Skip to main content

Synthesis of Nanostructure Ceramics and Their Composites

  • Chapter
  • First Online:
Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications
  • 1298 Accesses

Abstract

Nanostructure ceramics and their composites are attracting growing interest nowadays. With the development of innovative processing methodologies, these materials have reached a long way from the laboratory level to the commercial scale. Several types of ceramics nanocomposite are synthesized these days; still, an insightful analysis of the materials’ properties across length scales is essential for the fruitful utilization of their unique properties. Actually, the knowledge of the effect of nanoscale structures on the bulk properties facilitates the development of high-performance composite ceramics materials. Further, the development of preferred nanostructured characteristics in the sintered composites is a challenging task that requires cautious management in all manufacturing stages. This chapter revises the mainly utilized synthesis methods for the development of the nanocomposite ceramic powders with special emphasis on the key role of the synthesis method in directing the microstructure and properties of the sintered ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayo MJ (1996) Int Mater Rev 41:85–115

    Article  Google Scholar 

  2. Thostenson ET, Li C, Chou TW (2005) Compos Sci Technol 65:491–516

    Article  Google Scholar 

  3. Ovid’ko IA (2011) Rev Adv. Mater Sci 29:105–115

    Google Scholar 

  4. Niihara K (1991) J Ceram Soc Jpn 99:974–982

    Article  Google Scholar 

  5. Gleiter H (1989) Progr Mater Sci 33:223–315

    Article  Google Scholar 

  6. Maglia F, Tredici IG, Anselmi-Tamburini U (2013) J Eur Ceram Soc 33:1045–1066

    Article  Google Scholar 

  7. Fahamin A, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R (2012) Ceram Int 38:6729–6738

    Article  Google Scholar 

  8. Abbasi BJ, Zakeri M, Tayebifard SA (2014) Mater Res Bull 49:672–676

    Article  Google Scholar 

  9. Sharifi EM, Karimzadeh F, Enayati MH (2011) Adv Powder Technol 22:526–531

    Article  Google Scholar 

  10. Zhang Z, Du X, Wang J, Wang W, Wang Y, Fu Z (2014) Powder Technol 254:131–136

    Article  Google Scholar 

  11. Torabin O, Naghibi S, Golabgir MH, Tajizadegan H, Jamshidi A (2015) Ceram Int 41:5362–5369

    Article  Google Scholar 

  12. Sternitzke M (1997) J Eur Ceram Soc 17:1061–1082

    Article  Google Scholar 

  13. Su B, Sternitzke M (1995) A novel processing route for alumina/sic nanocomposites by si-polymer pyrolysis. In: Bellosi A (ed) Fourth Euro. Ceramics Gruppo Editoriale Faenza Editrice S.p.A.: Faenza, vol 4. Italy, p 109

    Google Scholar 

  14. Galusek D, Sedláček J, Švančárek P, Riedel R, Satet R, Hoffmann M (2007) J Eur Ceram Soc 27:1237–1245

    Article  Google Scholar 

  15. Riedel R, Toma L, Fasel C, Miehe G (2007) J Eur Ceram Soc 29:3079–3090

    Article  Google Scholar 

  16. Pizon D, Charpentier L, Lucas R, Foucaud S, Maître A, Balat-Pichelin M (2014) Ceram Int 40:5025–5031

    Article  Google Scholar 

  17. Riedel R, Strecker K, Petzow G (1989) J Am Ceram Soc 72:2071–2077

    Article  Google Scholar 

  18. Riedel R, Seher M, Becker G (1989) J Eur Ceram Soc 5:113–122

    Article  Google Scholar 

  19. Wan J, Duan RG, Gasch MJ, Mukherjee AK (2006) Mater Sci Eng A 424:105–116

    Article  Google Scholar 

  20. Hirano T, Niihara K (1995) Mater Lett 22:249–254

    Article  Google Scholar 

  21. Niihara K, Hirano T, Nakahira A, Izaki K (1992) The correlation between interface structure and mechanical properties for silicon nitride based nanocomposites. In: Ishizaki K, Niihara K, Isotani M, Ford RG (eds) grain boundary controlled properties of fine ceramics. Elsevier Applied Science, London, UK, pp 103–111

    Chapter  Google Scholar 

  22. Riedel R, Seher M, Mayer J, Szabo DV (1995) J Eur Ceram Soc 15:703–715

    Article  Google Scholar 

  23. Mayer J, Szabo DV, Rtihle M, Seher M, Riedel R (1995) J Eur Ceram Soc 15:717–727

    Article  Google Scholar 

  24. Choi S, Lee MS, Park DW (2007) Ceram Int 33:379–383

    Article  Google Scholar 

  25. Zedda D (2001) Ceram Int 27:163–169

    Article  Google Scholar 

  26. Zaki ZI (2009) Ceram Int 35:673–678

    Article  Google Scholar 

  27. Manukyan KV, Kharatyan SL, Blugan G, Kuebler J (2007) Ceram Int 33:379–383

    Article  Google Scholar 

  28. Kharatyan SL, Manukyan KV, Nersisyan HH, Khachatryan HL (2003) Int Int J SHS 12:19–34

    Google Scholar 

  29. Han JC, Chen QC, Du SY, Wood YV (2000) J Eur Ceram Soc 20:927–932

    Article  Google Scholar 

  30. Wanbao H, Baolin Z, Hanrui Z, Wenlan L (2004) Ceram Int 8:2211–2214

    Article  Google Scholar 

  31. Ryu HY, Nersisyan HH, Lee JH (2012) Int J Refract Metals Hard Mater 30:133–138

    Article  Google Scholar 

  32. Jayaseelan DD, Rani DA, Nishikawa T, Awaji H, Gnanam FD (2000) J Eur Ceram Soc 20:267–275

    Article  Google Scholar 

  33. Naga SM, Abdelbary EM, Awaad M, El-Shaer YI, Abd-Elwaha HS (2013) Ceram Int 39:1835–1840

    Article  Google Scholar 

  34. Towata A, Hwang HJ, Yasuoka M, Sando M, Niihara K (2001) Compos A 32:1127–1131

    Article  Google Scholar 

  35. Wang W, Weng D, Wu XD (2001) Progr Nat Sci Mater Int 21:117–121

    Article  Google Scholar 

  36. Naga SM, El-Maghraby A (2011) Mater Charact 6:174–180

    Article  Google Scholar 

  37. Urretavizcaya G, Porto Lopez JM, Cavalieri AL (2000) Mater Lett 43:281–285

    Article  Google Scholar 

  38. Zhang JX, Gao LQ (2001) Ceram Int 27:143–147

    Article  Google Scholar 

  39. Palmero P, Fornabaio M, Montanaro L, Reveron H, Esnouf C, Chevalier J (2015) Biomaterials 50:38–46

    Article  Google Scholar 

  40. Palmero P, Sola A, Naglieri V, Bellucci D, Lombardi M, Cannillo V (2012) J Mater Sci 47:1077–1084

    Article  Google Scholar 

  41. Palmero P, Naglieri V, Spina V, Lombardi M (2012) Ceram Int 37:139–144

    Article  Google Scholar 

  42. Kern F, Palmero P, Marro FG, Mestra A (2015) Ceram Int. in press. doi:10.1016/j.ceramint.2014.09.006

  43. Fornabaio M, Palmero P, Traverso R, Esnouf C, Reveron H, Chevalier J, Montanaro L (2015) J Eur Ceram Soc, accepted for publication

    Google Scholar 

  44. Chevalier J, Taddei P, Gremillard L, Deville S, Fantozzi G, Bartolomé JF, Pecharroman C, Moya JS, Diaz LA, Torrecillas R, Affatato S (2011) J Mech Behav Biomed Mater 4:303–314

    Article  Google Scholar 

  45. Cortesi P, Bowen HK (1989) Ceram Int 15:173–177

    Article  Google Scholar 

  46. Schehl M, Diaz JA, Torrecillas R (2002) Acta Materall 50:1125–1139

    Article  Google Scholar 

  47. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Biomaterials 23:937–945

    Article  Google Scholar 

  48. Yuan ZX, Vleugels J, Der Biest OV (2000) Mater Lett 46:249–254

    Article  Google Scholar 

  49. Palmero P, Montanaro L, Reveron H, Chevalier J (2014) Materials 7:5012–5037

    Article  Google Scholar 

  50. Palmero P, Esnouf C (1998) J Eur Ceram Soc 18:495–500

    Article  Google Scholar 

  51. Addad A, Crampon J, Duclos R (2002) J Eur Ceram Soc 22:329–335

    Article  Google Scholar 

  52. Tang J, Ling Z, Lu Y, Li A, Ling H, Wang Y, Shao Q (2002) Mater Lett 56:46–449

    Article  Google Scholar 

  53. Palmero P, Simone A, Esnouf C, Fantozzi G, Montanaro L (2006) J Eur Ceram Soc 26:941–947

    Article  Google Scholar 

  54. Rana PR, Pratihar SK, Bhattacharyya S (2007) J Mater Process Technol 190:350–357

    Article  Google Scholar 

  55. Balmer ML, Lange FF, Jayaram V, Levi CG (1995) J Am Ceram Soc 78:1489–1495

    Article  Google Scholar 

  56. Han X, Liang Z, Feng L, Wang W, Chen J, Xue C, Zhao H (2015) Ceram. Ceram Int 41:505–513

    Article  Google Scholar 

  57. Wang H, Gao L, Shen Z, Nygren M (2001) J Eur Ceram Soc 21:779–783

    Article  Google Scholar 

  58. Wang H, Huang H, Liang J, Liu J (2014) Ceram Int 40:3995–3999

    Article  Google Scholar 

  59. Wu YQ, Zhang YF, Wang SW, Guo JK (2001) J Eur Ceram Soc 21:919–923

    Article  Google Scholar 

  60. Trandafir DL, Mirestean C, Turcu RVF, Frentiu B, Eniu D, Simon S (2014) Ceram Int 40:11071–11078

    Article  Google Scholar 

  61. Zhou M, Ferreira JMF, Fonseca AT, Baptista JL (1998) J Eur Ceram Soc 18:495–500

    Article  Google Scholar 

  62. Xu Y, Nakahira A, Niihara K (1994) J Ceram Soc Jpn 102:312–315

    Article  Google Scholar 

  63. Gao L, Wang HZ, Hong JS, Miyamoto H, Miyamoto K, Nishikawa Y, Torre SDDL (1999) J Eur Ceram Soc 19:609–613

    Article  Google Scholar 

  64. Wang HZ, Gao L, Guo JK (2000) Ceram Int 26:391–396

    Article  Google Scholar 

  65. Warrier KGK, Anilkumar GM (2001) Mater Chem Phys 67:263–266

    Article  Google Scholar 

  66. Strutt PR, Xiao TD, Gonsalves KE, Boland R (1993) Nanostruct Mater 2:347–353

    Article  Google Scholar 

  67. Palmero P, Lombardi M, Montanaro L, Azar M, Chevalier J, Garnier V, Fantozzi G (2009) Int J Appl Ceram Technol 6:420–430

    Article  Google Scholar 

  68. Aghili SE, Enayati MH, Karimzadeh F (2014) Adv Powder Technol 25:408–414

    Article  Google Scholar 

  69. Yu Z, Yang L, Min H, Zhang P, Zhou C, Riedel R (2014) J Mater Chem C 2:1057–1067

    Article  Google Scholar 

  70. Mohapatra S, Ram S (2007) Defence Sci J 57:41–46

    Article  Google Scholar 

  71. Bengisu M (2001) Properties of ceramic materials and their evaluation. In: Bengisu M (ed) Engineering ceramics. Stringer-Verlag, Berlin, Germany, pp 226–252

    Chapter  Google Scholar 

  72. John F, Thomas JK, Solomon S (2015) Dielectric properties of nano crystalline LnTiNbO6 (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) ceramics In International conference on materials science and technology, IOP Publishing IOP Conf. Series: Materials Science and Engineering 2015, vol 73, pp 1–5

    Google Scholar 

  73. Manukyan KV, Cross A, Roslyakov S, Rouvimov S, Rogachev AS, Wolf EE, Mukasyan AS (2013) J Phys Chem C 117:24417–24427

    Article  Google Scholar 

  74. Purohit RD, Tyagi AK (2002) J Mater Chem 12:1218–1221

    Article  Google Scholar 

  75. Chavan SV, Tyagi AK . J Mater Res 19:3181–3188

    Google Scholar 

  76. Chu BTT, Tobias G, Salzmann CG, Ballesteros B, Grobert N, Todd RI, Green MLH (2008) J Mater Chem 18:5344–5349

    Article  Google Scholar 

  77. Babu BC, Kumar KN, Rudramadevi BH, Buddhudu S (2014) Ferroelectr Lett 41:28–43

    Article  Google Scholar 

  78. Al-Yousef YM, Ghouse M (2011) World J Nano Sci Eng 1:99–107

    Article  Google Scholar 

  79. Heshmatpour F, Aghakhanpour RB (2011) Powder Technol 205:193–200

    Article  Google Scholar 

  80. Shah DG, Trivedi PM (2012) Der Chem Sin 3:p1002

    Google Scholar 

  81. Amighian J, Mozaffer M, Nasr B (2006) Phys Status Solidi C Curr Top Solid State Phys 3:3188–3192

    Google Scholar 

  82. Iyer R, Desai R, Upadhayay RV (2009) Bull Mater Sci 32:141–147

    Article  Google Scholar 

  83. Rucha D, Vipul D, Kinnari P, Ramesh VU (2009) Pramana J Phys 73:765–780

    Article  Google Scholar 

  84. Sam S, Nesaraj AS (2011) Int J Appl Sci Eng 9:223–239

    Google Scholar 

  85. Bhaduri S, Bhaduri SB, Zhou E (1998) J Mater Res 13:156–165

    Article  Google Scholar 

  86. Tahmasebi K, Paydar MH (2011) J Alloys Compd 509:1192–1196

    Article  Google Scholar 

  87. Khoshkalam M, Faghihi-Sani MA (2013) Mater Sci Eng A 587:336–343

    Article  Google Scholar 

  88. The Homepage of Tosoh Corporation. Available online: http://www.tosoh.com. Accessed on 5 Mar 2015

  89. The Website of Index of Materials-Ceramic-Powders. Available online: http://www.goodfellow.com/E/Ceramic-Powders.html. Accessed on 5 Mar 2015

  90. The Homepage of Ogekkt Nateruaks Inc. Available online: http://www.phelly.com. Accessed on 5 Mar 2015

Download references

Acknowledgment

We gratefully acknowledge support from the Ministry of Human Resource Development Department of Higher Education, Government of India under the scheme of Establishment of Centre of Excellence for Training and Research in Frontier Areas of Science and Technology (FAST), for providing the necessary financial support to carry out this study vide letter No, F. No. 5–5/201 4–TS.Vll.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dhillon, A., Kumar, D. (2017). Synthesis of Nanostructure Ceramics and Their Composites. In: Mishra, A. (eds) Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-49512-5_3

Download citation

Publish with us

Policies and ethics