Skip to main content

Subretinal Delivery of Cells via the Suprachoroidal Space: Janssen Trial

  • Chapter
  • First Online:
Cellular Therapies for Retinal Disease

Abstract

Cell therapies are currently in clinical development for the treatment of a number of retinal disorders. Such therapies must be delivered to the subretinal space, which has traditionally been accomplished through conventional pars plana vitrectomy with the creation of a retinotomy and subsequent transfer of cells. Delivering cells in this fashion is thought to incur a risk of retinal detachment and the development of proliferative vitreoretinopathy. Indeed, preclinical studies of palucorcel (human umbilical tissue derived cells developed by Janssen Research & Development for the treatment of geographic atrophy secondary to age related macular degeneration) delivered using this tranvitreal approach suggested that the presence of these cells in the vitreous had the potential to stimulate ERM formation and retinal detachments due to PVR. Accordingly, Janssen began to explore alternative routes to the subretinal space. After considering a number of potential techniques, they developed a novel approach using the suprachoroidal space as a conduit to the posterior pole. This approach involves the creation of a sclerotomy, introduction of a specialized cannula into the suprachoroidal space, advancement of the cannula under direct visualization to the desired delivery site, advancement of an internal needle through the choroid into the subretinal space, and delivery of cells. The system has completed small-scale preclinical validation studies and is now being tested in conjunction with clinical trials of palucorcel for the treatment of geographic atrophy secondary to ARMD. There is optimism surrounding these trials as well as the device’s specific design to access the subretinal space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stein JD, et al. Adverse events after pars plana vitrectomy among medicare beneficiaries. Arch Ophthalmol. 2009;127(12):1656–63.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sadaka A, Giuliari GP. Proliferative vitreoretinopathy: current and emerging treatments. Clin Ophthalmol. 2012;6:1325–33.

    PubMed  PubMed Central  Google Scholar 

  3. Wang LC, et al. Assessment of retinal pigment epithelial cells in epiretinal membrane formation. J Chin Med Assoc. 2015;78(6):370–3.

    Article  PubMed  Google Scholar 

  4. Vedantham V, Ramasamy K. Pigmented epiretinal membranes caused by RPE migration: OCT-based observational case reports. Indian J Ophthalmol. 2007;55(2):148–9.

    Article  PubMed  Google Scholar 

  5. Schwartz SD, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  6. Song WK, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports. 2015;4(5):860–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lutton BV, et al. Approaches to avoid immune responses induced by repeated subcutaneous injections of allogeneic umbilical cord tissue-derived cells. Transplantation. 2010;90(5):494–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho PS, et al. Immunogenicity of umbilical cord tissue derived cells. Blood. 2008;111(1):430–8.

    Article  CAS  PubMed  Google Scholar 

  9. Spencer R, et al. Case study of epiretinal membrane in a subject with retinitis pigmentosa who received palucorcel (CNTO 2476) via transvitreal subretinal delivery. Submitted, 2016.

    Google Scholar 

  10. Ho, A.C., T.S. Chang, and M. Samuel. A novel cell-based therapy administered subretinally to eyes with geographic atrophy secondary to age-related macular degeneration. Submitted, 2016.

    Google Scholar 

  11. Olsen TW, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–87.

    Article  CAS  PubMed  Google Scholar 

  12. Krohn J, Bertelsen T. Corrosion casts of the suprachoroidal space and uveoscleral drainage routes in the pig eye. Acta Ophthalmol Scand. 1997;75(1):28–31.

    Article  CAS  PubMed  Google Scholar 

  13. Krohn J, Bertelsen T. Corrosion casts of the suprachoroidal space and uveoscleral drainage routes in the human eye. Acta Ophthalmol Scand. 1997;75(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  14. Krohn J, Bertelsen T. Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space. Acta Ophthalmol Scand. 1998;76(5):521–7.

    Article  CAS  PubMed  Google Scholar 

  15. Bailey AK, Sarkisian Jr SR, Vold SD. Ab interno approach to the suprachoroidal space. J Cataract Refract Surg. 2014;40(8):1291–4.

    Article  PubMed  Google Scholar 

  16. Patrianakos TD. Anatomic and physiologic rationale to be applied in accessing the suprachoroidal space for management of glaucoma. J Cataract Refract Surg. 2014;40(8):1285–90.

    Article  PubMed  Google Scholar 

  17. Gigon A, Shaarawy T. The suprachoroidal route in glaucoma surgery. J Curr Glaucoma Pract. 2016;10(1):13–20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500.

    Article  PubMed  Google Scholar 

  19. Yiu G, et al. Characterization of the choroid-scleral junction and suprachoroidal layer in healthy individuals on enhanced-depth imaging optical coherence tomography. JAMA Ophthalmol. 2014;132(2):174–81.

    Article  PubMed  Google Scholar 

  20. Michalewska Z, et al. Suprachoroidal layer and suprachoroidal space delineating the outer margin of the choroid in swept-source optical coherence tomography. Retina. 2015;35(2):244–9.

    Article  PubMed  Google Scholar 

  21. Spaide RF, Ryan Jr EH. Loculation of fluid in the posterior choroid in eyes with central serous chorioretinopathy. Am J Ophthalmol. 2015;160(6):1211–6.

    Article  PubMed  Google Scholar 

  22. Kim JH, et al. Imaging suprachoroidal layer in exudative age-related macular degeneration. Curr Eye Res. 2016;41(5):715–20.

    Article  PubMed  Google Scholar 

  23. Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29(7):875–912.

    Article  PubMed  Google Scholar 

  24. Olsen TW, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52(7):4749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel SR, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2012;53(8):4433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilger BC, et al. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Invest Ophthalmol Vis Sci. 2013;54(4):2483–92.

    Article  CAS  PubMed  Google Scholar 

  27. Pearce W, Hsu J, Yeh S. Advances in drug delivery to the posterior segment. Curr Opin Ophthalmol. 2015;26(3):233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mittl RN, Tiwari R. Suprachoroidal injection of sodium hyaluronate as an ‘internal’ buckling procedure. Ophthalmic Res. 1987;19(5):255–60.

    Article  CAS  PubMed  Google Scholar 

  29. El Rayes EN, Elborgy E. Suprachoroidal buckling: technique and indications. J Ophthalmic Vis Res. 2013;8(4):393–9.

    PubMed  PubMed Central  Google Scholar 

  30. El Rayes EN, Oshima Y. Suprachoroidal buckling for retinal detachment. Retina. 2013;33(5):1073–5.

    Article  PubMed  Google Scholar 

  31. El Rayes EN. Suprachoroidal buckling. Dev Ophthalmol. 2014;54:135–46.

    Article  PubMed  Google Scholar 

  32. Saunders AL, et al. Development of a surgical procedure for implantation of a prototype suprachoroidal retinal prosthesis. Clin Exp Ophthalmol. 2014;42(7):665–74.

    Article  PubMed  Google Scholar 

  33. Villalobos J, et al. Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis. J Neural Eng. 2014;11(4):046017.

    Article  PubMed  Google Scholar 

  34. Ayton LN, et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One. 2014;9(12):e115239.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

James Baldassarre is an employee of Janssen R&D.

Michael Keane is an employee of Janssen R&D.

Jeffrey S. Heier, MD, has received research support from and served as a scientific consultant to Janssen R&D, Acucela, Astellas, and Genentech/Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Joseph M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baldassarre, J.S., Joseph, A., Keane, M., Heier, J.S. (2017). Subretinal Delivery of Cells via the Suprachoroidal Space: Janssen Trial. In: Schwartz, S., Nagiel, A., Lanza, R. (eds) Cellular Therapies for Retinal Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49479-1_8

Download citation

Publish with us

Policies and ethics