Skip to main content

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 18))

  • 683 Accesses

Abstract

Back in 1931 Hans Bethe diagonalized the hamiltonian of the one-dimensional Heisenberg spin chain through what is now called the “Bethe ansatz” Bethe (1931).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • H. Bethe. Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Zeitschrift für Physik 71, 205–226 (1931)

    Google Scholar 

  • E.H. Lieb, W. Liniger, Exact analysis of an interacting Bose gas. I. the general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • B. Sutherland, Beautiful Models. 70 Years of Exactly Solved Quantum Many-Body Problems (World Scientific Publishing, New Jersey, 2004)

    Book  MATH  Google Scholar 

  • M.T. Batchelor, The Bethe ansatz after 75 years. Phys. Today 60, 36 (2007)

    Article  ADS  Google Scholar 

  • J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nat. 472, 307–312 (2011)

    Article  ADS  Google Scholar 

  • M. Kardar, G. Parisi, Y.Z. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  • A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  • P. Meakin, Fractals Scaling and Growth Far from Equilibrium (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  • K. Johansson, Random matrices and determinantal processes. Math. Stat. Phys. Sess. LXXXIII: Lect. Notes Les Houches Summer Sch. 2005, 1–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Spohn, Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals. Phys. A 369, 71–99 (2006)

    Article  MathSciNet  Google Scholar 

  • J. Quastel, Introduction to KPZ. Curr. Dev. Math. 2011, 125–194 (2011)

    MathSciNet  MATH  Google Scholar 

  • A. Borodin and V. Gorin. Lectures on integrable probability, (2012). arXiv:1212.3351

  • A. Borodin, L. Petrov, Integrable probability: from representation theory to Macdonald processes. Probab. Surv. 11, 1–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Spohn. The Kardar-Parisi-Zhang equation - a statistical physics perspective. in Stochastic Processes and Random Matrices, École d’Été Physique, Les Houches (Oxford University Press, 2015). arXiv:1601.00499

  • T. Halpin-Healy, Y.-C. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215–414 (1995)

    Article  ADS  Google Scholar 

  • J. Krug, Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)

    Article  ADS  Google Scholar 

  • T. Sasamoto and H. Spohn, The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class. J. Stat. Mech. P01031 (2011)

    Google Scholar 

  • P.L. Ferrari and H. Spohn. Random growth models. in The Oxford Handbook of Random Matrix Theory, ed. By J. Baik, G. Akemann, P. Di Francesco (2011)

    Google Scholar 

  • I. Corwin, The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • K. Takeuchi, Experimental approaches to universal out-of-equilibrium scaling laws: turbulent liquid crystal and other developments. J. Stat. Mech. P01006 (2014)

    Google Scholar 

  • J. Quastel, H. Spohn, The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T. Halpin-Healy, K. Takeuchi, A KPZ cocktail-shaken, not stirred: Toasting 30 years of kinetically roughened surfaces. J. Stat. Phys. 160, 794–814 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Hairer, Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Gubinelli and N. Perkowski. KPZ reloaded, (2015). arXiv:1508.03877

  • M. Kardar, Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • L.-H. Gwa, H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46, 844–854 (1992)

    Article  ADS  Google Scholar 

  • M. Toda, Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431 (1967)

    Article  ADS  Google Scholar 

  • B. Sutherland, A brief history of the quantum soliton with new results on the quantization of the toda lattice. Rocky Mt. J. Math. 8, 413–430 (1978)

    Article  MathSciNet  Google Scholar 

  • M.Z. Guo, G.C. Papanicolaou, S.R.S. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.-C. Chang, H.-T. Yau, Fluctuations of one dimensional Ginzburg-Landau models in nonequilibrium. Commun. Math. Phys. 145, 209–234 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Amir, I. Corwin, J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Sasamoto, H. Spohn, Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834, 523–542 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Borodin, I. Corwin, P.L. Ferrari, B. Vető, Height fluctuations for the stationary KPZ equation. Math. Phys. Anal. Geom. 18, 1–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Calabrese, P. Le Doussal, A. Rosso, Free-energy distribution of the directed polymer at high temperature. EPL 90, 20002 (2010)

    Article  ADS  Google Scholar 

  • T. Imamura, T. Sasamoto, Stationary correlations for the 1D KPZ equation. J. Stat. Phys. 150, 908–939 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V. Dotsenko, Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech. P07010, (2010)

    Google Scholar 

  • A. Borodin and I. Corwin, Macdonald processes. Probab. Theory Relat. Fields (online first), (2013)

    Google Scholar 

  • T. Sasamoto, H. Spohn, Point-interacting Brownian motions in the KPZ universality class. Electron. J. Probab. 20(87), 28 (2015)

    MathSciNet  MATH  Google Scholar 

  • I. Karatzas, S. Pal, M. Shkolnikov, Systems of Brownian particles with asymmetric collisions. Ann. Inst. H. Poincaré Probab. Stat. 52, 323–354 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T.E. Harris, Diffusion with collisions between particles. J. Appl. Probab. 2, 323–338 (1965)

    MathSciNet  MATH  Google Scholar 

  • T. Sasamoto, M. Wadati, Determinantal form solution for the derivative nonlinear Schrödinger type model. J. Phys. Soc. Jpn. 67, 784–790 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G.M. Schütz, Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • K. Johansson. Two time distribution in Brownian directed percolation. Comm. Math. Phys., online first:1–52, (2016)

    Google Scholar 

  • I. Corwin, J. Quastel, D. Remenik, Renormalization fixed point of the KPZ universality class. J. Stat. Phys. 160, 815–834 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Spohn .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Weiss, T., Ferrari, P., Spohn, H. (2017). Introduction. In: Reflected Brownian Motions in the KPZ Universality Class. SpringerBriefs in Mathematical Physics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-49499-9_1

Download citation

Publish with us

Policies and ethics