Assessment of Population Iodine Status
- 10 Citations
- 1 Mentions
- 680 Downloads
Abstract
Iodine deficiency is one of the most common micronutrient deficiencies, affecting 30 % of the world’s population. Iodine status in a population is usually assessed by urinary iodine concentration (UIC) in spot urine samples; UIC is associated with large inter- and intra-individual variation. Other biomarkers including thyroid-stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) can be used to assess iodine status, however, the normal reference ranges are wide, making it difficult to use these to detect mild iodine deficiency. Another thyroid-specific protein, thyroglobulin (Tg), is considered to be more sensitive to improvements of iodine status in mildly iodine deficient populations but validated cut-offs for adults are lacking. Dietary assessment methods often underestimate iodine intake because of the difficulty in accurately quantifying the contribution of iodized salt to total iodine intake. Future research should focus on the development and validation of more accurate and reliable biomarkers, particularly for individuals.
Keywords
Iodine status Iodine deficiency Urinary iodine concentration Thyroid-stimulating hormone Thyroid hormones ThyroglobulinReferences
- 1.WHO/UNICEF/ICCIDD. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. 3rd ed. Geneva: WHO; 2007.Google Scholar
- 2.Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet. 2008;372(9645):1251–62. doi: 10.1016/S0140-6736(08)61005-3.CrossRefPubMedGoogle Scholar
- 3.Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF. Urinary excretion of iodide and fluoride from supplemented food grade salt. Int J Vitam Nutr Res. 1992;62(1):66–72.PubMedGoogle Scholar
- 4.Soldin OP. Controversies in urinary iodine determinations. Clin Biochem. 2002;35(8):575–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, et al. Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid. 2009;19(11):1281–6. doi: 10.1089/thy.2009.0094.CrossRefPubMedGoogle Scholar
- 6.König F, Andersson M, Hotz K, Aeberli I, Zimmermann MB. Ten repeat collections for urinary iodine from spot samples or 24-hour samples are needed to reliably estimate individual iodine status in women. J Nutr. 2011;141(11):2049–54.CrossRefPubMedGoogle Scholar
- 7.Johner SA, Shi L, Remer T. Higher urine volume results in additional renal iodine loss. Thyroid. 2010;20(12):1391–7. doi: 10.1089/thy.2010.0161.CrossRefPubMedGoogle Scholar
- 8.Rasmussen LB, Ovesen L, Christiansen E. Day-to-day and within-day variation in urinary iodine excretion. Eur J Clin Nutr. 1999;53(5):401–7.CrossRefPubMedGoogle Scholar
- 9.Ji C, Lu T, Dary O, Legetic B, Campbell NR, Cappuccio FP. Systematic review of studies evaluating urinary iodine concentration as a predictor of 24-hour urinary iodine excretion for estimating population iodine intake. Rev Panam Salud Publica. 2015;38(1):73–81.PubMedGoogle Scholar
- 10.John KA, Cogswell ME, Campbell NR, Nowson CA, Legetic B, Hennis AJ, et al. Accuracy and usefulness of select methods for assessing complete collection of 24-hour urine: a systematic review. J Clin Hypertens (Greenwich). 2016;18:456–67. doi: 10.1111/jch.12763.CrossRefGoogle Scholar
- 11.Rasmussen LB, Ovesen L, Bülow I, Jørgensen T, Knudsen N, Laurberg P, et al. Dietary iodine intake and urinary iodine excretion in a Danish population: effect of geography, supplements and food choice. Br J Nutr. 2002;87(1):61–9.CrossRefPubMedGoogle Scholar
- 12.Dorey CM, Zimmermann MB. Reference values for spot urinary iodine concentrations in iodine-sufficient newborns using a new pad collection method. Thyroid. 2008;18(3):347–52. doi: 10.1089/thy.2007.0279.CrossRefPubMedGoogle Scholar
- 13.Zimmermann MB, Andersson M. Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev. 2012;70(10):553–70.CrossRefPubMedGoogle Scholar
- 14.Edmonds JC, McLean RM, Williams SM, Skeaff SA. Urinary iodine concentration of New Zealand adults improves with mandatory fortification of bread with iodised salt but not to predicted levels. Eur J Nutr. 2015;55(3):1201–12. doi: 10.1007/s00394-015-0933-y.CrossRefPubMedGoogle Scholar
- 15.Zimmermann MB, Hussein I, Al Ghannami S, El Badawi S, Al Hamad NM, Abbas Hajj B, et al. Estimation of the prevalence of inadequate and excessive iodine intakes in school-age children from the adjusted distribution of urinary iodine concentrations from population surveys. J Nutr. 2016; doi: 10.3945/jn.115.229005.Google Scholar
- 16.Andersen S, Pedersen KM, Pedersen IB, Laurberg P. Variations in urinary iodine excretion and thyroid function. A 1-year study in healthy men. Eur J Endocrinol. 2001;144(5):461–5.CrossRefPubMedGoogle Scholar
- 17.Busnardo B, Nacamulli D, Zambonin L, Mian C, Piccolo M, Girelli ME. Restricted intraindividual urinary iodine concentration variability in nonfasting subjects. Eur J Clin Nutr. 2006;60(3):421–5.CrossRefPubMedGoogle Scholar
- 18.Andersen S, Karmisholt J, Pedersen KM, Laurberg P. Reliability of studies of iodine intake and recommendations for number of samples in groups and in individuals. Br J Nutr. 2008;99(4):813–8.CrossRefPubMedGoogle Scholar
- 19.Karmisholt J, Laurberg P, Andersen S. Recommended number of participants in iodine nutrition studies is similar before and after an iodine fortification programme. Eur J Nutr. 2014;53(2):487–92. doi: 10.1007/s00394-013-0551-5.CrossRefPubMedGoogle Scholar
- 20.Johner SA, Thamm M, Schmitz R, Remer T. Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment. Eur J Nutr. 2016;55(3):1275–82. doi: 10.1007/s00394-015-0941-y.CrossRefPubMedGoogle Scholar
- 21.Knudsen N, Christiansen E, Brandt-Christensen M, Nygaard B, Perrild H. Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? Evaluation of three different estimates of iodine excretion based on casual urine samples and comparison to 24 h values. Eur J Clin Nutr. 2000;54(4):361–3.CrossRefPubMedGoogle Scholar
- 22.Andersen S, Hvingel B, Kleinschmidt K, Jorgensen T, Laurberg P. Changes in iodine excretion in 50-69-y-old denizens of an Arctic society in transition and iodine excretion as a biomarker of the frequency of consumption of traditional Inuit foods. Am J Clin Nutr. 2005;81(3):656–63.PubMedGoogle Scholar
- 23.Furnee CA, van der Haar F, West CE, Hautvast JG. A critical appraisal of goiter assessment and the ratio of urinary iodine to creatinine for evaluating iodine status. Am J Clin Nutr. 1994;59(6):1415–7.PubMedGoogle Scholar
- 24.Thomson CD, Woodruffe S, Colls AJ, Joseph J, Doyle TC. Urinary iodine and thyroid status of New Zealand residents. Eur J Clin Nutr. 2001;55(5):387–92.CrossRefPubMedGoogle Scholar
- 25.Thomson CD, Smith TE, Butler KA, Packer MA. An evaluation of urinary measures of iodine and selenium status. J Trace Elem Med Biol. 1996;10(4):214–22.CrossRefPubMedGoogle Scholar
- 26.Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200.CrossRefPubMedGoogle Scholar
- 27.Magner JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr Rev. 1990;11(2):354–85. doi: 10.1210/edrv-11-2-354.CrossRefPubMedGoogle Scholar
- 28.Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab. 2013;98(3):1147–53. doi: 10.1210/jc.2012-3191.CrossRefPubMedGoogle Scholar
- 29.Triggiani V, Tafaro E, Giagulli VA, Sabba C, Resta F, Licchelli B, et al. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets. 2009;9(3):277–94.CrossRefPubMedGoogle Scholar
- 30.Obregón MJ, del Rey FE, de Escobar GM. The effects of iodine deficiency on thyroid hormone deiodination. Thyroid. 2005;15(8):917–29. doi: 10.1089/thy.2005.15.917.CrossRefPubMedGoogle Scholar
- 31.Ristić-Medić D, Piskackova Z, Hooper L, Ruprich J, Casgrain A, Ashton K, et al. Methods of assessment of iodine status in humans: a systematic review. Am J Clin Nutr. 2009;89(6):2052S–69S.CrossRefPubMedGoogle Scholar
- 32.Zimmermann MB. Iodine deficiency. Endocr Rev. 2009;30(4):376–408.CrossRefPubMedGoogle Scholar
- 33.Vandevijvere S, Coucke W, Vanderpas J, Trumpff C, Fauvart M, Meulemans A, et al. Neonatal thyroid-stimulating hormone concentrations in Belgium: a useful indicator for detecting mild iodine deficiency? PLoS One. 2012;7(10):e47770. doi: 10.1371/journal.pone.0047770.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Travers CA, Guttikonda K, Norton CA, Lewis PR, Mollart LJ, Wiley V, et al. Iodine status in pregnant women and their newborns: are our babies at risk of iodine deficiency? Med J Aust. 2006;184(12):617–20.PubMedGoogle Scholar
- 35.Burns R, Mayne PD, O’Herlihy C, Smith DF, Higgins M, Staines A, et al. Can neonatal TSH screening reflect trends in population iodine intake? Thyroid. 2008;18(8):883. doi: 10.1089/thy.2008.0036.CrossRefPubMedGoogle Scholar
- 36.Lazarus J, Brown RS, Daumerie C, Hubalewska-Dydejczyk A, Negro R, Vaidya B. 2014 European Thyroid Association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J. 2014;3(2):76–94. doi: 10.1159/000362597.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Skeaff SA. Assessing iodine intakes in pregnancy and strategies for improvement. J Trace Elem Med Biol. 2012;26(2–3):141–4.CrossRefPubMedGoogle Scholar
- 38.Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3(4):286–95. doi: 10.1016/S2213-8587(14)70225-6.CrossRefPubMedGoogle Scholar
- 39.Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29(7):898–938. doi: 10.1210/er.2008-0019.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Pathak S, Meenakshi, Agarwal D, Nayak M. Serum cortisol and thyroid hormones in critically ill infants. Int J Health Sci Res 2016;6(1):73-77.Google Scholar
- 41.Mortoglou A, Candiloros H. The serum triiodothyronine to thyroxine (T3/T4) ratio in various thyroid disorders and after levothyroxine replacement therapy. Hormones (Athens). 2004;3(2):120–6.CrossRefGoogle Scholar
- 42.Kopp P. Thyroid hormone synthesis. In: Braverman LE, Cooper DS, editors. Werner & Ingbar’s the thyroid: a fundamental and clinical text. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 48.Google Scholar
- 43.Lum SM, Nicoloff JT, Spencer CA, Kaptein EM. Peripheral tissue mechanism for maintenance of serum triiodothyronine values in a thyroxine-deficient state in man. J Clin Invest. 1984;73(2):570–5. doi: 10.1172/jci111245.CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Winter WE, Schatz D, Bertholf RL. The thyroid: pathophysiology and thryoid function testing. In: Burtism CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 5th ed. St. Louis: Saunders, Elsevier Inc.; 2012. p. 1912.Google Scholar
- 45.Zimmermann M. Methods to assess iron and iodine status. Br J Nutr. 2008;99(Suppl 3):S2–9.PubMedGoogle Scholar
- 46.Rohner F, Zimmermann M, Jooste P, Pandav C, Caldwell K, Raghavan R, et al. Biomarkers of nutrition for development- iodine review. J Nutr. 2014;144(8):1322s-1342s. doi: 10.3945/jn.113.181974.
- 47.Di Jeso B, Arvan P. Thyroglobulin from molecular and cellular biology to clinical endocrinology. Endocr Rev. 2016;37(1):2–36. doi: 10.1210/er.2015-1090.CrossRefPubMedGoogle Scholar
- 48.Zimmermann MB, Aeberli I, Andersson M, Assey V, Yorg JA, Jooste P, et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100–299 μg/L: a UNICEF/ICCIDD study group report. J Clin Endocrinol Metab. 2013;98(3):1271–80.CrossRefPubMedGoogle Scholar
- 49.Jukić T, Zimmermann MB, Granić R, Prpić M, Krilić D, Jureša V, et al. Sufficient iodine intake in schoolchildren from the Zagreb area: assessment with dried blod spot thyroglobulin as a new functional biomarker for iodine deficiency. Acta Clin Croat. 2015;54(4):424–31.PubMedGoogle Scholar
- 50.Ma ZF, Venn BJ, Manning PJ, Cameron CM, Skeaff SA. Iodine supplementation of mildly iodine-deficient adults lowers thyroglobulin: a randomized controlled trial. J Clin Endocrinol Metab. 2016;101(4):1737–44. doi: 10.1210/jc.2015-3591.CrossRefPubMedGoogle Scholar
- 51.Ma ZF, Skeaff SA. Thyroglobulin as a biomarker of iodine deficiency: a review. Thyroid. 2014;24(8):1195–209. doi: 10.1089/thy.2014.0052.CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Spencer CA, Wang CC. Thyroglobulin measurement: techniques, clinical benefits, and pitfalls. Endocrinol Metab Clin North Am. 1995;24(4):841–63.PubMedGoogle Scholar
- 53.Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.CrossRefPubMedGoogle Scholar
- 54.Pezzino V, Vigneri R, Squatrito S, Filetti S, Camus M, Polosa P. Increased serum thyroglobulin levels in patients with nontoxic goiter. J Clin Endocrinol Metab. 1978;46(4):653–7.CrossRefPubMedGoogle Scholar
- 55.Krejbjerg A, Bjergved L, Pedersen IB, Carlé A, Jorgensen T, Perrild H, et al. Iodine fortification may influence the age-related change in thyroid volume: a longitudinal population-based study (DanThyr). Eur J Endocrinol. 2014;170(4):507–17. doi: 10.1530/eje-13-0918.CrossRefPubMedGoogle Scholar
- 56.Zimmermann MB, Hess SY, Molinari L, De Benoist B, Delange F, Braverman LE, et al. New reference values for thyroid volume by ultrasound in iodine-sufficient schoolchildren: a World Health Organization/Nutrition for Health and Development Iodine Deficiency Study Group Report. Am J Clin Nutr. 2004;79(2):231–7.PubMedGoogle Scholar
- 57.Jooste PL, Weight MJ, Lombard CJ. Short-term effectiveness of mandatory iodization of table salt, at an elevated iodine concentration, on the iodine and goiter status of schoolchildren with endemic goiter. Am J Clin Nutr. 2000;71(1):75–80.PubMedGoogle Scholar
- 58.Vejbjerg P, Knudsen N, Perrild H, Carle A, Laurberg P, Pedersen IB, et al. Effect of a mandatory iodization program on thyroid gland volume based on individuals’ age, gender, and preceding severity of dietary iodine deficiency: a prospective, population-based study. J Clin Endocrinol Metab. 2007;92(4):1397–401. doi: 10.1210/jc.2006-2580.CrossRefPubMedGoogle Scholar
- 59.FSANZ. Final assessment report- proposal P230: consideration of mandatory fortication with iodine for New Zealand. FSANZ: Wellington; 2008.Google Scholar
- 60.Aburto N, Abudou M, Candeias V, Wu T. Effect and safety of salt iodization to prevent iodine deficiency disorders: a systematic review with meta-analyses. WHO eLibrary of Evidence for Nutrition Actions (eLENA). Geneva: WHO; 2014.Google Scholar
- 61.Goindi G, Karmarkar MG, Kapil U, Jagannathan J. Estimation of losses of iodine during different cooking procedures. Asia Pac J Clin Nutr. 1995;4(2):225–7.PubMedGoogle Scholar
- 62.Wang GY, Zhou RH, Wang Z, Shi L, Sun M. Effects of storage and cooking on the iodine content in iodized salt and study on monitoring iodine content in iodized salt. Biomed Environ Sci. 1999;12(1):1–9.PubMedGoogle Scholar
- 63.Rana R, Raghuvanshi RS. Effect of different cooking methods on iodine losses. J Food Sci Technol. 2013;50(6):1212–6. doi: 10.1007/s13197-011-0436-7.CrossRefPubMedGoogle Scholar
- 64.Winger RJ, König J, House DA. Technological issues associated with iodine fortification of foods. Trends Food Sci Tech. 2008;19(2):94–101. doi: 10.1016/j.tifs.2007.08.002.CrossRefGoogle Scholar
- 65.Henríquez-Sánchez P, Sánchez-Villegas A, Doreste-Alonso J, Ortiz-Andrellucchi A, Pfrimer K, Serra-Majem L. Dietary assessment methods for micronutrient intake: a systematic review on vitamins. Br J Nutr. 2009;102(Suppl 1):S10–37. doi: 10.1017/s0007114509993126.CrossRefPubMedGoogle Scholar
- 66.Slimani N, Ferrari P, Ocké M, Welch A, Boeing H, Liere M, et al. Standardization of the 24-hour diet recall calibration method used in the European Prospective Investigation into Cancer and Nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr. 2000;54(12):900–17.CrossRefPubMedGoogle Scholar
- 67.De Keyzer W, Huybrechts I, De Vriendt V, Vandevijvere S, Slimani N, Van Oyen H, et al. Repeated 24-hour recalls versus dietary records for estimating nutrient intakes in a national food consumption survey. Food Nutr Res. 2011;55:1118–25. doi: 10.3402/fnr.v55i0.7307.CrossRefGoogle Scholar
- 68.Perrine CG, Herrick K, Serdula MK, Sullivan KM. Some subgroups of reproductive age women in the United States may be at risk for iodine deficiency. J Nutr. 2010;140(8):1489–94. doi: 10.3945/jn.109.120147.CrossRefPubMedGoogle Scholar
- 69.Raina SK. Limitations of 24-hour recall method: micronutrient intake and the presence of the metabolic syndrome. N Am J Med Sci. 2013;5(8):498. doi: 10.4103/1947-2714.117329.CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Cade J, Burley V, Warm D, Thompson R, Margetts B. Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev. 2004;17(1):5–22.CrossRefPubMedGoogle Scholar
- 71.Watson JF, Collins CE, Sibbritt DW, Dibley MJ, Garg ML. Reproducibility and comparative validity of a food frequency questionnaire for Australian children and adolescents. Int J Behav Nutr Phys Act. 2009;6:62. doi: 10.1186/1479-5868-6-62.CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Haftenberger M, Heuer T, Heidemann C, Kube F, Krems C, Mensink GB. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr J. 2010;9:36. doi: 10.1186/1475-2891-9-36.CrossRefPubMedPubMedCentralGoogle Scholar
- 73.Rasmussen LB, Ovesen L, Bulow I, Jorgensen T, Knudsen N, Laurberg P, et al. Evaluation of a semi-quantitative food frequency questionnaire to estimate iodine intake. Eur J Clin Nutr. 2001;55(4):287–92. doi: 10.1038/sj.ejcn.1601156.CrossRefPubMedGoogle Scholar
- 74.Tan LM, Charlton KE, Tan SY, Ma G, Batterham M. Validity and reproducibility of an iodine-specific food frequency questionnaire to estimate dietary iodine intake in older Australians. Nutr Diet. 2013;70(1):71–8. doi: 10.1111/j.1747-0080.2012.01626.x.CrossRefGoogle Scholar
- 75.Combet E, Lean ME. Validation of a short food frequency questionnaire specific for iodine in UK females of childbearing age. J Hum Nutr Diet. 2014;27(6):599–605. doi: 10.1111/jhn.12219.CrossRefPubMedGoogle Scholar
- 76.Bath SC, Combet E, Scully P, Zimmermann MB, Hampshire-Jones KH, Rayman MP. A multi-centre pilot study of iodine status in UK schoolchildren, aged 8–10 years. Eur J Nutr. 2015; doi: 10.1007/s00394-015-1014-y.PubMedPubMedCentralGoogle Scholar
- 77.Condo D, Makrides M, Skeaff S, Zhou SJ. Development and validation of an iodine-specific FFQ to estimate iodine intake in Australian pregnant women. Br J Nutr. 2015;113(6):944–52. doi: 10.1017/s0007114515000197.CrossRefPubMedGoogle Scholar
- 78.Gordon RC, Rose MC, Skeaff SA, Gray AR, Morgan KM, Ruffman T. Iodine supplementation improves cognition in mildly iodine-deficient children. Am J Clin Nutr. 2009;90(5):1264–71.CrossRefPubMedGoogle Scholar
- 79.Rasmussen LB, Jørgensen T, Perrild H, Knudsen N, Krejbjerg A, Laurberg P, et al. Mandatory iodine fortification of bread and salt increases iodine excretion in adults in Denmark—a 11-year follow-up study. Clin Nutr. 2014;33(6):1033–40. doi: 10.1016/j.clnu.2013.10.024.CrossRefPubMedGoogle Scholar
- 80.Pearce EN, Caldwell KL. Urinary iodine, thyroid function, and thyroglobulin as biomarkers of iodine status. Am J Clin Nutr. 2016;104(Suppl 3):898S–901S. doi: 10.3945/ajcn.115.110395. Epub 2016 Aug 17.CrossRefPubMedGoogle Scholar