Skip to main content

Clustering Evolving Networks

  • Chapter
  • First Online:
Algorithm Engineering

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9220))

Abstract

Roughly speaking, clustering evolving networks aims at detecting structurally dense subgroups in networks that evolve over time. This implies that the subgroups we seek for also evolve, which results in many additional tasks compared to clustering static networks. We discuss these additional tasks and difficulties resulting thereof and present an overview on current approaches to solve these problems. We focus on clustering approaches in online information from previous time steps in order to incorporate temporal smoothness or to achieve low running time. Moreover, we describe a collection of real world networks and generators for synthetic data that are frequently used for evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.informatik.uni-trier.de/~ley/db/.

  2. 2.

    Available at http://www.cs.cmu.edu/~enron/.

  3. 3.

    For further details and for downloading the whole dataset, please visit http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/emaildata.

  4. 4.

    http://realitycommons.media.mit.edu/realitymining.html.

  5. 5.

    http://www.flickr.com/.

  6. 6.

    https://dev.twitter.com/docs/streaming-apis#sampling.

  7. 7.

    http://www.livejournal.com/.

  8. 8.

    http://www.informatik.uni-trier.de/~ley/db/.

  9. 9.

    http://arxiv.org/.

  10. 10.

    http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyneval.

  11. 11.

    http://www.cs.cornell.edu/projects/kddcup/datasets.html.

  12. 12.

    http://snap.stanford.edu/data/index.html.

  13. 13.

    http://www.projecthoneypot.org/.

  14. 14.

    https://delicious.com/.

  15. 15.

    http://netsg.cs.sfu.ca/youtubedata/.

  16. 16.

    http://snap.stanford.edu/data/.

  17. 17.

    http://www-personal.umich.edu/~mejn/netdata/.

  18. 18.

    http://deim.urv.cat/~aarenas/data/welcome.htm.

References

  1. Agarwal, M.K., Ramamritham, K., Bhide, M.: Real time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environments. In: Proceedings of the 38th International Conference on Very Large Databases (VLDB 2012), pp. 980–991 (2012)

    Google Scholar 

  2. Aggarwal, C.C., Subbian, K.: Evolutionary network analysis: a survey. ACM Comput. Surv. 47(10), 10:1–10:36 (2014)

    Google Scholar 

  3. Aggarwal, C.C., Xie, Y., Yu, P.S.: Towards community detection in locally heterogeneous networks. In: Proceedings of the Fifth SIAM International Conference on Data Mining, pp. 391–402. SIAM (2011)

    Google Scholar 

  4. Aggarwal, C.C., Zhao, Y., Yu, P.: A framework for clustering massive graph streams. Stat. Anal. Data Min. 3(6), 399–416 (2010). http://dx.doi.org/10.1002/sam.10090

    Article  MathSciNet  Google Scholar 

  5. Aldecoa, R., Marín, I.: Deciphering network community structure by surprise. PLoS ONE 6, e24195 (2011)

    Article  Google Scholar 

  6. Aldecoa, R., Marín, I.: Closed benchmarks for network community structure characterization. Phys. Rev. E 85, 026109 (2012). http://link.aps.org/doi/10.1103/PhysRevE.85.026109

    Article  Google Scholar 

  7. Aldous, D.J.: Exchangeability and related topics. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XIII — 1983. LNM, vol. 1117, pp. 1–198. Springer, Heidelberg (1985). doi:10.1007/BFb0099421. http://dx.doi.org/10.1007/BFb0099421

    Chapter  Google Scholar 

  8. Anderson, C.J., Wasserman, S., Faust, K.: Building stochastic blockmodels. Soc. Netw. 14, 137–161 (1992)

    Article  Google Scholar 

  9. Angel, A., Sarkas, N., Koudas, N., Srivastava, D.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proc. VLDB Endow. 5(6), 574–585 (2012). http://dl.acm.org/citation.cfm?id=2168651.2168658

    Article  Google Scholar 

  10. Arenas, A., Duch, J., Fernandez, A., Gomez, S.: Size reduction of complex networks preserving modularity. New J. Phys. 9(176) (2007). http://dx.doi.org/10.1088/1367-2630/9/6/176

    Google Scholar 

  11. Asur, S., Parthasarathy, S., Ucar, D.: An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. Knowl. Discovery Data 3(4), 16:1–16:36 (2009). http://doi.acm.org/10.1145/1631162.1631164

    Google Scholar 

  12. Aynaud, T., Fleury, E., Guillaume, J.L., Wang, Q.: Communities in evolving networks definitions detection and analysis techniques. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds.) Dynamics on and of Complex Networks. Modeling and Simulation in Science, Engineering and Technology, vol. 2, pp. 159–200. Springer, New York (2013). http://dx.doi.org/10.1007/978-1-4614-6729-8_9

    Google Scholar 

  13. Aynaud, T., Guillaume, J.L.: Static community detection algorithms for evolving networks. In: Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2010), pp. 513–519. IEEE Computer Society (2010)

    Google Scholar 

  14. Backstrom, L., Huttenlocher, D., Kleinberg, J.M., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM Press (2006). http://doi.acm.org/10.1145/1150402.1150412

  15. Bagrow, J.: Evaluating local community methods in networks. J. Stat. Mech.: Theory Exp., P05001 (2008). http://www.iop.org/EJ/abstract/1742-5468/2008/05/P05001/, doi:10.1088/1742-5468/2008/05/P05001

    Google Scholar 

  16. Bansal, S., Bhowmick, S., Paymal, P.: Fast community detection for dynamic complex networks. In: F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds.) CompleNet 2010. CCIS, vol. 116, pp. 196–207. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25501-4_20. http://dx.doi.org/10.1007/978-3-642-25501-4_20

    Chapter  Google Scholar 

  17. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berger-Wolf, T., Kempe, D., Tantipathananandth, C.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press (2007). http://compbio.cs.uic.edu/~tanya/research/pubs/TantipathananandhEtal_NetworkCommunities07.pdf

  19. Berger-Wolf, T., Saia, J.: A framework for analysis of dynamic social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 523–528. ACM Press (2006)

    Google Scholar 

  20. Bichot, C.E., Siarry, P. (eds.): Graph Partitioning. Wiley, Hoboken (2011). http://onlinelibrary.wiley.com/book/10.1002/9781118601181

    MATH  Google Scholar 

  21. Bilgin, C.C., Yener, B.: Dynamic network evolution: models, clustering, anomaly detection. Technical report, Rensselaer University, NY (2008). http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.161.6375

  22. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10) (2008). http://dx.doi.org/10.1088/1742-5468/2008/10/P10008

    Google Scholar 

  23. Bogdanov, P., Mongiovi, M., Singh, A.K.: Mining heavy subgraphs in time-evolving networks. In: Proceedings of the 2011 IEEE International Conference on Data Mining, pp. 81–90. IEEE Computer Society (2011)

    Google Scholar 

  24. Borgwardt, K.M., Kriegel, H.P., Wackersreuther, P.: Pattern mining in frequent dynamic subgraphs. In: Proceedings of the 2006 IEEE International Conference on Data Mining, pp. 818–822. IEEE Computer Society (2006)

    Google Scholar 

  25. Brandes, U., Delling, D., Gaertler, M., Görke, R., Höfer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008). http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.190689

    Article  Google Scholar 

  26. Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algorithms. In: Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39658-1_52, http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2832&spage=568

    Google Scholar 

  27. Brandes, U., Gaertler, M., Wagner, D.: Engineering graph clustering: models and experimental evaluation. ACM J. Exp. Algorithmics 12(1.1), 1–26 (2007). http://portal.acm.org/citation.cfm?id=1227161.1227162

    MathSciNet  MATH  Google Scholar 

  28. Bron, C., Kerbosch, J.A.G.M.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  MATH  Google Scholar 

  29. Catalyurek, U., Boman, E., Devine, K., Bozdag, D., Heaphy, R., Riesen, L.A.: Hypergraph-based dynamic load balancing for adaptive scientific computations. In: 21th International Parallel and Distributed Processing Symposium (IPDPS 2007), pp. 1–11. IEEE Computer Society (2007)

    Google Scholar 

  30. Cazabet, R., Amblard, F., Hanachi, C.: Detection of overlapping communities in dynamical social networks. In: Proceedings of the 2010 IEEE Second International Conference on Social Computing, pp. 309–314. IEEE (2010)

    Google Scholar 

  31. Chakrabarti, D.: AutoPart: parameter-free graph partitioning and outlier detection. In: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 112–124. ACM Press (2004)

    Google Scholar 

  32. Chakrabarti, D., Kumar, R., Tomkins, A.S.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 554–560. ACM Press (2006). http://doi.acm.org/10.1145/1150402.1150467

  33. Chen, J., Fagnan, J., Goebel, R., Rabbany, R., Sangi, F., Takaffoli, M., Verbeek, E., Zaïane, O.R.: Meerkat: community mining with dynamic social networks. In: Proceedings in the 10th IEEE International Conference on Data Mining - Workshops, pp. 1377–1380. IEEE Computer Society, December 2010

    Google Scholar 

  34. Chen, J., Zaïane, O.R., Goebel, R.: Detecting communities in large networks by iterative local expansion. In: Proceedings of the 2009 IEEE International Conference on Computational Aspects of Social Networks, pp. 105–112. IEEE Computer Society (2009)

    Google Scholar 

  35. Chi, Y., Song, X., Zhou, D., Hino, K., Tseng, B.L.: Evolutionary spectral clustering by incorporating temporal smoothness. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 153–162. ACM Press (2007). http://doi.acm.org/10.1145/1281192.1281212

  36. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72(2), 026132 (2005). http://link.aps.org/doi/10.1103/PhysRevE.72.026132

    Article  Google Scholar 

  37. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(066111) (2004). http://link.aps.org/abstract/PRE/v70/e066111

  38. Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted partition model. Randoms Struct. Algorithms 18(2), 116–140 (2001). http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2

    Google Scholar 

  39. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 7(2), 279–301 (1989). http://dx.doi.org/10.1016/0743-7315(89)90021-X

    Article  Google Scholar 

  40. Davis, A., Gardner, B., Gardner, M.R.: Deep South. University of Chicago Press, Chicago (1941)

    Google Scholar 

  41. Delling, D., Gaertler, M., Görke, R., Wagner, D.: Engineering comparators for graph clusterings. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 131–142. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68880-8_14

    Chapter  Google Scholar 

  42. Derényi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Phys. Rev. Lett. 94, 160202 (2005). http://link.aps.org/abstract/PRL/v94/e160202

    Article  Google Scholar 

  43. Ding, C.H.Q., He, X., Zha, H., Gu, M., Simon, H.D.: A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 107–114. IEEE Computer Society (2001). http://dx.doi.org/10.1109/ICDM.2001.989507

  44. Dinh, T.N., Nguyen, N.P., Thai, M.T.: An adaptive approximation algorithm for community detection in dynamic scale-free networks. In: Proceedings of the 32th Annual Joint Conference of the IEEE Computer and Communications Societies (Infocom). IEEE Computer Society Press (2013, to appear)

    Google Scholar 

  45. Dinh, T.N., Shin, I., Thai, N.K., Thai, M.T., Znati, T.: A general approach for modules identification in evolving networks. In: Hirsch, M.J., Pardalos, P.M., Murphey, R. (eds.) Dynamics of Information Systems. Springer Optimization and Its Applications, vol. 40, pp. 83–100. Springer, New York (2010). http://dx.doi.org/10.1007/978-1-4419-5689-7_4

    Chapter  Google Scholar 

  46. Dinh, T.N., Thai, M.T.: Community detection in scale-free networks: approximation algorithms for maximizing modularity. IEEE J. Sel. Areas Commun. 31(6), 997–1006 (2013)

    Article  Google Scholar 

  47. Dinh, T.N., Ying, X., Thai, M.T.: Towards social-aware routing in dynamic communication networks. In: Proceedings of the 28th International Performance Computing and Communications Conference (IPCCC), pp. 161–168 (2009)

    Google Scholar 

  48. Doll, C., Hartmann, T., Wagner, D.: Fully-dynamic hierarchical graph clustering using cut trees. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 338–349. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22300-6_29

    Chapter  Google Scholar 

  49. Duan, D., Li, Y., Li, R., Lu, Z.: Incremental k-clique clustering in dynamic social networks. Artif. Intell. 38(2), 129–147 (2012)

    Article  Google Scholar 

  50. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. J. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)

    Article  Google Scholar 

  51. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–231. ACM Press (1996)

    Google Scholar 

  52. Everett, M.G., Borgatti, S.P.: Analyzing clique overlap. Connections 21(1), 49–61 (1998)

    Google Scholar 

  53. Falkowski, T.: Community analysis in dynamic social networks. Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg (2009)

    Google Scholar 

  54. Falkowski, T., Bartelheimer, J., Spiliopoulou, M.: Mining and visualizing the evolution of subgroups in social networks. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 52–58. IEEE (2006)

    Google Scholar 

  55. Falkowski, T., Barth, A., Spiliopoulou, M.: Dengraph: A density-based community detection algorithm. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 112–115. IEEE (2007)

    Google Scholar 

  56. Fan, Y., Li, M., Zhang, P., Wu, J., Di, Z.: Accuracy and precision of methods for community identification in weighted networks. Phys. A 377(1), 363–372 (2007). http://www.sciencedirect.com/science/article/pii/S0378437106012386

    Article  Google Scholar 

  57. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut trees. Internet Math. 1(4), 385–408 (2004). http://www.internetmathematics.org/volumes/1.htm

    Article  MathSciNet  MATH  Google Scholar 

  58. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). http://www.sciencedirect.com/science/journal/03701573

    Article  MathSciNet  Google Scholar 

  59. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. U.S.A. 104(1), 36–41 (2007). http://www.pnas.org/content/104/1/36.full.pdf

    Article  Google Scholar 

  60. Gaertler, M., Görke, R., Wagner, D.: Significance-driven graph clustering. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 11–26. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72870-2_2, http://www.springerlink.com/content/nrq6tlm286808887/?p=65f77ccbb2674a16b9a67da6bb370dc7&pi=5

  61. Gehweiler, J., Meyerhenke, H.: A distributed diffusive heuristic for clustering a virtual P2P supercomputer. In: Proceedings of the 7th High-Performance Grid Computing Workshop (HGCW 2010) in Conjunction with 24th International Parallel and Distributed Processing Symposium (IPDPS 2010), pp. 1–8. IEEE Computer Society (2010)

    Google Scholar 

  62. Gilbert, H.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)

    Article  MATH  Google Scholar 

  63. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. Gloor, P.A., Zhao, Y.: TeCFlow - a temporal communication flow visualizer for social network analysis. In: ACM CSCW Workshop on Social Networks (2004)

    Google Scholar 

  65. Gomory, R.E., Hu, T.: Multi-terminal network flows. J. Soc. Ind. Appl. Math. 9(4), 551–570 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  66. Görke, R.: An algorithmic walk from static to dynamic graph clustering. Ph.D. thesis, Fakultät für Informatik, February 2010. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018288

  67. Görke, R., Hartmann, T., Wagner, D.: Dynamic graph clustering using minimum-cut trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 339–350. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03367-4_30. http://dx.doi.org/10.1007/978-3-642-03367-4_30

    Chapter  Google Scholar 

  68. Görke, R., Hartmann, T., Wagner, D.: Dynamic graph clustering using minimum-cut trees. J. Graph Algorithms Appl. 16(2), 411–446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Görke, R., Kluge, R., Schumm, A., Staudt, C., Wagner, D.: An efficient generator for clustered dynamic random networks. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 219–233. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34862-4_16

    Chapter  Google Scholar 

  70. Görke, R., Maillard, P., Schumm, A., Staudt, C., Wagner, D.: Dynamic graph clustering combining modularity and smoothness. ACM J. Exp. Algorithmics 18(1), 1.5:1.1–1.5:1.29 (2013). http://dl.acm.org/citation.cfm?doid=2444016.2444021

    MathSciNet  MATH  Google Scholar 

  71. Görke, R., Schumm, A., Wagner, D.: Density-constrained graph clustering. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 679–690. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22300-6_58. http://link.springer.com/chapter/10.1007/978-3-642-22300-6_58?null

    Chapter  Google Scholar 

  72. Görke, R., Staudt, C.: A generator for dynamic clustered random graphs. Technical report, ITI Wagner, Faculty of Informatics, Universität Karlsruhe (TH) (2009). http://i11www.iti.uni-karlsruhe.de/projects/spp1307/dyngen, informatik, Uni Karlsruhe, TR 2009-7

  73. Grady, L., Schwartz, E.I.: Isoperimetric graph partitioning for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 469–475 (2006)

    Article  Google Scholar 

  74. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: Proceedings of the 2010 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 176–183. IEEE Computer Society (2010)

    Google Scholar 

  75. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76, 036102 (2007). http://link.aps.org/doi/10.1103/PhysRevE.76.036102

    Article  Google Scholar 

  76. Held, P., Kruse, R.: Analysis and visualization of dynamic clusterings. In: Proceedings of the 46th Hawaii International Conference on System Sciences, pp. 1385–1393 (2013)

    Google Scholar 

  77. Hopcroft, J.E., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proc. Natl. Acad. Sci. U.S.A. 101, 5244–5253 (2004). http://www.pnas.org/content/101/suppl.1/5249.abstract

    Article  Google Scholar 

  78. Jaccard, P.: The distribution of flora in the alpine zone. New Phytol. 11(2), 37–50 (1912)

    Article  Google Scholar 

  79. Kannan, R., Vempala, S., Vetta, A.: On clusterings: good, bad, spectral. J. ACM 51(3), 497–515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  80. Kim, K., McKay, R.I., Moon, B.R.: Multiobjective evolutionary algorithms for dynamic social network clustering. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1179–1186. ACM Press (2010)

    Google Scholar 

  81. Kim, M.S., Han, J.: A particle-and-density based evolutionary clustering method for dynamic networks. In: Proceedings of the 35th International Conference on Very Large Databases (VLDB 2009), pp. 622–633 (2009)

    Google Scholar 

  82. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  83. Kumar, R., Novak, J., Tomkins, A.S.: Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 611–617. ACM Press (2006). http://doi.acm.org/10.1145/1150402.1150476

  84. Lai, J.H., Wang, C.D., Yu, P.: Dynamic community detection in weighted graph streams. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 151–161. SIAM (2013)

    Google Scholar 

  85. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)

    Article  Google Scholar 

  86. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure of complex networks. New J. Phys. 11(033015) (2009). http://www.iop.org/EJ/njp

    Google Scholar 

  87. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  88. Lee, C., Cunningham, P.: Benchmarking community detection methods on social media data. Preprint, arXiv:1302.0739 [cs.SI] (2013)

  89. Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100(11), 118703+ (2008). http://dx.doi.org/10.1103/PhysRevLett.100.118703

    Article  Google Scholar 

  90. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999). http://portal.acm.org/citation.cfm?doid=331524.331526

    Article  MathSciNet  MATH  Google Scholar 

  91. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.S.: Microscopic evolution of social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 462–470. ACM Press (2008)

    Google Scholar 

  92. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 177–187. ACM Press (2005). http://portal.acm.org/citation.cfm?id=1081893

  93. Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Analyzing communities and their evolutions in dynamic social networks. ACM Trans. Knowl. Discov. Data 3(2), 8:1–8:31 (2009)

    Article  Google Scholar 

  94. Luo, F., Wang, J.Z., Promislow, E.: Exploring local community structures in large networks. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 233–239. IEEE (2006). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4061371

  95. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). http://www.springerlink.com/content/jq1g17785n783661/

    Article  MathSciNet  Google Scholar 

  96. Meyerhenke, H.: Dynamic load balancing for parallel numerical simulations based on repartitioning with disturbed diffusion. In: 15th International Conference on Parallel and Distributed Systems (ICPADS), pp. 150–157. IEEE (2009)

    Google Scholar 

  97. Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel algorithm for computing graph partitions. J. Parallel Distrib. Comput. 69(9), 750–761 (2009). http://dx.doi.org/10.1016/j.jpdc.2009.04.005

    Article  Google Scholar 

  98. Meyerhenke, H., Monien, B., Schamberger, S.: Graph partitioning and disturbed diffusion. Parallel Comput. 35(10–11), 544–569 (2009). http://dx.doi.org/10.1016/j.parco.2009.09.006

    Article  Google Scholar 

  99. Mirkin, B.: Eleven ways to look at the chi-squared coefficient for contingency tables. Am. Stat. 55(2), 111–120 (2001). http://www.jstor.org/stable/2685997

    Article  MathSciNet  Google Scholar 

  100. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995). http://www.sciencedirect.com/science/article/pii/S1045926X85710105

    Article  Google Scholar 

  101. Moody, J., McFarland, D., Bender-deMoll, S.: Dynamic network visualization. Am. J. Sociol. 110(4), 1206–1241 (2005)

    Article  Google Scholar 

  102. Muelder, C., Ma, K.L.: Rapid graph layout using space filling curves. IEEE Trans. Vis. Comput. Graph. 14(6), 1301–1308 (2008)

    Article  Google Scholar 

  103. Muelder, C., Ma, K.L.: A treemap based method for rapid layout of large graphs. In: Proceedings of IEEE Pacific Visualization Symposium (PacificVis 2008), pp. 231–238 (2008)

    Google Scholar 

  104. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). http://dx.doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  105. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70(056131), 1–9 (2004). http://link.aps.org/abstract/PRE/v70/e056131

    Google Scholar 

  106. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38(2), 321–330 (2004). http://www.springerlink.com/content/5GTDACX17BQV6CDC

    Article  Google Scholar 

  107. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(026113), 1–16 (2004). http://link.aps.org/abstract/PRE/v69/e026113

    Google Scholar 

  108. Nguyen, N.P., Dinh, T.N., Ying, X., Thai, M.T.: Adaptive algorithms for detecting community structure in dynamic social networks. In: Proceedings of the 30th Annual Joint Conference of the IEEE Computer and Communications Societies (Infocom), pp. 2282–2290. IEEE Computer Society Press (2011)

    Google Scholar 

  109. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech.: Theory Exp. 2009(03), p03024 (23pp) (2009). http://stacks.iop.org/1742-5468/2009/P03024

    Google Scholar 

  110. Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.: Incremental spectral clustering with application to monitoring of evolving blog communities. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 261–272. SIAM (2007)

    Google Scholar 

  111. Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.: Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recogn. 43, 113–127 (2010)

    Article  MATH  Google Scholar 

  112. Ovelgönne, M., Geyer-Schulz, A.: An ensemble learning strategy for graph clustering. In: Graph Partitioning and Graph Clustering: Tenth DIMACS Implementation Challenge. DIMACS Book, vol. 588, pp. 187–206. American Mathematical Society (2013). http://www.ams.org/books/conm/588/11701

  113. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007). http://www.nature.com/nature/journal/v446/n7136/abs/nature05670.html

    Article  Google Scholar 

  114. Pang, S., Chen, C., Wei, T.: A realtime community detection algorithm: incremental label propagation. In: First International Conference on Future Information Networks (ICFIN 2009), pp. 313–317. IEEE (2009)

    Google Scholar 

  115. Park, Y., Song, M.: A genetic algorithm for clustering problems. In: Proceedings of the 3rd Annual Conference on Genetic Programming, pp. 568–575 (1998)

    Google Scholar 

  116. Patro, R., Duggal, G., Sefer, E., Wang, H., Filippova, D., Kingsford, C.: The missing models: a data-driven approach for learning how networks grow. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 42–50. ACM Press (2012)

    Google Scholar 

  117. Pearson, K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5 50(302), 157–175 (1900)

    Article  MATH  Google Scholar 

  118. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006). http://www.cs.brown.edu/publications/jgaa/

    Article  MathSciNet  MATH  Google Scholar 

  119. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007). http://link.aps.org/doi/10.1103/PhysRevE.76.036106

    Article  Google Scholar 

  120. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971). http://www.jstor.org/stable/2284239?origin=crossref

    Article  Google Scholar 

  121. Riedy, J., Bader, D.A.: Multithreaded community monitoring for massive streaming graph data. In: Workshop on Multithreaded Architectures and Applications (MTAAP 2013) (2013, to appear)

    Google Scholar 

  122. Riedy, E.J., Meyerhenke, H., Ediger, D., Bader, D.A.: Parallel community detection for massive graphs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 286–296. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31464-3_29. http://dx.doi.org/10.1007/978-3-642-31464-3_29

    Chapter  Google Scholar 

  123. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    Article  MATH  Google Scholar 

  124. Rotta, R., Noack, A.: Multilevel local search algorithms for modularity clustering. ACM J. Exp. Algorithmics 16, 2.3:2.1–2.3:2.27 (2011). http://doi.acm.org/10.1145/1963190.1970376

    MathSciNet  MATH  Google Scholar 

  125. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). http://www.sciencedirect.com/science/article/pii/0377042787901257

    Article  MATH  Google Scholar 

  126. Saha, B., Mitra, P.: Dynamic algorithm for graph clustering using minimum cut tree. In: Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops, pp. 667–671. IEEE Computer Society, December 2006. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4063709

  127. Saha, B., Mitra, P.: Dynamic algorithm for graph clustering using minimum cut tree. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 581–586. SIAM (2007). http://www.siam.org/proceedings/datamining/2007/dm07.php

  128. Sallaberry, A., Muelder, C., Ma, K.-L.: Clustering, visualizing, and navigating for large dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 487–498. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36763-2_43. http://dx.doi.org/10.1007/978-3-642-36763-2_43

    Chapter  Google Scholar 

  129. Sawardecker, E.N., Sales-Pardo, M., Amaral, L.A.N.: Detection of node group membership in networks with group overlap. Eur. Phys. J. B 67, 277–284 (2009). http://dx.doi.org/10.1140/epjb/e2008-00418-0

    Article  MATH  Google Scholar 

  130. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007). http://dx.doi.org/10.1016/j.cosrev.2007.05.001

    Article  MathSciNet  MATH  Google Scholar 

  131. Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Phys. Rev. E 77(046112) (2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLEEE8000077000004046112000001&idtype=cvips&gifs=yes

  132. Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Phys. A: Stat. Mech. Appl. 388(8), 1706–1712 (2009). http://www.sciencedirect.com/science/article/pii/S0378437108010376

    Article  Google Scholar 

  133. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). http://doi.ieeecs.org/10.1109/34.868688

    Article  Google Scholar 

  134. Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973). http://dx.doi.org/10.1093/comjnl/16.1.30

    Article  MathSciNet  Google Scholar 

  135. Šíma, J., Schaeffer, S.E.: On the NP-completeness of some graph cluster measures. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 530–537. Springer, Heidelberg (2006). doi:10.1007/11611257_51. http://dx.doi.org/10.1007/11611257_51

    Google Scholar 

  136. Snijders, T.A., Nowicki, K.: Estimation and prediction of stochastic blockmodels for graphs with latent block structure. J. Classif. 14, 75–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  137. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 706–711. ACM Press (2006). http://doi.acm.org/10.1145/1150402.1150491

  138. Stanton, I., Kliot, G.: Streaming graph partitioning for large distributed graphs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1222–1230. ACM Press (2012)

    Google Scholar 

  139. Staudt, C., Meyerhenke, H.: Engineering high-performance community detection heuristics for massive graphs. In: Proceedings of the 2013 International Conference on Parallel Processing. Conference Publishing Services (CPS) (2013)

    Google Scholar 

  140. Sun, J., Yu, P.S., Papadimitriou, S., Faloutsos, C.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 687–696. ACM Press (2007). http://portal.acm.org/citation.cfm?id=1281192.1281266&coll=Portal&dl=GUIDE&CFID=54298929&CFTOKEN=41087406

  141. Sun, Y., Tang, J., Han, J., Gupta, M., Zhao, B.: Community evolution detection in dynamic heterogeneous information networks. In: Proceedings of the Eighth Workshop on Mining and Learning with Graphs, pp. 137–146. ACM Press (2010). http://doi.acm.org/10.1145/1830252.1830270

  142. Sundaresan, S.R., Fischhoff, I.R., Dushoff, J.: Network metrics reveal differences in social organization between two fission-fusion species, Grevy’s zebra and onager. Oecologia 151(1), 140–149 (2007)

    Article  Google Scholar 

  143. Takaffoli, M., Fagnan, J., Sangi, F., Zaïane, O.R.: Tracking changes in dynamic information networks. In: Proceedings of the 2011 IEEE International Conference on Computational Aspects of Social Networks, pp. 94–101. IEEE Computer Society (2011)

    Google Scholar 

  144. Takaffoli, M., Rabbany, R., Zaïane, O.R.: Incremental local community identification in dynamic social networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, IEEE Computer Society (2013, to appear)

    Google Scholar 

  145. Tong, H., Papadimitriou, S., Sun, J., Yu, P.S., Faloutsos, C.: Colibri: fast mining of large static and dynamic graphs. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 686–694. ACM Press (2008). http://doi.acm.org/10.1145/1401890.1401973

  146. Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67, 056104 (2003). http://link.aps.org/doi/10.1103/PhysRevE.67.056104

    Article  Google Scholar 

  147. Viswanath, B., Mislove, A., Cha, M., Gummadi, P.K.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM Press (2009). http://doi.acm.org/10.1145/1592665.1592675

  148. Wagner, S., Wagner, D.: Comparing clusterings - an overview. Technical report 2006-04, ITI Wagner, Faculty of Informatics, Universität Karlsruhe (TH) (2007). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011477

  149. Wang, Y.J., Wong, G.Y.: Stochastic blockmodels for directed graphs. J. Am. Stat. Assoc. 82, 8–19 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  150. Watts, D.J.: Networks, dynamics, and the small-world phenomenon. Am. J. Sociol. 105, 493–527 (1999)

    Article  Google Scholar 

  151. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  152. Xie, J., Chen, M., Szymanski, B.K.: LabelRankT: incremental community detection in dynamic networks via label propagation. CoRR abs/1305.2006 (2013). http://arxiv.org/abs/1305.2006

  153. Xie, J., Szymanski, B.K.: LabelRank: a stabilized label propagation algorithm for community detection in networks. CoRR abs/1303.0868 (2013). http://arxiv.org/abs/1303.0868

  154. Xu, K.S., Kliger, M., Hero, A.O.: Tracking communities in dynamic social networks. In: Salerno, J., Yang, S.J., Nau, D., Chai, S.-K. (eds.) SBP 2011. LNCS, vol. 6589, pp. 219–226. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19656-0_32

    Chapter  Google Scholar 

  155. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833. ACM Press (2007)

    Google Scholar 

  156. Yang, T., Chi, Y., Zhu, S., Jin, R.: Detecting communities and their evolutions in dynamic social networks - a Bayesian approach. Mach. Learn. 82(2), 157–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  157. Yu, K., Yu, S., Tresp, V.: Soft clustering on graphs. In: Advances in Neural Information Processing Systems 18, p. 5. MIT Press (2006)

    Google Scholar 

  158. Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Proceedings of the 9th IEEE International Conference on Computer Vision, pp. 313–319 (2003)

    Google Scholar 

  159. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Article  Google Scholar 

  160. Zhao, Y., Yu, P.S.: On graph stream clustering with side information. In: Proceedings of the Seventh SIAM International Conference on Data Mining, pp. 139–150. SIAM (2013)

    Google Scholar 

  161. Zheleva, E., Sharara, H., Getoor, L.: Co-evolution of social and affiliation networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1007–1016. ACM Press (2009). http://doi.acm.org/10.1145/1557019.1557128

  162. Zhou, H.: Network landscape from a Brownian particle’s perspective. Phys. Rev. E 67, 041908 (2003). http://link.aps.org/doi/10.1103/PhysRevE.67.041908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Hartmann, T., Kappes, A., Wagner, D. (2016). Clustering Evolving Networks. In: Kliemann, L., Sanders, P. (eds) Algorithm Engineering. Lecture Notes in Computer Science(), vol 9220. Springer, Cham. https://doi.org/10.1007/978-3-319-49487-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49487-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49486-9

  • Online ISBN: 978-3-319-49487-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics