Skip to main content

Climate, Air Pollutants, and Wet Deposition

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 229))

Abstract

One main topic of scientific and public interest regarding the Waldstein research site continues to be the high-quality observation of weather and air quality that captures the meteorology and climate of this particular site and the neighboring regions. Based on meteorological measurements made at the Waldstein facility from 1994 to the present, several studies—mainly of air temperature, precipitation, fog, wet deposition, and air pollutants—were conducted over the last 20 years. The expected strong global rise of earth’s basic air temperature will have a more moderated magnitude in Franconia, but the already continental location within the Central European climate zones, in combination with a heterogeneous landscape with imposed local orographic wind systems, will increase and reinforce diurnal and seasonal amplitudes and spatial variety of basic meteorological and air chemical elements and induce a higher risk of local extreme weather (climate) or smog (ozone) events. Forced by the change of macro- and mesoscale atmospheric circulation patterns across the northern hemisphere, the frequency and intensity of such weather-changing situations have increased during the last three or four decades in parallel with the span and the unpredictability of extreme weather conditions. That has, and will continue to have, an adjustment effect on air temperature and air humidity, sunshine duration and air pollution, wind (storm), date and duration of precipitation, and wet deposition of nitrogen, sulfur, salts, and metals and therefore a strong impact to the ecosystems at Waldstein.

J. Lüers and T. Wrzesinsky: Affiliation during the work at the Waldstein sites before 2005–University of Bayreuth, Bayreuth Institute of Terrestrial Ecosystem Research (BITÖK), Department of Climatology, Germany

J. Lüers, B. Grasse, and T. Foken: Affiliation during the work at the Waldstein sites–University of Bayreuth, Department of Micrometeorology, Germany

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59:1–13. doi:10.3354/cr01204

    Article  Google Scholar 

  • Burkard R, Eugster W, Wrzesinsky T, Klemm O (2002) Vertical divergence of fogwater fluxes above a spruce forest. Atmos Res 64(1–4):133–145. doi:10.1016/S0169-8095(02)00086-8

    Article  Google Scholar 

  • Eiden R, Förster J, Peters K, Trautner F, Herterich R, Gietl G (1989) Air pollution and deposition. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecological studies. Springer, Heidelberg, pp 57–103

    Chapter  Google Scholar 

  • Eigenbrodt (2007) Betriebs- und Wartungsanleitung Automatischer Niederschlagssammler NSA 181/KHS. Eigenbrodt GmbH & Co. KG, Königsmoor

    Google Scholar 

  • Foken T (2003) Lufthygienisch-Bioklimatische Kennzeichnung des oberen Egertales. Bayreuther Forum Ökologie 100:69+XLVIII

    Google Scholar 

  • Foken T, Lüers J (2003) Klimawandel in Oberfranken. Terra Nostra 6:129–135

    Google Scholar 

  • Foken T, Lüers J (2013) Regionale atmosphärische Prozesse und ihre raumzeitliche Ausprägung. Ann Meteorol 46:25–29

    Google Scholar 

  • Foken T, Lüers J (2015a) Abschlussbericht zum Förderprojekt 01879 Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge: 2007 bis 2014. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 61, ISSN 1614-8916, 97 pp

    Google Scholar 

  • Foken T, Lüers J (2015b) Regionale Ausprägung des Klimawandels in Oberfranken. In: Obermaier G (ed) Folgen des Klimawandels. Bayreuther Kontaktstudium Geographie, vol 8, pp 33–42

    Google Scholar 

  • Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    Article  CAS  Google Scholar 

  • Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz chatchments in NE Bavaria, Germany. In: Matzner E (ed) Biogeochmistry of forested catchments in a changing environment, a German case study. Ecological studies, vol 172. Springer, Heidelberg, pp 15–41

    Google Scholar 

  • Hartmann H, Turowski P (2010) Feinstaubemisionen aus Holzheizungen. Bayerisches Landesamt für Wald- und Forstwirtschaft. LWF-aktuell 74:10–12

    Google Scholar 

  • Hendl M (1991) Globale Klimaklassifikation. In: Hupfer P (ed) Das Klimasystem der Erde. Akademie-Verlag, Berlin, pp 218–266

    Google Scholar 

  • Karlsson PE, Selldén G, Pleijel H (eds) (2003) Establishing ozone critical levels II. UNECE workshop report, IVL report B 1523. Gothenburg, IVL Swedish Environmental Research Institute

    Google Scholar 

  • Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno BS, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2004) New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos Environ 38:2283–2294

    Article  CAS  Google Scholar 

  • Kasana MS (1991) Sensitivity of three leguminous crops to O3 as influenced by different stages of growth and development. Environ Pollut 69:131–149

    Article  CAS  PubMed  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Kittler F, Lüers J, Nauß T, Foken T (2011) Möglichkeiten der künstlichen Beschneiung im gegenwärtigen und zukünftigen Klima im Fichtelgebirge. Der Siebenstern 80(5):240–243

    Google Scholar 

  • Klemm O, Lange H (1999) Trends of air pollution in the Fichtelgebirge mountains, Bavaria. Environ Sci Pollut Res 6:193–199

    Article  CAS  Google Scholar 

  • Klemm O, Mangold A (2001) Ozone deposition at a forest site in NE Bavaria. Water Air Soil Pollut Focus 1:223–232

    Article  CAS  Google Scholar 

  • Klemm O, Mangold A, Held A (2004) Turbulent deposition of ozone to a mountainous forest ecosystem. In: Matzner E (ed) Biogeochmistry of forested catchments in a changing environment, a German case study. Ecological studies, vol 172. Springer, Heidelberg, pp 203–213

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudof B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi:10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Lüers J (2012) Wasser in Oberfranken. Wie viel Wasser brauchen wir und wo wird es gewonnen? Spektrum, 1–2012, Universität Bayreuth, pp 26–31.

    Google Scholar 

  • Lüers J, Foken T (2010) Jahresbericht 2009 zum Förderprojekt 01879, Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 43, ISSN 1614–8916, 59 pp.

    Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:163–171

    Article  Google Scholar 

  • Matschonat G, Vogt R (1998) Significance of the total cation concentration in acid forest soils for the solution composition and the saturation of exchange sites. Geoderma 84(4):289–307. doi:10.1016/S0016-7061(98)00009-3

    Article  CAS  Google Scholar 

  • Mohammed NI, Ramli NA, Yahya AS, Ghazali NA, Ul-Saufie AZ (2011) Relationship between AOTX indices and crops response towards ozone concentration in Malaysia. Int J Appl Sci Technol 1(1):36–44

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Schönwiese CD (2013) Praktische Statistik für Meteorologen und Geowissenschaftler. 5. Aufl. ed. Borntraeger, Stuttgart, 319 S

    Google Scholar 

  • Staudt K, Foken T (2007) Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 35, ISSN 1614–8916, 35 pp

    Google Scholar 

  • TA-Luft 2002 Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft—TA Luft) vom 24. Juli 2002, GMBl 2002 S. 511–605

    Google Scholar 

  • Thalmann E, Burkard R, Wrzesinsky T, Eugster W, Klemm O (2002) Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmos Res 64(1–4):147–158. doi:10.1016/S0169-8095(02)00087-X

    Article  CAS  Google Scholar 

  • Trewartha GT, Horn LH (1980) Introduction to climate, 5th edn. McGraw Hill, New York, NY

    Google Scholar 

  • UBA U (ed) (1997) Daten zur Umwelt. Erich Schmidt Verlag, Berlin, 570 pp

    Google Scholar 

  • WMO (2008) Guide to meteorological instruments and methods of observation. World Meteorological Organization, WMO Note 8, CIMO-Guide 7th edn

    Google Scholar 

  • Wrzesinsky T, Klemm O (2000) Summertime fog chemistry at a mountainous site in Central Europe. Atmos Environ 34:1487–1496

    Article  CAS  Google Scholar 

  • Wrzesinsky T, Scheer C, Klemm O (2004) Fog deposition and its role in biogeochemical cycles of nutrients and pollutants. In: Matzner E (ed) Biogeochmistry of forested catchments in a changing environment, a German case study. Ecological studies, vol 172. Springer, Heidelberg, pp 191–202

    Google Scholar 

Download references

Acknowledgments

The operation of the site was funded by The Federal Ministry of Education, Science, Research and Technology (PT BEO-0339476 A, B, C, D) and the Oberfranken Foundation (contract 01879). Many thanks go to the Bavarian Environment Agency (LfU), which was responsible for all of the chemical analyses. This work was only possible with the enthusiasm and hard work, sometimes under harsh weather conditions, of very many technicians, students, PhD candidates, and motivated scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lüers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lüers, J., Grasse, B., Wrzesinsky, T., Foken, T. (2017). Climate, Air Pollutants, and Wet Deposition. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_3

Download citation

Publish with us

Policies and ethics