed  Google Scholar 

  87. Rodriguez A, Vlachy J, Lee JW, et al. Periodic and rhythmic patterns in the critically ill: Characteristics associated with seizures. 69th Annual meeting of the American Epilepsy Society. Philadephia, PA, USA. 2015.

    Google Scholar 

  88. Zeiler SR, Turtzo LC, Kaplan PW. SPECT–negative SIRPIDs argues against treatment as seizures. J Clin Neurophysiol. 2011;28:493–6.

    PubMed  Google Scholar 

  89. Smith CC, Tatum WO, Gupta V, Pooley RA, Freeman WD. SPECT-negative SIRPIDs: less aggressive neurointensive care? J Clin Neurophysiol. 2014;31:e6–e10.

    Article  PubMed  Google Scholar 

  90. Braksick A, Burkholder DB, Tsetsou S, et al. Stimulus-induced rhythmic, periodic or ictal discharges (SRIPIDs): associated factors and prognostic implications. 69th Annual meeting of the American Epilepsy Society. Philadelphia, PA, USA 2015.

    Google Scholar 

  91. Alvarez V, Oddo M, Rossetti AO. Stimulus-induced rhythmic, periodic or ictal discharges (SIRPIDs) in comatose survivors of cardiac arrest: characteristics and prognostic value. Clin Neurophysiol. 2013;124:204–8.

    Article  PubMed  Google Scholar 

  92. Tsuchida TN, Wusthoff CJ, Shellhaas RA, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American clinical neurophysiology society critical care monitoring committee. J Clin Neurophysiol. 2013;30:161–73.

    Article  PubMed  Google Scholar 

  93. Yoo J, Rampal N, Petroff OA, Hirsch LJ, Gaspard N. BRief potentially ictal rhythmic discharges in critically ill adults. JAMA Neurol. 2014;71:454–62.

    Article  PubMed  Google Scholar 

  94. Rossetti AO, Logroscino G, Bromfield EB. Refractory status epilepticus: effect of treatment aggressiveness on prognosis. Arch Neurol. 2005;62:1698–702.

    Article  PubMed  Google Scholar 

  95. Kang BS, Jung KH, Shin JW, et al. Induction of burst suppression or coma using intravenous anesthetics in refractory status epilepticus. J Clin Neurosci. 2015;22:854–8.

    Article  PubMed  Google Scholar 

  96. Krishnamurthy KB, Drislane FW. Depth of EEG suppression and outcome in barbiturate anesthetic treatment for refractory status epilepticus. Epilepsia. 1999;40:759–62.

    Article  CAS  PubMed  Google Scholar 

  97. Johnson E, Ritzl EK. EEG characteristics of successful burst suppression for status epilepticus. 69th Annual meeting of the American Epilepsy Society. Philadelphia, PA, USA. 2015.

    Google Scholar 

  98. Thompson SA, Hantus S. Highly epileptiform bursts are associated with seizure recurrence. J Clin Neurophysiol. 2015; Publish Ahead of Print

    Google Scholar 

  99. Aminoff MJ. Do nonconvulsive seizures damage the brain?–No. Arch Neurol. 1998;55:119–20.

    Article  CAS  PubMed  Google Scholar 

  100. Young GB, Jordan KG. Do nonconvulsive seizures damage the brain?–Yes. Arch Neurol. 1998;55:117–9.

    Article  CAS  PubMed  Google Scholar 

  101. Vespa PM, Nuwer MR, Nenov V, et al. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg. 1999;91:750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shneker BF, Fountain NB. Assessment of acute morbidity and mortality in nonconvulsive status epilepticus. Neurology. 2003;61:1066–73.

    Article  PubMed  Google Scholar 

  103. Bottaro FJ, Martinez OA, Pardal MM, Bruetman JE, Reisin RC. Nonconvulsive status epilepticus in the elderly: a case-control study. Epilepsia. 2007;48:966–72.

    Article  CAS  PubMed  Google Scholar 

  104. Litt B, Wityk RJ, Hertz SH, et al. Nonconvulsive status epilepticus in the critically ill elderly. Epilepsia. 1998;39:1194–202.

    Article  CAS  PubMed  Google Scholar 

  105. Kowalski RG, Ziai WC, Rees RN, et al. Third-line antiepileptic therapy and outcome in status epilepticus: The impact of vasopressor use and prolonged mechanical ventilation*. Crit Care Med. 2012;40:2677–84.

    Article  CAS  PubMed  Google Scholar 

  106. Sutter R, Marsch S, Fuhr P, Kaplan PW, Ruegg S. Anesthetic drugs in status epilepticus: risk or rescue? A 6-year cohort study. Neurology. 2014;82:656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marchi NA, Novy J, Faouzi M, Stahli C, Burnand B, Rossetti AO. Status epilepticus: impact of therapeutic coma on outcome. Crit Care Med. 2015;43:1003–9.

    Article  PubMed  Google Scholar 

  108. Hirsch LJ. Finding the lesser of two evils: treating refractory status epilepticus. Epilepsy Curr. 2015;15:313–6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Meldrum BS, Vigouroux RA, Brierley JB. Systemic factors and epileptic brain damage. Prolonged seizures in paralyzed, artificially ventilated baboons. Arch Neurol. 1973;29:82–7.

    Article  CAS  PubMed  Google Scholar 

  110. Holmes GL. Seizure-induced neuronal injury: animal data. Neurology. 2002;59:S3–6.

    Article  PubMed  Google Scholar 

  111. Krsek P, Mikulecka A, Druga R, et al. Long-term behavioral and morphological consequences of nonconvulsive status epilepticus in rats. Epilepsy Behav. 2004;5:180–91.

    Article  PubMed  Google Scholar 

  112. Lothman EW, Bertram EH, Bekenstein JW, Perlin JB. Self-sustaining limbic status epilepticus induced by ‘continuous’ hippocampal stimulation: electrographic and behavioral characteristics. Epilepsy Res. 1989;3:107–19.

    Article  CAS  PubMed  Google Scholar 

  113. Cavazos JE, Das I, Sutula TP. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci. 1994;14:3106–21.

    CAS  PubMed  Google Scholar 

  114. Kotloski R, Lynch M, Lauersdorf S, Sutula T. Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog Brain Res. 2002;135:95–110.

    Article  PubMed  Google Scholar 

  115. Saffen DW, Cole AJ, Worley PF, Christy BA, Ryder K, Baraban JM. Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci U S A. 1988;85:7795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dube C, Chen K, Eghbal-Ahmadi M, Brunson K, Soltesz I, Baram TZ. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol. 2000;47:336–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. DeGiorgio CM, Tomiyasu U, Gott PS, Treiman DM. Hippocampal pyramidal cell loss in human status epilepticus. Epilepsia. 1992;33:23–7.

    Article  CAS  PubMed  Google Scholar 

  118. Rabinowicz AL, Correale J, Boutros RB, Couldwell WT, Henderson CW, DeGiorgio CM. Neuron-specific enolase is increased after single seizures during inpatient video/EEG monitoring. Epilepsia. 1996;37:122–5.

    Article  CAS  PubMed  Google Scholar 

  119. DeGiorgio CM, Gott PS, Rabinowicz AL, Heck CN, Smith TD, Correale JD. Neuron-specific enolase, a marker of acute neuronal injury, is increased in complex partial status epilepticus. Epilepsia. 1996;37:606–9.

    Article  CAS  PubMed  Google Scholar 

  120. DeGiorgio CM, Heck CN, Rabinowicz AL, Gott PS, Smith T, Correale J. Serum neuron-specific enolase in the major subtypes of status epilepticus. Neurology. 1999;52:746–9.

    Article  CAS  PubMed  Google Scholar 

  121. Vespa P, Prins M, Ronne-Engstrom E, et al. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89:971–82.

    Article  CAS  PubMed  Google Scholar 

  122. Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35(12):2830–6.

    Google Scholar 

  123. Vespa P, Martin NA, Nenov V, et al. Delayed increase in extracellular glycerol with post-traumatic electrographic epileptic activity: support for the theory that seizures induce secondary injury. Acta Neurochir Suppl. 2002;81:355–7.

    CAS  PubMed  Google Scholar 

  124. Hartings JA, Williams AJ, Tortella FC. Occurrence of nonconvulsive seizures, periodic epileptiform discharges, and intermittent rhythmic delta activity in rat focal ischemia. Exp Neurol. 2003;179:139–49.

    Article  PubMed  Google Scholar 

  125. Williams AJ, Tortella FC, Lu XM, Moreton JE, Hartings JA. Antiepileptic drug treatment of nonconvulsive seizures induced by experimental focal brain ischemia. J Pharmacol Exp Ther. 2004;311:220–7.

    Article  CAS  PubMed  Google Scholar 

  126. Johnson DW, Hogg JP, Dasheiff R, Yonas H, Pentheny S, Jumao-as A. Xenon/CT cerebral blood flow studies during continuous depth electrode monitoring in epilepsy patients. AJNR Am J Neuroradiol. 1993;14:245–52.

    CAS  PubMed  Google Scholar 

  127. Gabor AJ, Brooks AG, Scobey RP, Parsons GH. Intracranial pressure during epileptic seizures. Electroencephalogr Clin Neurophysiol. 1984;57:497–506.

    Article  CAS  PubMed  Google Scholar 

  128. Marienne JP, Robert G, Bagnat E. Post-traumatic acute rise of ICP related to subclinical epileptic seizures. Acta Neurochir Suppl (Wien). 1979;28:89–92.

    CAS  Google Scholar 

  129. Fabricius M, Fuhr S, Bhatia R, et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain. 2006;129:778–90.

    Article  PubMed  Google Scholar 

  130. Fabricius M, Fuhr S, Willumsen L, et al. Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain. Clin Neurophysiol. 2008;119:1973–84.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kilbride RD, Costello DJ, Chiappa KH. How seizure detection by continuous electroencephalographic monitoring affects the prescribing of antiepileptic medications. Arch Neurol. 2009;66:723–8.

    Article  PubMed  Google Scholar 

  132. Abend N, Topjian A, Gutierrez-Colina A, Donnelly M, Clancy R, Dlugos D. Impact of continuous EEG monitoring on clinical management in critically ill children. Neurocrit Care. 2011;15:70–5.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Vespa PM, Nenov V, Nuwer MR. Continuous EEG Monitoring in the intensive care unit: early findings and clinical efficacy. J Clin Neurophysiol. 1999;16:1–13.

    Article  CAS  PubMed  Google Scholar 

  134. Sundt Jr TM, Sharbrough FW, Anderson RE, Michenfelder JD. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J Neurosurg. 1974;41:310–20.

    Article  PubMed  Google Scholar 

  135. Sundt Jr TM, Sharbrough FW, Piepgras DG, Kearns TP, Messick Jr JM, O'Fallon WM. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981;56:533–43.

    PubMed  Google Scholar 

  136. Sharbrough FW, Messick Jr JM, Sundt Jr TM. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973;4:674–83.

    Article  CAS  PubMed  Google Scholar 

  137. Zampella E, Morawetz RB, McDowell HA, et al. The importance of cerebral ischemia during carotid endarterectomy. Neurosurgery. 1991;29:727–30. discussion 30-1

    Article  CAS  PubMed  Google Scholar 

  138. Arnold M, Sturzenegger M, Schaffler L, Seiler RW. Continuous intraoperative monitoring of middle cerebral artery blood flow velocities and electroencephalography during carotid endarterectomy. A comparison of the two methods to detect cerebral ischemia. Stroke. 1997;28:1345–50.

    Article  CAS  PubMed  Google Scholar 

  139. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  PubMed  Google Scholar 

  140. Jordan KG. Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol. 2004;21:341–52.

    PubMed  Google Scholar 

  141. Claassen J, Hirsch LJ, Emerson RG, Mayer SA. Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: a systematic review. Epilepsia. 2002;43:146–53.

    Article  CAS  PubMed  Google Scholar 

  142. Rots ML, van Putten MJAM, Hoedemaekers CWE, Horn J. Continuous EEG monitoring for early detection of delayed cerebral ischemia in subarachnoid hemorrhage: a pilot study. Neurocrit Care. 2015;24:207–16.

    Article  Google Scholar 

  143. Scheuer ML, Wilson SB. Data analysis for continuous EEG monitoring in the ICU: seeing the forest and the trees. J Clin Neurophysiol. 2004;21:353–78.

    PubMed  Google Scholar 

  144. Gotman J. Automatic detection of seizures and spikes. J Clin Neurophysiol. 1999;16:130.

    Article  CAS  PubMed  Google Scholar 

  145. Shah AK, Agarwal R, Carhuapoma JR, Loeb JA. Compressed EEG pattern analysis for critically III neurological-neurosurgical patients. Neurocrit Care. 2006;5:124–33.

    Article  CAS  PubMed  Google Scholar 

  146. Fürbass F, Hartmann MM, Halford JJ, et al. Automatic detection of rhythmic and periodic patterns in critical care EEG based on American Clinical Neurophysiology Society (ACNS) standardized terminology. Neurophysiol Clin. 2015;45:203–13.

    Article  PubMed  Google Scholar 

  147. Adams DC, Heyer EJ, Emerson RG, et al. The reliability of quantitative electroencephalography as an indicator of cerebral ischemia. Anesth Analg. 1995;81:80–3.

    CAS  PubMed  Google Scholar 

  148. Jordan KG, Continuous EEG. Monitoring in the neuroscience intensive care unit and emergency department. J Clin Neurophysiol. 1999;16:14.

    Article  CAS  PubMed  Google Scholar 

  149. Wartenberg KE, Schmidt JM, Mayer SA. Multimodality monitoring in neurocritical care. Crit Care Clin. 2007;23:507–38.

    Article  CAS  PubMed  Google Scholar 

  150. Claassen J, Perotte A, Albers D, et al. Nonconvulsive seizures after subarachnoid hemorrhage: multimodal detection and outcomes. Ann Neurol. 2013;74:53–64.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kaplan PW. EEG criteria for nonconvulsive status epilepticus. Epilepsia. 2007;48:39–41.

    Article  PubMed  Google Scholar 

  152. Bauerle K, Greim CA, Schroth M, Geisselbrecht M, Kobler A, Roewer N. Prediction of depth of sedation and anaesthesia by the NarcotrendTM EEG monitor. Br J Anaesth. 2004;92:841–5.

    Article  CAS  PubMed  Google Scholar 

  153. Zhou JL, Shatskikh TN, Liu X, Holmes GL. Impaired single cell firing and long-term potentiation parallels memory impairment following recurrent seizures. Eur J Neurosci. 2007;25:3667–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Osman, G., Friedman, D., Hirsch, L.J. (2017). Diagnosing and Monitoring Seizures in the ICU: The Role of Continuous EEG for Detection and Management of Seizures in Critically Ill Patients, Including the Ictal-Interictal Continuum. In: Varelas, P., Claassen, J. (eds) Seizures in Critical Care. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49557-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49557-6_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-49555-2

  • Online ISBN: 978-3-319-49557-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics