Skip to main content

Plant Aquaporins and Metalloids

  • Chapter
  • First Online:
Plant Aquaporins

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

The metalloids represent a group of physiologically important elements, some of which are essential or at least beneficial (boron and silicon) for plant growth and some of which are toxic (arsenic, antimony and germanium). Exposure to and availability of metalloids can have major effects on plant fitness and yield and can seriously downgrade the end-use quality of certain crop products. Plants have evolved various membrane transport systems to regulate metalloid transport both at the cellular and whole plant level. To date, the channel proteins referred to as aquaporins (AQPs) represent the most favored candidates ensuring metalloid homeostasis. AQPs are found in all living organisms. From bacteria to mammals and also in plants, several distinct AQP subfamilies facilitate the transmembrane diffusion of the set of physiologically and environmentally important metalloids. A subgroup of the Nodulin26-like intrinsic protein AQP subfamily (NIPs) has been designated as functional metalloidoporins. NIPs are the only known transport protein family in the plant kingdom which are essential for the uptake, translocation, or extrusion of various uncharged metalloid species. This chapter describes the various features, and particularly the metalloid transport properties of plant AQPs, and illustrates their physiologically important contributions to metalloid homeostasis. Their intimate involvement in metalloid transport underlines their relevance to plant nutrition, detoxification of toxic mineral elements phytoremediation, phytomining, and biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840:1468–1481

    Article  CAS  PubMed  Google Scholar 

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  CAS  PubMed  Google Scholar 

  • Ahmadpour D, Geijer C, Tamás MJ, Lindkvist-Petersson K, Hohmann S (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta 1840:1482–1491

    Article  CAS  PubMed  Google Scholar 

  • Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D (2012) High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482:232–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderberg HI, Danielson JÅ, Johanson U (2011) Algal MIPs, high diversity and conserved motifs. BMC Evol Biol 21(11):110

    Article  CAS  Google Scholar 

  • Anderberg HI, Kjellbom P, Johanson U (2012) Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Front Plant Sci 20(3):33

    Google Scholar 

  • Baker N, Glovera L, Munday JC, Aguinaga Andrés D, Barrett MP, de Koning HP, Horn (2012) Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. Proc Natl Acad Sci U S A 109:10996–11101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27:349–363

    Article  PubMed  CAS  Google Scholar 

  • Bienert GP, Chaumont F (2011) Plant aquaporins: roles in water homeostasis, nutrition, and signalling processes. In: Geisler M (ed) Transporters and pumps in plant signaling, 1st edn. Springer Publishers, Berlin-Heidelberg, pp 3–36

    Chapter  Google Scholar 

  • Bienert GP, Chaumont F (2013) Selenium and aquaporins. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 1891–1893

    Chapter  Google Scholar 

  • Bienert GP, Jahn TP (2010a) Major intrinsic proteins and arsenic transport in plants: new players and their potential roles. In: Jahn TP, Bienert GP (eds) MIPs and their role in the exchange of metalloids, advances in experimental medicine and biology, vol 679. Landes Bioscience Publishers, New York, pp 111–125

    Chapter  Google Scholar 

  • Bienert GP, Jahn TP (eds) (2010b) MIPs and their role in the exchange of metalloids, advances in experimental medicine and biology, vol 679. Landes Bioscience Publishers, New York

    Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758:994–1003

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008a) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 10(6):26

    Article  CAS  Google Scholar 

  • Bienert GP, Schüssler MD, Jahn TP (2008b) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33:20–26

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317

    Article  CAS  PubMed  Google Scholar 

  • Bienert GP, Desguin B, Chaumont F, Hols P (2013) Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochem J 454:559–570

    Article  CAS  PubMed  Google Scholar 

  • Bogacki P, Peck DM, Nair RM, Howie J, Oldach KH (2013) Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula. BMC Plant Biol 27(13):54

    Article  CAS  Google Scholar 

  • Carbrey JM, Song L, Zhou Y, Yoshinaga M, Rojek A, Wang Y, Liu Y, Lujan HL, DiCarlo SE, Nielsen S, Rosen BP, Agre P, Mukhopadhyay R (2009) Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proc Natl Acad Sci U S A 106:15956–15960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y, Price AH, Meharg AA (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  CAS  PubMed  Google Scholar 

  • Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Lewin J (1969) Silicon as a nutrient element for Equisetum arvense. Can J Bot 47:125–131

    Article  CAS  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  CAS  PubMed  Google Scholar 

  • Choi WG, Roberts DM (2007) Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282:24209–24218

    Article  CAS  PubMed  Google Scholar 

  • Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 22(8):45

    Article  CAS  Google Scholar 

  • Danielson JAH, Johanson U (2010) Phylogeny of major intrinsic proteins. In: Jahn TP, Bienert GP (eds) MIPs and their role in the exchange of metalloids, advances in experimental medicine and biology, vol 679. Landes Bioscience Publishers, New York, pp p19–p32

    Chapter  Google Scholar 

  • Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK1, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315

    Article  CAS  PubMed  Google Scholar 

  • Diehn TA, Pommerrenig B, Bernhardt N, Hartmann A, GP B (2015) Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis. Front Plant Sci 7(6):166

    Google Scholar 

  • Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membr Biol 175:95–105

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A, Malcomber ST, Gassmann W, McSteen P (2014) Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:2978–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414:53–61

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 6(3):182

    Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32:1357–1365

    Article  CAS  PubMed  Google Scholar 

  • Fortin MG, Morrison NA, Verma DP (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15:813–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funakawa H, Miwa K (2015) Synthesis of borate cross-linked rhamnogalacturonan II. Front Plant Sci 21(6):223

    Google Scholar 

  • Gerbeau P, Güclü J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  CAS  PubMed  Google Scholar 

  • Goldbach HE, Wimmer MA, Chaumont F, Matoh T, Volkmann D, Baluška F, Ruth Wingender R, Schulz M, Yu O (2002) Rapid responses of plants to Boron deprivation – where are the links between boron’s primary role and secondary reactions? In: Goldbach HE, Brown PH, Rerkasem B, Thellier M, Wimmer MA, Bell RW (eds) Boron in plant and animal nutrition. Springer, New York, pp p167–p180

    Chapter  Google Scholar 

  • Grégoire C1, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR (2012) Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant J 72:320–330

    Article  PubMed  CAS  Google Scholar 

  • Gu R, Chen X, Zhou Y, Yuan L (2012) Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport. BMB Rep 45:96–101

    Article  CAS  PubMed  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902

    Article  CAS  PubMed  Google Scholar 

  • Hara-Chikuma M, Verkman AS (2006) Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci 63:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Hayes JE, Pallotta M, Baumann U, Berger B, Langridge P, Sutton T (2013) Germanium as a tool to dissect boron toxicity effects in barley and wheat. Funct Plant Biol 40:618–627

    Article  CAS  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M (2015) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746. doi:10.1111/nph.13637

    Article  PubMed  CAS  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985

    Article  CAS  PubMed  Google Scholar 

  • Herrera M, Hong NJ, Garvin JL (2006) Aquaporin-1 transports NO across cell membranes. Hypertension 48:157–164

    Article  CAS  PubMed  Google Scholar 

  • Hooijmaijers C1, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Hou X, Huang C, Yan Y, Tie W, Ding Z, Wei Y, Liu J, Miao H, Lu Z, Li M, Xu B, Jin Z (2015) Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in banana. Int J Mol Sci 16:19728–19751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Jahn TP, Møller AL, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  CAS  PubMed  Google Scholar 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiya T, Fujiwara T (2009) Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant Cell Physiol 50:1977–1981

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120

    Article  CAS  PubMed  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsuhmoto T, Rhee J, Shibasaka M (2014) Functional and molecular characteristics of barley and rice NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219

    Article  CAS  Google Scholar 

  • Khabudaev KV, Petrova DP, Grachev MA, Likhoshway YV (2014) A new subfamily LIP of the major intrinsic proteins. BMC Genomics 4(15):173

    Article  CAS  Google Scholar 

  • Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP (2014) Two rice plasma membrane intrinsic proteins, OsPIP2;4 and OsPIP2;7, are involved in transport and providing tolerance to boron toxicity. Planta 239:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice 11(6):3

    Article  Google Scholar 

  • Laforenza U, Bottino C, Gastaldi G (2015) Mammalian aquaglyceroporin function in metabolism. Biochim Biophys Acta 1858:1–11

    Article  PubMed  CAS  Google Scholar 

  • Leonard A, Holloway B, Guo M, Rupe M, Yu G, Beatty M, Zastrow-Hayes G, Meeley R, Llaca V, Butler K, Stefani T, Jaqueth J, Li B (2014) Tassel-less1 encodes a boron channel protein required for inflorescence development in maize. Plant Cell Physiol 55:1044–1054

    Article  CAS  PubMed  Google Scholar 

  • Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 50:2071–2080

    Article  CAS  Google Scholar 

  • Li N, Wang J, Song WY (2015) Arsenic uptake and translocation in plants. Plant Sci. doi:10.1093/pcp/pcv143

    Google Scholar 

  • Liu LH, Ludewig U, Gassert B, Frommer WB, von Wirén N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Wang H, Zhang Z, Wu J, Feng Y, Zhu Z (2009) Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC Genomics 15(10):313

    Article  CAS  Google Scholar 

  • Liu K, Liu LL, Ren YL, Wang ZQ, Zhou KN, Liu X, Wang D, Zheng M, Cheng ZJ, Lin QB, Wang JL, Wu FQ, Zhang X, Guo XP, Wang CM, Zhai HQ, Jiang L, Wan JM (2015) Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited conditions in rice. Plant Sci 236:18–28

    Article  CAS  PubMed  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombi E, Holm PE (2010) Metalloids, soil chemistry and the environment. In: Jahn TP, Bienert GP (eds) MIPs and their role in the exchange of metalloids, advances in experimental medicine and biology, vol 679. Landes Bioscience Publishers, New York, pp p33–p41

    Chapter  Google Scholar 

  • Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B, Martin F, Sakr S, Label P, Julien JL, Gousset-Dupont A, Venisse JS (2012) Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63:2217–2230

    Article  CAS  PubMed  Google Scholar 

  • Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130:2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, Fertilizer, and Plant Silicon Research in Japan. In: Elsevier Science, Amsterdam

    Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13:3527–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal G, Orta JF, Sharma M, Mukhopadhyay R (2014) Trypanosomatid aquaporins: roles in physiology and drug response. Diseases 2:3–23

    Article  CAS  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants. 3rd Edition from Petra Marschner, Academic Press, London

    Google Scholar 

  • Martínez-Cuenca MR, Martínez-Alcántara B, Quiñones A, Ruiz M, Iglesias DJ, Primo-Millo E, Forner-Giner MÁ (2015) Physiological and molecular responses to excess Boron in citrus macrophylla W. PLoS One 10:e0134372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  Google Scholar 

  • Meharg AA, Zhao F-J (eds) (2012) Arsenic and rice. Springer, Dordrecht

    Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch 456:679–686

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009a) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009b) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Ma JF (2011) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6:991–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F, Ma JF, Bélanger RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46

    Article  CAS  PubMed  Google Scholar 

  • Moore KL, Schröder M, Wu Z, Martin BG, Hawes CR, McGrath SP, Hawkesford MJ, Feng Ma J, Zhao FJ, Grovenor CR (2011) High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Physiol 156:913–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta 1840:1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  CAS  Google Scholar 

  • Nagarajan Y, Rongala J, Luang S, Singh A, Shadiac N, Hayes J, Sutton T, Gilliham M, Tyerman SD, McPhee G, Voelcker NH, Mertens HDT, Kirby N, Lee J-G, Yingling YG, Hrmova M (2015) Na+-dependent anion transport by a barley efflux protein revealed through an integrative platform. Plant Cell 28:202–218

    PubMed  PubMed Central  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of OsBOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negishi T, Oshima K, Hattori M, Kanai M, Mano S, Nishimura M, Yoshida K (2012) Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS One 7:e43189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton GJ, Nigar M, Williams PN, Dasgupta T, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydroponics: a three-gene model for tolerance. J Exp Bot 59:2277–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SR, Tarpley L, Eizenga GC, McGrath SP, Zhao FJ, Islam MR, Islam S, Duan G, Zhu Y, Salt DE, Meharg AA, Price AH (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9:e89685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849

    Article  PubMed  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez S, Rodríguez-Carvajal MA, Doco T (2003) A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85:109–121

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Quinn CF (2010) Selenium Metabolism in Plants. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, 225 plant cell monographs 17. Springer, Berlin-Heidelberg

    Google Scholar 

  • Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227

    Article  CAS  PubMed  Google Scholar 

  • Porquet A, Filella M (2007) Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem Res Toxicol 20:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One 8:e79052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richey DP, Lin EC (1972) Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J Bacteriol 112:784–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen BP, Tamas MJ (2010) Arsenic transport in prokaryotes and eucaryotic microbes. In: Jahn TP, Bienert GP (eds) MIPs and their role in the exchange of metalloids, advances in experimental medicine and biology, vol 679. Landes Bioscience Publishers, New York, pp p47–p56

    Chapter  Google Scholar 

  • Rosenberg E (2009) Germanium: environmental occurrence, importance and speciation. Rev Environ Sci Biotechnol 8:29–57

    Article  CAS  Google Scholar 

  • Sabir F, Leandro MJ, Martins AP, Loureiro-Dias MC, Moura TF, Soveral G, Prista C (2014) Exploring three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast. PLoS One 9:e102087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H et al (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Sakurai G, Satake A, Yamaji N, Mitani-Ueno N, Yokozawa M, Feugier FG, Ma JF (2015) In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56:631–639

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shatil-Cohen A, Moshelion M (2012) Smart pipes: the bundle sheath role as xylem-mesophyll barrier. Plant Signal Behav 7:1088–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkai Y, Sumi D, Toyama T, Kaji T, Kumagai Y (2009) Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes. Toxicol Appl Pharmacol 237:232–236

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Allis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Quantitative real-time expression profiling of aquaporin-isoforms and growth response of Brassica juncea under arsenite stress. Mol Biol Rep 40:2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Sablok G, Deshpande TU, Suprasanna P (2015) Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways. Front Plant Sci 6:646

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi E, Matsumoto H, Syo S, Myake Y (1976a) Difference in the mode of germanium uptake between silicophile plants and non-silicophile plants: comparative studies on the silica nutrition in plants (part 3). J Sci Soil Manure Jpn 47:217–288

    CAS  Google Scholar 

  • Takahashi E, Syo S, Myake Y (1976b) Effect of germanium on the growth of plants with special reference to the silicon nutrition: comparative studies on the silica nutrition in plants (part 1). J Sci Soil Manure Jpn 47:183–190

    CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Google Scholar 

  • Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci U S A 107:5220–5225

    Google Scholar 

  • Talukdar P, Douglas A, Price AH, Norton GJ (2015) Biallelic and genome wide association mapping of germanium tolerant loci in rice (Oryza sativa L.). PLoS One 10:e0137577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorsen M, Jacobson T, Vooijs R, Navarrete C, Bliek T, Schat H, Tamás MJ (2012) Glutathione serves an extracellular defence function to decrease arsenite accumulation and toxicity in yeast. Mol Microbiol 84:1177–1188

    Article  CAS  PubMed  Google Scholar 

  • Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh J, Yu JW, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol Biochem 73:392–404

    Article  CAS  PubMed  Google Scholar 

  • Vink BW (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem Geol 130:21–30

    Article  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HS, Yu C, Fan PP, Bao BF, Li T, Zhu ZJ (2015) Identification of two cucumber putative silicon transporter genes in Cucumis sativus. J Plant Growth Regul 34:332–338

    Article  CAS  Google Scholar 

  • Warrington K (1923) The effect of boric acid and borax on broad bean and certain other plants. Ann Bot 37:629–672

    Google Scholar 

  • Wu B, Song J, Beitz E (2010) Novel channel enzyme fusion proteins confer arsenate resistance. J Biol Chem 285:40081–40087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wudick MM, Li X, Valentini V, Geldner N, Chory J, Lin J, Maurel C, Luu DT (2015) Subcellular redistribution of root aquaporins induced by hydrogen peroxide. Mol Plant 8:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  CAS  PubMed  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Ma JF (2009) A transporter at the node responsible for intravascular transfer of silicon in rice. Plant Cell 21:2878–2883

    Google Scholar 

  • Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaji N, Sakurai G, Mitani-Ueno N, Ma JF (2015) Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proc Natl Acad Sci U S A 112:11401–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HC, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yool AJ, Campbell EM (2012) Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Asp Med 33:553–561

    Article  CAS  Google Scholar 

  • Zangi R, Filella M (2012) Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem Biol Interact 197:47–57

    Google Scholar 

  • Zeng C, Han Y, Shi L, Peng L, Wang Y, Xu F, Meng J (2008) Genetic analysis of the physiological responses to low boron stress in Arabidopsis thaliana. Plant Cell Environ 31:112–122

    CAS  PubMed  Google Scholar 

  • Zhang L, Yu F, Shi W, Li Y, Miao Z (2010) Physiological characteristics of selenite uptake by maize roots in response to different pH levels. J Soil Sci Plant Nutr 173:417–422

    Article  CAS  Google Scholar 

  • Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H, Qin H, Larssen T (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46:10040–10046

    CAS  PubMed  Google Scholar 

  • Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL et al (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One 8:e56312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010a) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010b) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399

    Article  CAS  PubMed  Google Scholar 

  • Zhou GF, Liu YZ, Sheng O, Wei QJ, Yang CQ, Peng SA (2015) Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray. Front Plant Sci 28(5):795

    Google Scholar 

  • Zou Z, Gong J, Huang Q, Mo Y, Yang L, Xie G (2015) Gene structures, evolution, classification and expression profiles of the aquaporin gene family in castor bean (Ricinus communis L.). PLoS One 10(10):e0141022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Emmy Noether grant 1668/1-1 from the Deutsche Forschungsgemeinschaft. We thank all scientists for uncovering the exciting roles of AQPs in metalloid transport homeostasis. We apologize to all authors whose contributions to these research areas could not have been mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Patrick Bienert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bienert, M.D., Bienert, G.P. (2017). Plant Aquaporins and Metalloids. In: Chaumont, F., Tyerman, S. (eds) Plant Aquaporins. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-49395-4_14

Download citation

Publish with us

Policies and ethics