Skip to main content

Sol–Gel Derived Organic–Inorganic Hybrid Ceramic Materials for Heavy Metal Removal

  • Chapter
  • First Online:
Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications

Abstract

Modification of the silica surface leads to the change in chemical composition of the surface which can be modified either by physical treatment (thermal or hydrothermal) or by chemical treatment. Such modifications significantly affect the adsorption properties of the materials and especially mechanical stability and water insolubility, increasing the efficiency, sensitivity and selectivity of the analytical application. A variety of types of organic polymers can be employed in the synthesis of hybrids with silica. One of them is chitosan. Chitosan and silica as well as their composites have attracted a great attention as effective hybrid biopolymeric sorbents due to high sorption capacity, cost-effectiveness, renewability and high stability. Owing to the presence of amino groups, chitosan is cationic and capable of heavy metal ions bonding. Several studies have reported on the metal ions removal of using chitosan or chitosan adsorbed onto conventional silica. Their short characterization is presented in this chapter. Moreover different ways of silica–chitosan composites are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APTES:

3-aminopropyltriethoxysilane

CS-PMAA-B:

Poly(methacrylic acid)-grafted chitosan/bentonite

GPTMS:

3-Glycidoxypropyltrimethoxysilane

MeOH:

Methanol

MTMS:

Methyltrimethoxysilane

MSNs:

Mesoporous silica nanoparticles

PV:

Pervaporation

TEOS:

Tetraalkoxysilanes

TMOS:

Tetramethoxysilane

VTES:

Vinyltriethoxysilane

VTMS:

Vinyltrimethoxysilane

References

  1. Sanchez C, Ribot F, Lebeau B (1999) J Mater Chem 9:35–44

    Article  Google Scholar 

  2. Jal PK, Patel S, Mishra BK (2004) Talanta 62(1005–102):8

    Google Scholar 

  3. Collinson MM (1999) Crit Rev Anal Chem 29:289–311

    Article  Google Scholar 

  4. Huang HH, Orler B, Wilkes GL (1985) Polym Bull 14:557–564

    Article  Google Scholar 

  5. Schmidt H, Non-Cryst J (1985) Solids 73:681–691

    Google Scholar 

  6. Zou H, Wu S, Shen J (2008) Chem Rev 108:3893–3957

    Article  Google Scholar 

  7. Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D (2015) Nanoscale Res Lett 10:87

    Article  Google Scholar 

  8. McNeil KJ, DiCaprio JA, Walsh DA, Pratt RF (1980) J Am Chem Soc 102:1859–1865

    Article  Google Scholar 

  9. Osterholtz FD, Pohl ER (1992) J Adhes Sci Technol 6:127–149

    Article  Google Scholar 

  10. Smith KA (1986) J Org Chem 51:3827–3830

    Article  Google Scholar 

  11. Voronkov MG, Mileshkevich VP, Yuzhelevskii YA (1978) The siloxane bond. Consultants Bureau, New York

    Google Scholar 

  12. Arkles B, Steinmetz JR, Zazyczny J, Mehta P (1992) J Adhes Sci Technol 6:193–206

    Article  Google Scholar 

  13. Zulfikar MA, Wahyuningrum D, Lestari S (2013) Sep Sci Technol 48:1391–1401

    Article  Google Scholar 

  14. Lan W, Li S, Xu J, Luo G (2010) Biomed Microdevices 12:1087–1095

    Article  Google Scholar 

  15. Yeh JT, Chen CL, Huang KS (2007) Mater Lett 61:1292–1295

    Article  Google Scholar 

  16. Tamaki R, Chujo Y (1998) Synthesis. Compos Interfaces 6:259–272

    Google Scholar 

  17. Miao Y, Tan SN (2001) Anal Chim Acta 437:87–93

    Article  Google Scholar 

  18. Zhao CZ, Egashira N, Kurauchi Y, Ohga K (1998) Anal Sci 14:439–441

    Article  Google Scholar 

  19. Zhao CZ, Egashira N, Kurauchi Y, Ohga K (1997) Anal Sci 13:333–336

    Article  Google Scholar 

  20. Ayers MR, Hunt AJ (2001) J Non Cryst Solids 285:123–127

    Article  Google Scholar 

  21. Hu H, Xin JH, Hu H, Chan A, He L (2013) Carbohydr Polym 91:305–313

    Article  Google Scholar 

  22. Retuert J, Quijada R, Arias V, Yazdani-Pedram M (2003) J Mater Res 18:487–494

    Article  Google Scholar 

  23. Cho G, Moon IS, Lee JS (1997) Chem Lett 26:577–578

    Article  Google Scholar 

  24. Fuentes S, Retuert PJ, Ubilla A, Fernandez J, Gonzalez G (2000) Biomacromolecules 1:239–243

    Article  Google Scholar 

  25. Chen JH, Liu QL, Fang J, Zhu AM, Zhang QZ (2007) J Colloid Interface Sci 316:580–588

    Article  Google Scholar 

  26. Lai SM, Yang AJM, Chen WC, Hsiao JF (2006) Polym Plast Technol Eng 45:997–1003

    Article  Google Scholar 

  27. Smitha S, Shajesh P, Mukundan P, Warrier KGK (2008) J Mater Res 23:2053–2060

    Article  Google Scholar 

  28. F. Al-Sagheer, S. Muslim (2010) Ites. J Nanomater (ID 490679). doi:10.1155/2010/490679

  29. Fei B, Lu H, Xin JH (2006) Polymer 47:947–950

    Article  Google Scholar 

  30. Silva SS, Ferreira RAS, Fu L, Carlos LD, Mano JF, Reis RL, Rocha J (2005) J Mater Chem 15:3952–3961

    Article  Google Scholar 

  31. Sun S, Zhang Y, Dong L, Shen S (2010) Kinet Catal 51:771–775

    Article  Google Scholar 

  32. Li F, Du P, Chen W, Zhang S (2007) Anal Chim Acta 585:211–218

    Article  Google Scholar 

  33. Li F, Jiang H, Zhang S (2007) Talanta 71:1487–1493

    Article  Google Scholar 

  34. Xu X, Dong P, Feng Y, Li F, Yu H (2010) Anal Methods 2:546–551

    Article  Google Scholar 

  35. Vunain E, Mishra AK, Mamba BB (2016) Int J Biol Macromol 86:570–586

    Article  Google Scholar 

  36. D. Kołodyńska, Z. Hubicki (2012) Investigation of sorption and separation of lanthanides on the ion exchangers of various types. In: Ion Exchange Technologies, (ed. Ayben Kilislioğlu), InTech, Publishers, pp 101–154. ISBN 980–953-307-139-3

    Google Scholar 

  37. Kumar P, Guliants VV (2010) Micropor Mesopor Mater 132:1–14

    Article  Google Scholar 

  38. Zheng L, Jiang FH, Dong PJ, Zhuang QF, Li F (2010) Chem Res Chin Univ 26:355–359

    Google Scholar 

  39. Zhao H, Xu J, Lan W, Wang T, Luo G (2013) Chem Eng J 229:82–89

    Article  Google Scholar 

  40. Airoldi C, Monteiro OAC Jr (2000) App Polym Sci 77:797–804

    Google Scholar 

  41. Gandhi MR, Meenakshi S (2012) Int J Biol Macromol 50:650–657

    Article  Google Scholar 

  42. Escoda A, Euvrard M, Lakard S, Husson J, Mohamed AS, Knorr M (2013) Sep Purif Technol 118:25–32

    Article  Google Scholar 

  43. Budnyak T, Tertykh V, Yanovska E (2014) Mater Sci (Medžiagotyra) 20:177–182

    Google Scholar 

  44. Singhon R, Husson J, Knorr M, Lakard B, Euvrard M (2012) Colloids Surf B: Biointerfaces 93:1–7

    Article  Google Scholar 

  45. Vijaya Y, Popuri SR, Boddu VM, Krishnaiah A (2008) Carbohyd Polym 72:261–271

    Article  Google Scholar 

  46. Mohmed MA, Mulyasuryani A, Sabarudin A (2013) J Pure App Chem Res 2:62–66

    Article  Google Scholar 

  47. Lü H, An H, Wang X, Xie Z (2013) Int J Biol Macromol 61:359–362

    Article  Google Scholar 

  48. Copello GJ, Varela F, Vivot RM, Díaz LE (2008) Bioresour Technol 99:6538–6544

    Article  Google Scholar 

  49. Gandhi MR, Meenakshi S (2012) J Hazard Mater 203–204:29–37

    Article  Google Scholar 

  50. Nithya R, Gomathi T, Sudha PN, Venkatesan J, Anil S, Kim SK (2016) Int J Biol Macromol 87:545–554

    Article  Google Scholar 

  51. Sklari S, Pagana A, Nalbandian L, Zaspalis V (2015) J Water Process Eng. 5:42–47

    Article  Google Scholar 

  52. Mohan D, Pittman ChU Jr (2007) J Hazard Mater 142:1–53

    Article  Google Scholar 

  53. Lewandowska K, Sionkowska A, Kaczmarek B, Furtos G (2014) Internat Int J Biol Macromol 65:534–541

    Article  Google Scholar 

  54. Ngah WSW, Teong LC, Hanafiah MAKM (2011) Carbohyd Polym 83:1446–1456

    Article  Google Scholar 

  55. Pandey S, Mishra SB (2011) J Colloid Interface Sci 361:509–520

    Article  Google Scholar 

  56. Anirudhan TS, Rijith S (2012) J Environ Radioact 106:8–19

    Article  Google Scholar 

  57. Hakami O, Zhang Y, Banks ChJ (2012) Water Res 46:913–3922

    Article  Google Scholar 

  58. Rahbar N, Jahangiri A, Boumi S, Khodayar MJ (2014) Jundishapur J Nat Pharm Prod 9(2):e15913

    Article  Google Scholar 

  59. Liu Y, Chen L, Yang Y, Li M, Li Y, Dong Y (2016) J Mol Liq 219:341–349

    Article  Google Scholar 

  60. Repo E, Warchoł JK, Bhatnagar A, Sillanpää M (2011) J Colloid Interface Sci 358:261–267

    Article  Google Scholar 

  61. Repo E, Malinen L, Koivula R, Harjula R, Sillanpää M (2011) J Hazard Mater 187:122–132

    Article  Google Scholar 

  62. Chen D, Hu B, Huang Ch (2009) Talanta 78:491–497

    Article  Google Scholar 

  63. Lewandowska-Łańcucka J, Staszewska M, Szuwarzyński M, Kępczyński M, Romek M, Tokarz W, Szpak A, Kania G, Nowakowska M (2014) J Alloys Comp 586:45–51

    Article  Google Scholar 

  64. J.A. Sowjanya, J. Singh, T. Mohita, S. Sarvanan, A. Moorthi, N. Srinivasan, N. Selvamurugan (2013) Colloids surfaces B: Biointerfaces 109: 294–300

    Google Scholar 

  65. Toskas G, Cherif Ch, Hund RD, Laourine E, Mahltig B, Fahmi A, Heinemann Ch, Hanke T (2013) Carbohyd Polym 94:713–722

    Article  Google Scholar 

  66. Ramos JVH, de Matos Morawski F, Costa TMH, Dias SLP, Benvenutti EV, de Menezes EW, Arenas LT (217) Micropor Mesopor Mater 217:109–118

    Google Scholar 

  67. da Costa Note BP, da Mata ALML, Lopes MV, Rossi-Bergmann B, Ré MI (2014) Powder Technol 255:109–119

    Article  Google Scholar 

  68. Zhao P, Liu H, Deng H, Xiao L, Qin C, Du Y, Shia X (2014) Colloids Surf B: Biointerfaces 123:657–663

    Article  Google Scholar 

  69. Lu J, Zhang W, Zhang Y, Zhao W, Hu K, Yu A, Liu P, Wu Y, Zhang S (2014) J Chromatogr 1350:61–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kołodyńska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kołodyńska, D., Budnyak, T.M., Hubicki, Z., Tertykh, V.A. (2017). Sol–Gel Derived Organic–Inorganic Hybrid Ceramic Materials for Heavy Metal Removal. In: Mishra, A. (eds) Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-49512-5_9

Download citation

Publish with us

Policies and ethics