Skip to main content

Application of Hydroxyapatite-Based Nanoceramics in Wastewater Treatment: Synthesis, Characterization, and Optimization

  • Chapter
  • First Online:
Book cover Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications

Abstract

In recent years, increasing environmental issues, particularly relating to biogenic and chemical pollution of water, have become a significant threat to both human health and the ecosystems. Many of these wastewaters contain a high level of contaminants which are undesirable because they create odor, bad taste, toxic effects aside the unpleasant aesthetic nature of the water. Hence, the removal of these toxic pollutants is necessary and, has attracted considerable efforts particularly via adsorption technology. Hydroxyapatite is among the most representative ceramic materials and considered promising for long-term containment of toxic pollutants due to its eco-friendly nature, good dispersibility, outstanding stability, and abundant modifiable surface functional groups. This chapter highlights the significance of sol–gel synthesis routes for producing hydroxyapatite-based nanoceramic for environmental applications. General summary of other synthesis methods and recent applications of hydroxyapatite-based nanoceramic as adsorbents and catalysts are reviewed. The wastewater parametric conditions and the synthesized hydroxyapatite-based materials covered herein is expected to inspire and stimulate further applications of nanoceramic-based materials in the environmental science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey T (2012) Magnetic nanoparticles and cellulosic nanofibers to remove arsenic and other heavy metals from water. In: Nanotechnology for water purification. BrownWalker Press, Florida

    Google Scholar 

  2. Oladipo AA, Gazi M, Saber-Samandari S (2014) J Taiwan Inst Chem Eng 45:653–664

    Article  Google Scholar 

  3. Rashed MN (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. In: Organic pollutants—monitoring, risk and treatment. InTech, Croatia

    Google Scholar 

  4. Feng Y, Gong JL, Zeng GM, Niu QY, Zhang HY, Niu CG, Deng JH, Yan M (2010) Chem Eng J 162:487–494

    Article  Google Scholar 

  5. Petcu AR, Lazar CA, Rogozea EA, Olteanu NL, Meghea A, Mihaly M (2016) Sep Purif Technol 158:55–159

    Article  Google Scholar 

  6. Oladipo AA, Gazi M (2015) Korean J Chem Eng 32:1864–1878

    Article  Google Scholar 

  7. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Adv Colloid Interf Sci 209:172–184

    Article  Google Scholar 

  8. Chieng HI, Zehra T, Lim LBL, Priyantha N, Tennakoon DTB (2014) Environ Earth Sci 72:2263–2277

    Article  Google Scholar 

  9. Ahmed MK, Ahmaruzzaman M (2016) J Water Process Eng 10:39–47

    Article  Google Scholar 

  10. Abbas IA, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Sep Purif Technol 157:141–161

    Article  Google Scholar 

  11. Oladipo AA, Gazi M, Yilmaz E (2015) Chem Eng Res Des 104:264–279

    Article  Google Scholar 

  12. Crini G (2006) Bioresour Technol 97:1061–1085

    Article  Google Scholar 

  13. Thompson A, Goyne KW (2012) Nat Educ Know 4:7

    Google Scholar 

  14. Wang N, Zheng T, Zhang G, Wang P (2016) J Environ Chem Eng 4:762–787

    Article  Google Scholar 

  15. Oladipo AA, Abureesh MA, Gazi M (2015) Int J Biol Macromol. Doi:10.1016/j.ijbiomac.2015.08.054

    Google Scholar 

  16. Yuan SH, Gou N, Alshawabkeh AN, Gu AZ (2013) Chemosphere 93:2796–2804

    Article  Google Scholar 

  17. Zhou T, Lim TT, Wu XH (2011) Water Res 45:2915–2924

    Article  Google Scholar 

  18. Nidheesh PV, Gandhimathi R, Velmathi S, Sanjini NS (2014) RSC Adv 4:5698–5708

    Article  Google Scholar 

  19. Wei W, Sun R, Cui J, Wei ZG (2010) Desalination 263:89–96

    Article  Google Scholar 

  20. Rivera-Muñoz EM (2011) Hydroxyapatite-based materials: synthesis and characterization. In: Biomedical engineering—frontiers and challenges. InTech, Croatia

    Google Scholar 

  21. Nayak AK (2010) Int J ChemTech Res 2:903–907

    Google Scholar 

  22. Guo X, Xiao P (2006) J Eur Ceram Soc 26:3383–3391

    Article  Google Scholar 

  23. Patric L, Alexia GL, Laurence K, Adrien B, Moncef G, Edouard J, Balossier G, Patric F (2004) Colloids Surf B: Biointerf 33:39–44

    Article  Google Scholar 

  24. Manafi SA, Joughehdoust S (2009) Iranian. J Pharm Sci 5:89–94

    Google Scholar 

  25. Lemos AF, Rocha JHG, Quaresma SSF, Kannan S, Oktar FN, Agathopoulos S, Ferreira JMF (2006) J Eur Ceram Soc 26:3639–3646

    Article  Google Scholar 

  26. Poinern GE, Brundavanam RK, Mondinos N, Jiang ZT (2009) Ultrason Sonochem 16:469–474

    Article  Google Scholar 

  27. Paz A, Guadarrama D, Lopez M, Gonzalez JE, Brizuela N, Aragon J (2012) Quim Nova 35:1724–1727

    Article  Google Scholar 

  28. Ramesh S, Natasha AN, Tan CY, Bang LT, Niakan A, Purbolaksono J, Chandran H, Ching CY, Ramesh S, Teng WD (2015) Ceram Int 41:10434–10441

    Article  Google Scholar 

  29. Dhand V, Rhee KY, Park SJ (2014) Mater Sci Eng C 36:152–159

    Article  Google Scholar 

  30. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC (2016) Prog Mater Sci 77:1–79

    Article  Google Scholar 

  31. Fathi MH, Hanifi A, Mortazavi V (2008) J Mater Process Technol 202:536–542

    Article  Google Scholar 

  32. Brendel T, Engel A, Russel C (1992) J Mater Sci-Mater Med 3:175–179

    Article  Google Scholar 

  33. Oladipo AA, Gazi M (2016) Toxicol Environ Chem 98:189–203

    Article  Google Scholar 

  34. Mobasherpour I, Salahi E, Pazouki M (2011) J Saudi Chem Soc 15:105–112

    Article  Google Scholar 

  35. Vila M, Sánchez-Salcedo S, Vallet-Regí M (2012) Inorg Chim Acta 393:24–35

    Article  Google Scholar 

  36. Sasaki K, Toshiyuki K, Idetab K, Miki H, Hirajima T, Miyawaki J, Murayama M, Dabo I (2016) J Environ Chem Eng 4:1092–1101

    Article  Google Scholar 

  37. Mousa SM, Ammar NS, Ibrahim HA (2015) J. Saudi Chem. Soc. Doi:10.1016/j.jscs.2014.12.0061319-6103

    Google Scholar 

  38. Safavi A, Momeni S (2012) J Hazard Mater 201–202:125–131

    Article  Google Scholar 

  39. El-Zahhar AA, Awwad NS (2016) J Environ Chem Eng 4:633–638

    Article  Google Scholar 

  40. Lemlikchi W, Drouiche N, Belaicha N, Oubagha N, Baaziz B, Mecherri MO (2015) J Ind Eng Chem 32:233–237

    Article  Google Scholar 

  41. Ersana M, Guler UA, Acıkel U, Sarioglu M (2015) Process Saf Environ Protect 96:22–32

    Article  Google Scholar 

  42. Wei W, Yang L, Zhong W, Cui J, Wei Z (2015) App Surf Sci 332:328–339

    Article  Google Scholar 

  43. Wei W, Sun R, Wei ZG, Zhao HY, Li HX, Hu F (2009) J Liq Chrom Rel Technol 32:106–124

    Article  Google Scholar 

  44. El Shafei GMS, Moussa NA (2001) J Colloid Interface Sci 238:160–168

    Article  Google Scholar 

  45. Takagi O, Kuramoto N, Ozawa M, Suzuki S (2004) Ceram Int 30:139–143

    Article  Google Scholar 

  46. Gangarajula Y, Kedharnath R, Gopal B (2015) App. Cata. A: General 506:100–108

    Article  Google Scholar 

  47. Mohamed RM, Baeissa ES (2013) App Cata A: Gen 464–465:218–224

    Article  Google Scholar 

  48. Valizadeh S, Rasoulifard MH, Dorraji MSS (2014) Appl Surf Sci 319:358–366

    Article  Google Scholar 

  49. Shariffuddin JH, Jones MI, Patterson DA (2013) Chem Eng Res. Des 91:1693–1704

    Article  Google Scholar 

  50. Li Q, Feng X, Zhang X, Song H, Zhang J, Shang J, Sun W, Zhu T, Wakamura M, Tsukada M, Lu Y (2014) Chin J Cata 35:90–98

    Article  Google Scholar 

  51. Corami A, Mignardi S, Ferrini V (2008) J Colloid Interface Sci 317:402–408

    Article  Google Scholar 

  52. Oladipo AA, Gazi M (2016) Environ Chem Lett. Doi:10.1007/s10311-016-0554-6

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Eastern Mediterranean University for providing research facilities and platform. Also, thankful to Assoc. Prof. Dr. Rana Kidak and Dr. Sifa Dogan, Environmental Engineering Department of Cyprus International University, for the material characterizations. Some of the data/files presented on boron are part of the project financially supported by the Scientific and Technical Research Council of Turkey (TUBITAK 1001 Project no: 114Z461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akeem Adeyemi Oladipo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oladipo, A.A., Gazi, M. (2017). Application of Hydroxyapatite-Based Nanoceramics in Wastewater Treatment: Synthesis, Characterization, and Optimization. In: Mishra, A. (eds) Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-49512-5_8

Download citation

Publish with us

Policies and ethics