Skip to main content

Advance Techniques for the Synthesis of Nanostructured Zirconia-Based Ceramics for Thermal Barrier Application

  • Chapter
  • First Online:

Abstract

The aim of this chapter is the review of various synthesis methods for the preparation of zirconia-based nanostructure for thermal barrier coatings (TBCs) application. To this end, the main materials used in TBCs, including metal oxide (M) stabilized zirconia (M = MgO, CaO, Y2O3, CeO2, Sc2O3), codoped-zirconia, rare earth-doped zirconiate (REZ) and zirconia--alumina nanocomposite, were reviewed and easy scales up route for the synthesis of them were studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stevens R (1986) An introduction to zirconia, Magnesium Elektron. Deutsche Übersetzung in: Handbuch der Keramik, Deutscher Wirtschaftsdienst

    Google Scholar 

  2. Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487

    Article  Google Scholar 

  3. Brog J-P, Chanez C-L, Crochet A, Fromm KM (2013) Polymorphism, what it is and how to identify it: a systematic review. Rsc Advances 3(38):16905–16931

    Article  Google Scholar 

  4. Ikeno H, Krause M, Thomas H, Patzig C, Hu Y, Gawronski A, Tanaka I, Christian R (2013) Variation of Zr-L2, 3 XANES in tetravalent zirconium oxides. J Phys: Condens Matter 25(16):165505

    Google Scholar 

  5. Patil KC, Hegde M, Rattan T, Aruna S (2008) Chemistry of nanocrystalline oxide materials-combustion synthesis, properties and applications. World Scientific, New Jersey

    Book  Google Scholar 

  6. Davar F, Hassankhani A, Loghman-Estarki MR (2013) Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceram Int 39(3):2933–2941

    Article  Google Scholar 

  7. Viazzi C, Bonino J-P, Ansart F, Barnabé A (2008) Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J Alloy Compd 452(2):377–383

    Article  Google Scholar 

  8. Shane M, Mecartney M (1990) Sol-gel synthesis of zirconia barrier coatings. J Mater Sci 25(3):1537–1544

    Article  Google Scholar 

  9. Cao X, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24(1):1–10

    Article  Google Scholar 

  10. Clarke DR, Phillpot SR (2005) Thermal barrier coating materials. Mater Today 8(6):22–29

    Article  Google Scholar 

  11. Maloney MJ (2001) Thermal barrier coating systems and materials. US Patent 6 117 560

    Google Scholar 

  12. Lima R, Marple B (2008) Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Mater Sci Eng, A 485(1):182–193

    Article  Google Scholar 

  13. Racek O, Berndt CC, Guru D, Heberlein J (2006) Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques. Surf Coat Technol 201(1):338–346

    Article  Google Scholar 

  14. Lima R, Kucuk A, Berndt C (2002) Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia. Mater Sci Eng, A 327(2):224–232

    Article  Google Scholar 

  15. Loghman-Estarki MR, Edris H, Jamali H, Ghasemi R, Pourbafrany M, Erfanmanesh M, Ramezani M (2013) Spray drying of nanometric SYSZ powders to obtain plasma sprayable nanostructured granules. Ceram Int 39(8):9447–9457

    Article  Google Scholar 

  16. Loghman-Estarki MR, Pourbafrany M, Razavi RS, Edris H, Bakhshi SR, Erfanmanesh M, Jamali H, Hosseini SN, Hajizadeh-Oghaz M (2014) Preparation of nanostructured YSZ granules by the spray drying method. Ceram Int 40(2):3721–3729

    Article  Google Scholar 

  17. Brandon J, Taylor R (1989) Thermal properties of ceria and yttria partially stabilized zirconia thermal barrier coatings. Surf Coat Technol 39:143–151

    Article  Google Scholar 

  18. Khan AN, Khan S, Ali F, Iqbal M (2009) Evaluation of ZrO2–24MgO ceramic coating by eddy current method. Comput Mater Sci 44(3):1007–1012

    Article  Google Scholar 

  19. Kvernes I (1979) Ceramic coatings on diesel engine components. In: Kvernes I et al (eds) Central Institute for Industrial Research, Oslo, Norway, Dec 1979. From conference on advanced materials for alternate fuel capable directly fired heat engines, pp 233–257

    Google Scholar 

  20. Schulz U, Fritscher K, Peters M (1996) EB-PVD Y 2 O 3-and CeO2Y2O3-stabilized zirconia thermal barrier coatings—crystal habit and phase composition. Surf Coat Technol 82(3):259–269

    Article  Google Scholar 

  21. Chatterjee M, Chatterjee A, Ganguli D (1992) Preparation of ZrO2–CaO and ZrO2–MgOfibres by alkoxide Sol–Gel processing. Ceram Int 18(1):43–49

    Article  Google Scholar 

  22. Wang S et al (2006) Coprecipitation synthesis of MgO-doped ZrO2 nano powder. J Am Ceram Soc 89(11):3577–3581

    Article  Google Scholar 

  23. Muccillo R, Saito N, Muccillo E (1995) Properties of zirconia-magnesia solid electrolytes prepared by the citrate method. Mater Lett 25(3):165–169

    Google Scholar 

  24. Yuan L, Xiang D, J-k Yu (2013) Effect of solvents on the properties of co-precipitated MgO-ZrO2 nano powders. J Ceram Process Res 14(4):517–520

    Google Scholar 

  25. Kim N, Hsieh C-H, Huang H, Prinz FB, Stebbins JF (2007) High temperature 17 O MAS NMR study of calcia, magnesia, scandia and yttria stabilized zirconia. Solid State Ionics 178(27):1499–1506

    Article  Google Scholar 

  26. Balmer ML, Lange FF, Levi CG (1992) Metastable phase selection and partitioning in ZrO2—MgO processed from liquid precursors. J Am Ceram Soc 75(4):946–952

    Article  Google Scholar 

  27. Settu T (2000) Characterisation of MgO–ZrO2 precursor powders prepared by in-situ peptisation of coprecipitated oxalate gel. Ceram Int 26(5):517–521

    Article  Google Scholar 

  28. Gocmez H, Fujimori H (2008) Synthesis and characterization of ZrO2–MgO solid solutions by citrate gel process. Mater Sci Eng, B 148(1):226–229

    Article  Google Scholar 

  29. Angeles-Rosas M, Camacho-López MA, Ruiz-Trejo E (2010) Structure, conductivity and luminescence of 8 mol% scandia-doped zirconia prepared by sol–gel. Solid State Ionics 181(29):1349–1354

    Article  Google Scholar 

  30. Ishigame M, Sakurai T (1977) Temperature dependence of the Raman spectra of ZrO2. J Am Ceram Soc 60(7–8):367–369

    Article  Google Scholar 

  31. Garvie RC, Nicholson PS (1972) Phase analysis in zirconia systems. J Am Ceram Soc 55(6):303–305

    Article  Google Scholar 

  32. Stubican V, Hink RC, Ray SP (1978) Phase equilibria and ordering in the system ZrO2–Y2O3. J Am Ceram Soc 61(1–2):17–21

    Article  Google Scholar 

  33. Liu DW, Perry CH, Wang W, Ingel RP (1987) Low frequency Raman spectra in disordered cubic zirconia at elevated temperatures. J Appl Phys 62:250

    Article  Google Scholar 

  34. Phillippi C, Mazdiyasni K (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54(5):254–258

    Article  Google Scholar 

  35. Rashad M, Baioumy H (2008) Effect of thermal treatment on the crystal structure and morphology of zirconia nanopowders produced by three different routes. J Mater Process Technol 195(1):178–185

    Article  Google Scholar 

  36. Fujimori H, Yashima M, Sasaki S, Kakihana M, Mori T, Tanaka M, Yoshimura M (2001) Cubic–tetragonal phase change of yttria-doped hafnia solid solution: high-resolution X-ray diffraction and Raman scattering. Chem Phys Lett 346(3):217–223

    Article  Google Scholar 

  37. Arul Dhas N, Patil KC (1993) Properties of magnesia-stabilized zirconia powders prepared by a combustion route. J Mater Sci Lett 12(23):1844–1847

    Article  Google Scholar 

  38. Sakka S (2005) Handbook of sol-gel science and technology. 1. Sol-gel processing, vol 1. Springer Science & Business Media

    Google Scholar 

  39. Hajizadeh-Oghaz M, Razavi RS, Khajelakzay M (2015) Optimizing sol–gel synthesis of magnesia-stabilized zirconia (MSZ) nanoparticles using Taguchi robust design for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 73(1):227–241

    Article  Google Scholar 

  40. Rauf A, Yu Q, Jin L, Zhou C (2012) Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scripta Materialia 66(2):109–112

    Article  Google Scholar 

  41. Guo X (1997) Space-charge conduction in yttria and alumina codoped-zirconia 1. Solid State Ionics 96(3):247–254

    Article  Google Scholar 

  42. Ramaswamy P, Seetharamu S, Varma K, Rao K (1999) Evaluation of CaO–CeO2–partially stabilized zirconia thermal barrier coatings. Ceram Int 25(4):317–324

    Article  Google Scholar 

  43. Esparza-Ponce H, Reyes-Rojas A, Antunez-Flores W, Miki-Yoshida M (2003) Synthesis and characterization of spherical calcia stabilized zirconia nano-powders obtained by spray pyrolysis. Mater Sci Eng, A 343(1):82–88

    Article  Google Scholar 

  44. Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42

    Article  Google Scholar 

  45. Shukla A, Sharma V, Dhas NA, Patil K (1996) Oxide-ion conductivity of calcia-and yttria-stabilized zirconias prepared by a rapid-combustion route. Mater Sci Eng, B 40(2):153–157

    Article  Google Scholar 

  46. Arul Dhas N, Patil K (1992) Combustion synthesis and properties of tetragonal, monoclinic, and partially and fully stabilized zirconia powders. Int J Self-Propag High-Temp Synth 1:576–589

    Google Scholar 

  47. Viazzi C, Deboni A, Ferreira JZ, Bonino J-P, Ansart F (2006) Synthesis of yttria stabilized zirconia by sol–gel route: influence of experimental parameters and large scale production. Solid State Sci 8(9):1023–1028

    Article  Google Scholar 

  48. Viazzi C, Bonino J-P, Ansart F (2006) Synthesis by sol-gel route and characterization of yttria stabilized zirconia coatings for thermal barrier applications. Surf Coat Technol 201(7):3889–3893

    Article  Google Scholar 

  49. Pin L, Ansart F, Bonino J-P, Le Maoult Y, Vidal V, Lours P (2011) Processing, repairing and cyclic oxidation behaviour of sol–gel thermal barrier coatings. Surf Coat Technol 206(7):1609–1614

    Article  Google Scholar 

  50. Pin L, Ansart F, Bonino J-P, Le Maoult Y, Vidal V, Lours P (2013) Reinforced sol–gel thermal barrier coatings and their cyclic oxidation life. J Eur Ceram Soc 33(2):269–276

    Article  Google Scholar 

  51. Pin L, Vidal V, Blas F, Ansart F, Duluard S, Bonino J-P, Le Maoult Y, Lours P (2014) Optimized sol–gel thermal barrier coatings for long-term cyclic oxidation life. J Eur Ceram Soc 34(4):961–974

    Article  Google Scholar 

  52. Laberty-Robert C, Ansart F, Deloget C, Gaudon M, Rousset A (2001) Powder synthesis of nanocrystallineZrO 2–8% Y 2 O 3 via a polymerization route. Mater Res Bull 36(12):2083–2101

    Article  Google Scholar 

  53. Laberty-Robert C, Ansart F, Castillo S, Richard G (2002) Synthesis of YSZ powders by the sol-gel method: surfactant effects on the morphology. Solid State Sci 4(8):1053–1059

    Article  Google Scholar 

  54. Farhikhteh S, Maghsoudipour A, Raissi B (2010) Synthesis of nanocrystalline YSZ (ZrO 2–8Y 2 O 3) powder by polymerized complex method. J Alloy Compd 491(1):402–405

    Article  Google Scholar 

  55. Petrova N, Todorovsky D (2006) Thermal decomposition of zirconium–yttrium citric complexes prepared in ethylene glycol and water media. Mater Res Bull 41(3):576–589

    Article  Google Scholar 

  56. Hajizadeh-Oghaz M, Razavi RS, Loghman-Estarki MR (2014) Synthesis and characterization of non-transformable tetragonal YSZ nanopowder by means of Pechini method for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 70(1):6–13

    Article  Google Scholar 

  57. Hajizadeh-Oghaz M, Razavi RS, Loghman Estarki MR (2014) Large-scale synthesis of YSZ nanopowder by Pechini method. Bull Mater Sci 37(5):969–973

    Article  Google Scholar 

  58. Oghaz MH, Razavi RS, Loghman-Estark MR, Ghasemi R (2012) Optimization of morphology and particle size of modified sol gel synthesized YSZ nanopowder using Taguchi method. J Nano Res (Trans Tech Publ), 65–70

    Google Scholar 

  59. Majedi A, Davar F, Abbasi A (2014) Sucrose-mediated sol–gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J Ind Eng Chem 20(6):4215–4223

    Article  Google Scholar 

  60. Prabhakaran K, Melkeri A, Gokhale N, Sharma S (2007) Synthesis of nanocrystalline 8 mol% yttria stabilized zirconia powder from sucrose derived organic precursors. Ceram Int 33(8):1551–1555

    Article  Google Scholar 

  61. Finar IL (1973) Organic Chemistry, vol I: the fundamental principles, Longman, London, pp. 503–530

    Google Scholar 

  62. Gong W, Sha C, Sun D, Wang W (2006) Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings. Surf Coat Technol 201(6):3109–3115

    Article  Google Scholar 

  63. Park S, Kim J, Kim M, Song H, Park C (2005) Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion. Surf Coat Technol 190(2):357–365

    Article  Google Scholar 

  64. Yuan Q, Duan H-H, Li L-L, Sun L-D, Zhang Y-W, Yan C-H (2009) Controlled synthesis and assembly of ceria-based nanomaterials. J Colloid Interface Sci 335(2):151–167

    Article  Google Scholar 

  65. Rezaei M, Alavi S, Sahebdelfar S, Yan Z-F (2009) Synthesis of ceria doped nanozirconia powder by a polymerized complex method. J Porous Mater 16(5):497–505

    Article  Google Scholar 

  66. Reddy BM, Reddy GK, Reddy LH, Ganesh I (2009) Synthesis of nanosized ceria-zirconia solid solutions by a rapid microwave-assisted combustion method. Open Phys Chem J 3(1):24–29

    Article  Google Scholar 

  67. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J-C (2003) Raman and X-ray photoelectron spectroscopy study of CeO2–ZrO2 and V2O5/CeO2–ZrO2 catalysts. Langmuir 19(7):3025–3030

    Article  Google Scholar 

  68. Martínez-Arias A, Fernández-García M, Ballesteros V, Salamanca L, Conesa J, Otero C, Soria J (1999) Characterization of high surface area Zr–Ce (1: 1) mixed oxide prepared by a microemulsion method. Langmuir 15(14):4796–4802

    Article  Google Scholar 

  69. McBride J, Hass K, Poindexter B, Weber W (1994) Raman and X-ray studies of Ce1−x RE x O2−y , where RE = La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76(4):2435–2441

    Article  Google Scholar 

  70. Quinelato A et al (2001) Synthesis and sintering of ZrO2–CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci 36(15):3825–3830

    Article  Google Scholar 

  71. Tu H, Liu X, Yu Q (2011) Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells. J Power Sources 196(6):3109–3113

    Article  Google Scholar 

  72. Turner C (1991) Sol-gel process-principles and applications. Am Ceram Soc Bull 70(9):1487–1490

    Google Scholar 

  73. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341

    Article  Google Scholar 

  74. Johnson DW Jr (1985) Sol-gel processing of ceramics and glass. Am Ceram Soc Bull 64(12):1597–1602

    Google Scholar 

  75. Hajizadeh-Oghaz M, Razavi RS, Ghasemi A (2015) The effect of solution pH value on the morphology of ceria–yttria co stabilized zirconia particles prepared using the polymerizable complex method. J Cluster Sci, 1–15

    Google Scholar 

  76. Hajizadeh-Oghaz M, Razavi RS, Ghasemi A (2015) Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 74(3):603–612

    Article  Google Scholar 

  77. Mazaki H, Yasuoka H, Kakihana M, Fujimori H, Yashima M, Yoshimura M (1995) Complex susceptibilities of co-substituted YBa2Cu3O7 synthesized by the polymerized complex method. Physica C 246(1):37–45

    Article  Google Scholar 

  78. Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74

    Article  Google Scholar 

  79. Davar F, Loghman-Estarki MR (2014) Synthesis and optical properties of pure monoclinic zirconia nanosheets by a new precursor. Ceram Int 40(6):8427–8433

    Article  Google Scholar 

  80. Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74

    Article  Google Scholar 

  81. Ahmaniemi S, Vuoristo P, Mäntylä T, Cernuschi F, Lorenzoni L (2004) Modified thick thermal barrier coatings: thermophysical characterization. J Eur Ceram Soc 24(9):2669–2679

    Article  Google Scholar 

  82. Soyez G, Eastman JA, Thompson LJ, Bai G-R, Baldo PM, McCormick AW, DiMelfi RJ, Elmustafa AA, Tambwe MF, Stone DS (2000) Grain-size-dependent thermal conductivity of nanocrystallineyttria-stabilized zirconia films grown by metal-organic chemical vapor deposition. Appl Phys Lett 77(8):1155–1157

    Article  Google Scholar 

  83. Braginsky L, Shklover V, Hofmann H, Bowen P (2004) High-temperature thermal conductivity of porous Al2O3 nanostructures. Physical review B 70:134201

    Article  Google Scholar 

  84. Klemens PG, Gell M (1998) Thermal conductivity of thermal barrier coatings. Mater Sci Eng, A 245:143–149

    Article  Google Scholar 

  85. Gitzen W (1970) Alumina as a ceramic material, (American Ceramic Society. Westerville, Ohio

    Google Scholar 

  86. Jamali H, Mozafarinia R, Shoja-Razavi R, Ahmadi-Pidani R (2014) Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate. J Eur Ceram Soc 34(2):485–492

    Article  Google Scholar 

  87. Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H (2013) Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int 39(8):8805–8813

    Article  Google Scholar 

  88. Pourbafrani M, Razavi RS, Bakhshi S, Loghman-Estarki M, Jamali H (2015) Effect of microstructure and phase of nanostructured YSZ thermal barrier coatings on its thermal shock behaviour. Surf Eng 31(1):64–73

    Article  Google Scholar 

  89. Hajizadeh-Oghaz M, Razavi RS, Ghasemi A, Valefi Z (2016) Na2SO4 and V2O5 molten salts corrosion resistance of plasma-sprayed nanostructured ceria and yttria co-stabilized zirconia thermal barrier coatings. Ceram Int 42(4):5433–5446

    Article  Google Scholar 

  90. Jones RL (1998) Scandia, yttria-stabilized zirconia for ultra-high temperature thermal barrier coatings. US patent no. 5,780,178

    Google Scholar 

  91. Jones RL, Reidy RF, Mess D (1996) Scandia, yttria-stabilized zirconia for thermal barrier coatings. Surf Coat Technol 82(1):70–76

    Article  Google Scholar 

  92. Jones R (1989) Scandia-stabilized zirconia for resistance to molten vanadate-sulfate corrosion. Surf Coat Technol 39:89–96

    Article  Google Scholar 

  93. Leoni M, Jones R, Scardi P (1998) Phase stability of scandia–yttria-stabilized zirconia TBCs. Surf Coat Technol 108:107–113

    Article  Google Scholar 

  94. Jones RL, Mess D (1996) Improved tetragonal phase stability at 1400 C with scandia, yttria-stabilized zirconia. Surf Coat Technol 86:94–101

    Article  Google Scholar 

  95. Jones RL, Williams C (1987) Hot corrosion of CoCrAlY by molten sulfate-vanadate deposits. Mater Sci Eng 87:353–360

    Article  Google Scholar 

  96. Hajizadeh-Oghaz M (2016) PhD thesis, Synthesis and characterization of nanostructured ceria-yttria stabilized zirconia for thermal barrier coating

    Google Scholar 

  97. Politova T, Irvine J (2004) Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x(Sc2O3)(11−x)(ZrO2)89. Solid State Ionics 168(1):153–165

    Article  Google Scholar 

  98. Jones RL (1997) Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol 6(1):77–84

    Article  Google Scholar 

  99. Jang J, Dae-Joon K, Lee D (2001) Unusual calcination temperature dependent tetragonalal monoclinic transitions in rare earth-doped zirconia nanocrystals. J Mater Sci 36:5391

    Article  Google Scholar 

  100. Tiwari S, Adhikary J, Singh T, Singh R (2009) Preparation and characterization of sol–gel derived yttria doped zirconia coatings on AISI 316L. Thin Solid Films 517(16):4502–4508

    Article  Google Scholar 

  101. Narayanawamy B, Karaikudi R (2010) Process for the production of plasma sprayable yttria stabilized zirconia (ysz) and plasma sprayable ysz powder produced thereby, US patent no. 0048379 A1

    Google Scholar 

  102. Kanade K, Baeg J, Apte S, Prakash T, Kale B (2008) Synthesis and characterization of nanocrystallined zirconia by hydrothermal method. Mater Res Bull 43(3):723–729

    Article  Google Scholar 

  103. Lei Z, Zhu Q, Zhang S (2006) Nanocrystallinescandia-doped zirconia (ScSZ) powders prepared by a glycine–nitrate solution combustion route. J Eur Ceram Soc 26(4):397–401

    Article  Google Scholar 

  104. Singh K, Pathak L, Roy S (2007) Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process. Ceram Int 33(8):1463–1468

    Article  Google Scholar 

  105. Yang J, Lian J, Dong Q, Guan Q, Chen J, Guo Z (2003) Synthesis of YSZ nanocrystalline particles via the nitrate–citrate combustion route using diester phosphate (PE) as dispersant. Mater Lett 57(19):2792–2797

    Article  Google Scholar 

  106. Courtin E, Boy P, Rouhet C, Bianchi L, Bruneton E, Poirot N, Laberty-Robert C, Sanchez C (2012) Optimized sol-gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chem Mater 24(23):4540–4548

    Article  Google Scholar 

  107. Zhang Y, Li A, Yan Z, Xu G, Liao C, Yan C (2003) (ZrO2)0.85(REO1.5)0.15(RE = Sc, Y) solid solutions prepared via three Pechini-type gel routes: 1—gel formation and calcination behaviors. J Solid State Chem 171(1):434–438

    Article  Google Scholar 

  108. Zhang Y-W, Yan Z-G, Liao F-H, Liao C-S, Yan C-H (2004) Citrate gel synthesis and characterization of (ZrO2)0.85(REO1.5)0.15(RE = Y, Sc) solid solutions. Mater Res Bull 39(11):1763–1777

    Google Scholar 

  109. Zyryanov V, Uvarov N, Sadykov V, Ulihin A, Kostrovskii V, Ivanov V, Titov A, Paichadze K (2009) Mechanochemical synthesis and conducting properties of nanostructured rhombohedralscandia stabilized zirconia ceramics. J Alloy Compd 483(1):535–539

    Article  Google Scholar 

  110. Fontaine O, Laberty-Robert C, Sanchez C (2012) Sol-gel route to zirconia–pt-nanoelectrode arrays 8 nm in radius: their geometrical impact in mass transport. Langmuir 28(7):3650–3657

    Article  Google Scholar 

  111. ShojaRazavi R, Loghman-Estarki MR, Farhadi-Khouzani M (2012) Synthesis and characterization of ZnO nano-structures by polymeric precursor route. Acta Physica Polonica-Ser A Gen Phys 121(1):98–101

    Article  Google Scholar 

  112. Gaudon M, Laberty-Robert C, Ansart F, Stevens P (2006) Thick YSZ films prepared via a modified sol–gel route: thickness control (8–80 μm). J Eur Ceram Soc 26(15):3153–3160

    Article  Google Scholar 

  113. Loghman-Estark MR, Razavi RS, Edris H (2013) Synthesis and thermal stability of nontransformable tetragonal (ZrO2)0.96(REO1.5)0.04(Re = Sc3+, Y3+) Nanocrystals. Defect and Diffusion Forum. Trans Tech Publ, pp 60–64

    Google Scholar 

  114. Jamali H, Mozafarinia R, ShojaRazavi R, Ahmadi-Pidani R, Reza Loghman-Estarki M (2012) Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings. Curr Nanosci 8(3):402–409

    Article  Google Scholar 

  115. Loghman-Estarki MR, Edris H, Razavi RS (2013) Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating. Ceram Int 39(7):7817–7829

    Article  Google Scholar 

  116. Loghman-Estarki MR, ShojaRazavi R, Edris H (2013) Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating. Ceram Int 39:7817–7829

    Article  Google Scholar 

  117. Loghman-Estarki MR, Hajizadeh-Oghaz M, Edris H, Razavi RS (2013) Comparative studies on synthesis of nanocrystalline Sc2O3–Y2O3 doped zirconia (SYDZ) and YSZ solid solution via modified and classic Pechini method. Cryst Eng Commun 15:5898–5909

    Article  Google Scholar 

  118. Srinivasan R, De Angelis RJ, Ice G, Davis BH (1991) Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source. J Mater Res 6(06):1287–1292

    Article  Google Scholar 

  119. Srivastava KK, Patil RN, Choudhary CB, Gokhale KVGK, Subba Rao EC (1974) Martensitic transformation in zirconia. Trans Brit Ceram Soc 73:85–91

    Google Scholar 

  120. Barberis P, Merle-Méjean T, Quintard P (1997) On Raman spectroscopy of zirconium oxide films, J Nucl Mater 246(2–3):232–243

    Google Scholar 

  121. Li M, Feng Z, Xiong G, Ying P, Xin Q, Li C (2001) Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy. J Phys Chem B 105(34):8107–8111

    Article  Google Scholar 

  122. Phillippi CM, Mazdyasni KS (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54(5):254–258

    Article  Google Scholar 

  123. Iwamoto N, Umesaki N, Endo S (1985) Characterization of plasma-sprayed zirconia coatings by X-ray diffraction and Raman spectroscopy. Thin Sol Films 127:129–138

    Article  Google Scholar 

  124. Phillippi CM, Mazdiyasni KS (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54:254–258

    Article  Google Scholar 

  125. Costa G, Muccillo R (2010) Comparative studies on properties of scandia-stabilized zirconia synthesized by the polymeric precursor and the polyacrylamide techniques. J Alloy Compd 503(2):474–479

    Article  Google Scholar 

  126. Sánchez C, Doria J, Paucar C, Hernandez M, Mósquera A, Rodríguez J, Gómez A, Baca E, Morán O (2010) Nanocystalline ZnO films prepared via polymeric precursor method (Pechini). Physica B 405(17):3679–3684

    Article  Google Scholar 

  127. ShojaRazavi R, Loghman-Estarki MR, Farhadi-Khouzani M, Barekat M, Jamali H (2011) Large scale synthesis of zinc oxide nano- and submicro-structure by Pechini’s method: effect of ethylene glycol/citric acid mole ratio on structural and optical properties. Curr Nanosci 7:807–812

    Article  Google Scholar 

  128. Yu H-F, Huang K-C (2003) Effects of pH and citric acid contents on characteristics of ester-derived BaFe12O19 powder. J Magn Magn Mater 260(3):455–461

    Article  Google Scholar 

  129. Thangaraju D, Samuel P, Babu SM (2010) Growth of two-dimensional KGd(WO4)2 nanorods by modified sol–gel Pechini method. Opt Mater 32(10):1321–1324

    Article  Google Scholar 

  130. Kazemi F, Saberi A, Malek-Ahmadi S, Sohrabi S, Rezaie H, Tahriri M (2011) novel method for synthesis of metastable tetragonal zirconia nanopowders at low temperatures. Ceram Silik 55(1):26–30

    Google Scholar 

  131. Loghman-Estarki M, Razavi RS, Edris H, Bakhshi S, Nejati M, Jamali H (2016) Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings in the presence of molten sulfate and vanadate salt. Ceram Int. doi:10.1016/j.ceramint.2016.01.147

    Google Scholar 

  132. Zhou CH, Zhang ZY, Zhang QM, Li Y (2014) Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings. Mater Corros 65(6):613–619

    Article  Google Scholar 

  133. Eastman J, Choi U, Li S, Soyez G, Thompson L, DiMelfi R IV (1984) Properties-4. Other-novel thermal properties of nanostructured materials. materials science forum, 1999. Aedermannsdorf, Trans Tech Publications, Switzerland, pp 629–634

    Google Scholar 

  134. Yang H-S, Bai G-R, Thompson L, Eastman J (2002) Interfacial thermal resistance in nanocrystallineyttria-stabilized zirconia. Acta Mater 50(9):2309–2317

    Article  Google Scholar 

  135. Jamali H, Mozafarinia R, Razavi RS, Ahmadi-Pidani R (2012) Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int 38(8):6705–6712

    Article  Google Scholar 

  136. Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2012) Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt. Ceram Int 38(8):6613–6620

    Article  Google Scholar 

  137. Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2012) Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification. Opt Lasers Eng 50(5):780–786

    Article  Google Scholar 

  138. Narimani N, Saremi M, (2015) A study on the oxidation resistance of electrodeposited and nanostructured YSZ thermal barrier ceramic coatings. Ceram Int Part A 41(10):13810–13816

    Google Scholar 

  139. Loghman-Estarki MR, Razavi RS, Edris H, Jamali H (2014) Life time of new SYSZ thermal barrier coatings produced by plasma spraying method under thermal shock test and high temperature treatment. Ceram Int 40(1):1405–1414t

    Article  Google Scholar 

  140. Bernard B, Bianchi L, Malié A, Joulia A, Rémy B (2016) Columnar suspension plasma sprayed coating microstructural control for thermal barrier coating application. J Eur Ceram Soc 36(4):1081–1089

    Google Scholar 

  141. Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2013) Laser surface modification of plasma sprayed CYSZ thermal barrier coatings. Ceram Int 39(3):2473–2480

    Article  Google Scholar 

  142. Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2014) Improving the hot corrosion resistance of plasma sprayed ceria–yttria stabilized zirconia thermal barrier coatings by laser surface treatment. Mater Des 57:336–341

    Article  Google Scholar 

  143. Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H (2013) Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram Int 39(8):9483–9490

    Article  Google Scholar 

  144. Loghman-Estarki MR, Nejati M, Edris H, Razavi RS, Jamali H, Pakseresht AH (2015) Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt. J Eur Ceram Soc 35(2):693–702

    Article  Google Scholar 

  145. Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H (2014) The influence of laser treatment on thermal shock resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram Int 40(1):347–355

    Article  Google Scholar 

  146. Ghasemi R, ShojaRazavi R, Mozafarinia R, Jamali H, Hajizadeh-Oghaz M, Ahmadi-Pidani R (2014) The influence of laser treatment on hot corrosion behavior of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. J Eur Ceram Soc 34(8):2013–2021

    Article  Google Scholar 

  147. Jamali H, Mozafarinia R, ShojaRazavi R, AhmadiPidani R (2012) Investigation of thermal shock behavior of plasma-sprayed NiCoCrAlY/YSZ thermal barrier coatings. Adv Mater Res (Trans Tech Publ) 246–250

    Google Scholar 

  148. Ahmadi PR, Razavi R, Mozafarinia R, Jamali H (2012) characterization of ceria and yttria stabilized zirconia thermal barrier coatings on in 738 superalloy, Iran J Surf Sci Eng 16:33–34

    Google Scholar 

  149. Wu J, Wei X, Padture NP, Klemens PG, Gell M, García E, Miranzo P, Osendi MI (2002) Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 85(12):3031–3035

    Article  Google Scholar 

  150. AruláDhas N (1993) Combustion synthesis and properties of fine-particle rare-earth-metal zirconates, Ln2Zr2O7. J Mater Chem 3(12):1289–1294

    Article  Google Scholar 

  151. Jinet L et al (2015) Adhesion strength and thermal shock properties of nanostructured 5La3TiYSZ, 8LaYSZ and 8CeYSZ coatings prepared by atmospheric plasma spraying. Ceram Int Part B 41(9):12099–12106

    Article  Google Scholar 

  152. Wang X, Zhu Y, Zhang W (2010) Preparation of lanthanum zirconate nano-powders by Molten salts method. J Non-Cryst Solids 356(20):1049–1051

    Article  Google Scholar 

  153. Mao Y, Guo X, Huang JY, Wang KL, Chang JP (2009) Luminescent nanocrystals with A2B2O7 composition synthesized by a kinetically modified molten salt method. J Phys Chem C 113(4):1204–1208

    Article  Google Scholar 

  154. Subramanian M, Aravamudan G, Rao GS (1983) Oxide pyrochlores—a review. Prog Solid State Chem 15(2):55–143

    Article  Google Scholar 

  155. Afrasiabi A, Saremi M, Kobayashi A (2008) A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3. Mater Sci Eng, A 478(1):264–269

    Article  Google Scholar 

  156. Djurado E, Bouvier P, Lucazeau G (1952) J Am Ceram Soc 35:107

    Article  Google Scholar 

  157. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69(4):1238–1243

    Article  Google Scholar 

  158. Gocmez H (2006) The interaction of organic dispersant with alumina: A molecular modelling approach. Ceram Int 32(5):521–525

    Article  Google Scholar 

  159. Deb A, Chatterjee P, Gupta SS (2007) Synthesis and microstructural characterization of α-Al2O3–t-ZrO2 composite powders prepared by combustion technique. Mater Sci Eng, A 459(1):124–131

    Article  Google Scholar 

  160. Gocmez H, Fujimori H, Tuncer M, Gokyer Z, Duran C (2010) The preparation and characterization of Al2O3/ZrO2 nanocrystalline composite by a simple gel method. Mater Sci Eng, B 173(1):80–83

    Article  Google Scholar 

  161. Saremi M, Valefi Z, Abaeian N (2013) Hot corrosion, high temperature oxidation and thermal shock behavior of nanoagglomerated YSZ–Alumina composite coatings produced by plasma spray method. Surf Coat Technol 221:133–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Shoja Razavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shoja Razavi, R., Loghman-Estarki, M.R. (2017). Advance Techniques for the Synthesis of Nanostructured Zirconia-Based Ceramics for Thermal Barrier Application. In: Mishra, A. (eds) Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-49512-5_2

Download citation

Publish with us

Policies and ethics