Skip to main content

Plant Aquaporins and CO2

  • Chapter
  • First Online:
Plant Aquaporins

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Aquaporins in plants show more abundant and greater diversity than aquaporins in bacteria and animals. This unique characteristic provided versatile tool boxes for plants, dealing with environmental changes, which overcome the disadvantage of immobility. Aquaporins were first known for their function as water channel proteins. Later on, more and more studies showed that other small solutes, i.e., ammonia, glycerol, urea, hydrogen peroxide and metalloids, can also pass through the channel of various aquaporins. Moreover, the function of aquaporins as CO2 gas channels was studied by several groups (Nakhoul et al. Am J Physiol Cell Physiol 43(2):C543–C548, 1998; Yang et al. J Biol Chem 275(4):2686–2692, 2000; Tholen and Zhu Plant Physiol 156(1):90–105, 2011). In parallel, studies on model reconstituted membranes claim that no such type of channel would be needed due to the high permeability of those model membranes (Missner et al. Proc Natl Acad Sci USA 105(52):E123, 2008a; J Biol Chem 283(37):25340–25347, 2008b). However, experimental data showed the physiological significance of CO2-conducting channels, particularly in plants. It is generally accepted that plant science presented the first evidence for the physiological relevance and importance of aquaporins as CO2 transport facilitators (Boron Exp Physiol 95(12):1107–1130, 2010; Terashima and Ono Plant Cell Physiol 43(1):70–78, 2002; Uehlein et al. Nature 425 (6959):734–737, 2003; Heckwolf et al. Plant J 67 (5):795–804, 2011; Uehlein et al. Plant Cell 20(3):648–657, 2008). In this chapter, we discuss the CO2 diffusion across membranes and the role of plant aquaporins during this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MH, Imperiali B (2005) Protein oligomerization: how and why. Bioorg Med Chem 13(17):5013–5020. doi:10.1016/j.bmc.2005.05.037

    Article  CAS  PubMed  Google Scholar 

  • Antonenko YN, Denisov GA, Pohl P (1993) Weak acid transport across bilayer lipid membrane in the presence of buffers. Theoretical and experimental pH profiles in the unstirred layers. Biophys J 64(6):1701–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonenko YN, Pohl P, Denisov GA (1997) Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes. Biophys J 72(5):2187–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertl A, Kaldenhoff R (2007) Function of a separate NH(3)-pore in Aquaporin TIP2;2 from wheat. FEBS Lett 581(28):5413–5417

    Article  CAS  PubMed  Google Scholar 

  • Boron WF (2010) Sharpey-Schafer lecture: gas channels. Exp Physiol 95(12):1107–1130. doi:10.1113/expphysiol.2010.055244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boron W, Endeward V, Gros G, Musa-Aziz R, Pohl P (2011) Intrinsic CO2 permeability of cell membranes and potential biological relevance of CO2 channels. Chemphyschem: Eur J Chem Phys Phys Chem 12(5):1017–1019. doi:10.1002/cphc.201100034

    Article  CAS  Google Scholar 

  • Cooper GJ, Boron WF (1998) Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. Am J Phys Cell Phys 44(6):C1481–C1486

    Google Scholar 

  • Cooper GJ, Zhou YH, Bouyer P, Grichtchenko II, Boron WF (2002) Transport of volatile solutes through AQP1. J Physiol 542(1):17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Groot BL, Engel A, Grubmuller H (2003) The structure of the aquaporin-1 water channel: a comparison between cryo-electron microscopy and X-ray crystallography. J Mol Biol 325(3):485–493

    Article  PubMed  Google Scholar 

  • Dupuy AD, Engelman DM (2008) Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci U S A 105(8):2848–2852. doi:10.1073/pnas.0712379105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endeward V, Gros G (2005) Low carbon dioxide permeability of the apical epithelial membrane of guinea-pig colon. J Physiol 567(Pt 1):253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2006a) Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS. Transfus Clin Biol 13(1–2):123–127. doi:10.1016/j.tracli.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  • Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006b) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20(12):1974–1981

    Article  CAS  PubMed  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2008) RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 22(1):64–73

    Article  CAS  PubMed  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60(8):2235–2248. doi:10.1093/jxb/erp117

    Article  CAS  PubMed  Google Scholar 

  • Gutknecht J, Bisson MA, Tosteson FC (1977) Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol 69(6):779–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO(2) flux by analysis of the response of photosynthesis to CO(2). Plant Physiol 98(4):1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO(2) transport facilitator. Plant J 67(5):795–804. doi:10.1111/j.1365-313X.2011.04634.x

    Article  CAS  PubMed  Google Scholar 

  • Heinen RB, Bienert GP, Cohen D, Chevalier AS, Uehlein N, Hachez C, Kaldenhoff R, Le Thiec D, Chaumont F (2014) Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. Plant Mol Biol 86(3):335–350. doi:10.1007/s11103-014-0232-7

    Article  CAS  PubMed  Google Scholar 

  • Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D, Klaerke DA, Zeuthen T (2005) NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch 450(6):415–428

    Article  CAS  PubMed  Google Scholar 

  • Hub J, de Groot B (2006) Does CO2 permeate through aquaporin-1? Biophys J 91(3):842–848. doi:10.1529/biophysj.106.081406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itel F, Al-Samir S, Oberg F, Chami M, Kumar M, Supuran CT, Deen PM, Meier W, Hedfalk K, Gros G, Endeward V (2012) CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J: Off Publ Fed Am Soc Exp Biol 26(12):5182–5191. doi:10.1096/fj.12-209916

    Article  CAS  Google Scholar 

  • Jahn TP, Moller ALB, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574(1–3):31–36

    Article  CAS  PubMed  Google Scholar 

  • Kai L, Kaldenhoff R (2014) A refined model of water and CO(2) membrane diffusion: effects and contribution of sterols and proteins. Sci Rep 4:6665. doi:10.1038/srep06665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldenhoff R (2012) Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15(3):276–281. doi:10.1016/j.pbi.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff H, Haferkamp S, Allen JF, Epstein DB, Mullineaux CW (2008) Protein diffusion and macromolecular crowding in thylakoid membranes. Plant Physiol 146(4):1571–1578. doi:10.1104/pp.107.115170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirscht A, Kaptan SS, Bienert GP, Chaumont F, Nissen P, de Groot BL, Kjellbom P, Gourdon P, Johanson U (2016) Crystal structure of an ammonia-permeable aquaporin. PLoS Biol 14(3):e1002411. doi:10.1371/journal.pbio.1002411

    Article  PubMed  PubMed Central  Google Scholar 

  • Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137(2):671–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludewig U, Wilken S, Wu BH, Jost W, Obrdlik P, El Bakkoury M, Marini AM, Andre B, Hamacher T, Boles E, von Wiren N, Frommer WB (2003) Homo- and hetero-oligomerization of ammonium transporter-1 NH4+ uniporters. J Biol Chem 278(46):45603–45610

    Article  CAS  PubMed  Google Scholar 

  • Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106(39):16633–16638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer H (1899) Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmakol 42:109–118

    Article  Google Scholar 

  • Missner A, Pohl P (2009) 110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. Chem Phys Chem 10(9–10):1405–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Missner A, Kugler P, Antonenko YN, Pohl P (2008a) Passive transport across bilayer lipid membranes: Overton continues to rule. Proc Natl Acad Sci U S A 105(52):E123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missner A, Kugler P, Saparov SM, Sommer K, Mathai JC, Zeidel ML, Pohl P (2008b) Carbon dioxide transport through membranes. J Biol Chem 283(37):25340–25347. doi:10.1074/jbc.M800096200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407(6804):599–605

    Article  CAS  PubMed  Google Scholar 

  • Musa-Aziz R, Chen LM, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106:5406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakhoul NL, Romero MF, Davis BA, Bron WF (1995) Expression of Chip28 (Aquaporin-1) in Xenopus oocytes accelerates the CO2-induced decrease of intracellular Ph (Ph(I)). J Am Soc Nephrol 6(3):312–312

    Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol Cell Physiol 43(2):C543–C548

    Google Scholar 

  • Nakhoul NL, Hering-Smith KS, Abdulnour-Nakhoul SM, Hamm LL (2001) Transport of NH3/NH4+ in oocytes expressing aquaporin-1. Am J Physiol-Renal Physiol 281(2):F255–F263

    CAS  PubMed  Google Scholar 

  • Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211(2):167–172

    Article  CAS  PubMed  Google Scholar 

  • Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N, Reinhard A, Siegfart S, Urban M, Kaldenhoff R (2010) Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem 285(41):31253–31260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overton E (1901) Studien über die Narkose. Gustav Fischer, Jena

    Google Scholar 

  • Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273(50):33123–33126

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A 88(24):11110–11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen H, Kvarstein G, Johnsen H, Dirven H, Midtvedt T, Mirtaheri P, Tonnessen TI (1999) Gas supersaturation in the cecal wall of mice due to bacterial CO2 production. J Appl Physiol 86(4):1311–1318

    CAS  PubMed  Google Scholar 

  • Rasmussen H, Mirtaheri P, Dirven H, Johnsen H, Kvarstein G, Tonnessen TI, Midtvedt T (2002) PCO2 in the large intestine of mice, rats, guinea pigs, and dogs and effects of the dietary substrate. J Appl Physiol 92(1):219–224

    Article  PubMed  Google Scholar 

  • Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron JP (2004) Human rhesus-associated glycoprotein mediates facilitated transport of NH(3) into red blood cells. Proc Natl Acad Sci U S A 101 (49):17222–17227. doi: 0403704101 [pii] 10.1073/pnas.0403704101

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Binder HJ, Geibel JP, Boron WF (1995) An apical permeability barrier to NH3/NH4+ in isolated, perfused colonic crypts. Proc Natl Acad Sci U S A 92(25):11573–11577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strand L, Moe SE, Solbu TT, Vaadal M, Holen T (2009) Roles of aquaporin-4 isoforms and amino acids in square array assembly. Biochemistry 48(25):5785–5793. doi:10.1021/bi802231q

    Article  CAS  PubMed  Google Scholar 

  • Talbot K, Kwong RW, Gilmour KM, Perry SF (2015) The water channel aquaporin-1a1 facilitates movement of CO2 and ammonia in zebrafish (Danio rerio) larvae. J Exp Biol 218(Pt 24):3931–3940. doi:10.1242/jeb.129759

    Article  PubMed  Google Scholar 

  • Terashima I, Ono K (2002) Effects of HgCl(2) on CO(2) dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO(2) diffusion across the plasma membrane. Plant Cell Physiol 43(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Zhu XG (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol 156(1):90–105. doi:10.1104/pp.111.172346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiavaliaris G, Itel F, Hedfalk K, Al-Samir S, Meier W, Gros G, Endeward V (2015) Low CO2 permeability of cholesterol-containing liposomes detected by stopped-flow fluorescence spectroscopy. FASEB J: Off Publ Fed Am Soc Exp Biol 29(5):1780–1793. doi:10.1096/fj.14-263988

    Article  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425(6959):734–737

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20(3):648–657. doi:10.1105/tpc.107.054023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehlein N, Otto B, Eilingsfeld A, Itel F, Meier W, Kaldenhoff R (2012a) Gas-tight triblock-copolymer membranes are converted to CO(2) permeable by insertion of plant aquaporins. Sci Rep 2:538. doi:10.1038/srep00538

    Article  PubMed  PubMed Central  Google Scholar 

  • Uehlein N, Sperling H, Heckwolf M, Kaldenhoff R (2012b) The Arabidopsis aquaporin PIP1;2 rules cellular CO(2) uptake. Plant Cell Environ 35(6):1077–1083. doi:10.1111/j.1365-3040.2011.02473.x

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS, Matthay MA, Song Y (2000) Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol 278(5):L867–L879

    CAS  PubMed  Google Scholar 

  • Waisbren SJ, Geibel JP, Modlin IM, Boron WF (1994) Unusual permeability properties of gastric gland cells. Nature 368(6469):332–335

    Article  CAS  PubMed  Google Scholar 

  • Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90(3):207–217

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157(3):534–544

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Fukuda N, van Hoek A, Matthay MA, Ma T, Verkman AS (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J Biol Chem 275(4):2686–2692

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Kaldenhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Uehlein, N., Kai, L., Kaldenhoff, R. (2017). Plant Aquaporins and CO2 . In: Chaumont, F., Tyerman, S. (eds) Plant Aquaporins. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-49395-4_12

Download citation

Publish with us

Policies and ethics