Skip to main content

Interaction Forest–Clearing

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 229))

Abstract

In 2011, a special experiment was conducted to investigate turbulent structures at the edge between the Waldstein–Weidenbrunnen forest site and the Köhlerloh clearing. A horizontal moving measuring system was used to detect significant gradients of the radiation fluxes, temperature, moisture, ozone, and carbon dioxide concentrations for different situations at day and night. In agreement with other studies, an increase of the turbulent fluxes and ejections at the forest edge could be found. This means that the energy balance closure was also better than that obtained directly at the Weidenbrunnen site. The vertical coupling by coherent structures was often—mainly at daytime—very good. In contrast, the horizontal coupling between the forest and the clearing at the edge was, in most cases, not apparent. For wind directions coming from the forest, the coherent structures did not touch down at the surface of the clearing. These investigations were made with a wavelet tool. A clear indication of secondary circulations between the forest and the clearing was not possible.

T. Foken, A. Serafimovich, F. Eder, and J. Hübner: Affiliation during the work at the Waldstein sites – Department of Micrometeorology, University of Bayreuth, Bayreuth, Germany

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound-Lay Meteorol 108:397–417

    Article  Google Scholar 

  • Belcher SE, Finnigan JJ, Harman IN (2008) Flows through forest canopies in complex terrain. Ecol Appl 18:1436–1453

    Article  CAS  PubMed  Google Scholar 

  • Brock FV, Richardson SJ (2001) Meteorological measurement systems. Oxford University Press, New York, 290 pp

    Google Scholar 

  • Collineau S, Brunet Y (1993a) Detection of turbulent coherent motions in a forest canopy. Part I: Wavelet analysis. Bound-Lay Meteorol 65:357–379

    Google Scholar 

  • Collineau S, Brunet Y (1993b) Detection of turbulent coherent motions in a forest canopy. Part II: Time-scales and conditional averages. Bound-Lay Meteorol 66:49–73

    Article  Google Scholar 

  • Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128

    Article  Google Scholar 

  • Dupont S, Irvine M, Bonnefond J-M, Lamaud E, Brunet Y (2012) Turbulent structures in a pine forest with a deep and sparse trunk space: stand and edge regions. Bound-Lay Meteorol 143:309–336

    Article  Google Scholar 

  • Eder F, Serafimovich A, Foken T (2013) Coherent structures at a forest edge: properties, coupling and impact of secondary circulations. Bound-Lay Meteorol 148:285–308

    Article  Google Scholar 

  • Eder F, De Roo F, Rotenberg E, Yakir D, Schmid HP, Mauder M (2015) Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements. Agric For Meteorol 211–212:115–127

    Article  Google Scholar 

  • Eigenmann R, Metzger S, Foken T (2009) Generation of free convection due to changes of the local circulation system. Atmos Chem Phys 9:8587–8600

    Article  CAS  Google Scholar 

  • Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81:219–230

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:687–424

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem – an overview. Ecolog Appl 18:1351–1367

    Article  Google Scholar 

  • Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012a) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950

    Article  CAS  Google Scholar 

  • Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012b) Corrections and data quality. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131

    Chapter  Google Scholar 

  • Gao W, Shaw RH, Paw U KT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Bound-Lay Meteorol 47:349–377

    Article  Google Scholar 

  • Gao Z, Liu H, Russell ES, Huang J, Foken T, Oncley SP (2016) Large eddies modulating flux convergence and divergence in a disturbed unstable atmospheric surface layer. J Geophys Res: Atmos 121:1475–1492

    Google Scholar 

  • Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond J-M, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers JA, Eugster W, Fuhrer J, Granier A, Grünwald T, Heinesch B, Janssens IA, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff JB, Montagnani L, Moors E, Ourcival J-M, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz MJ, Sedlak P, Seufert G, Siebicke L, Soussana JF, Valentini R, Vesala T, Verbeeck H, Yakir D (2008) Quality control of CarboEurope flux data – part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosci 5:433–450

    Article  Google Scholar 

  • Hübner J, Olesch J, Falke H, Meixner FX, Foken T (2014) A horizontal mobile measuring system for atmospheric quantities. Atmos Meas Tech 7:2967–2980

    Article  Google Scholar 

  • Kanani-Sühring F, Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: A Large-Eddy Simulation study. Bound-Lay Meteorol 155:1–27

    Article  Google Scholar 

  • Klaassen W, Sogatchev A (2006) Flux footprint simulation downwind of a forest edge. Bound-Lay Meteorol 121:459–473

    Article  Google Scholar 

  • Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72:231–243

    Article  Google Scholar 

  • Knohl A, Kolle O, Minayeva TY, Milyukova IM, Vygodskaya NN, Foken T, Schulze ED (2002) Carbon dioxide exchange of a Russian boreal forest after disturbance by wind throw. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Mauder M and Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol 26:42 pp. ISSN 1614-8916

    Google Scholar 

  • Mauder M and Foken T (2015) Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update). Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol 62:64. ISSN 1614-8916

    Google Scholar 

  • Morse AP, Gardiner BA, Marshall BJ (2002) Mechanisms controlling turbulence development across a forest edge. Bound-Lay Meteorol 103:227–251

    Article  Google Scholar 

  • Paw U KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61:55–68

    Article  Google Scholar 

  • Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A, Aubinet M (2012) Data acquisition and flux calculations. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 59–83

    Chapter  Google Scholar 

  • Schlegel F, Stiller J, Bienert A, Maas H-G, Queck R, Bernhofer C (2015) Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Bound-Lay Meteorol 154:27–56

    Article  Google Scholar 

  • Serafimovich A, Thomas C, Foken T (2011a) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Lay Meteorol 140:429–451

    Article  Google Scholar 

  • Serafimovich A, Eder F, Hübner J, Falge E, Voß L, Sörgel M, Held A, Liu Q, Eigenmann R, Huber K, Duarte HF, Werle P, Gast E, Cieslik S, Liu H and Foken T (2011b) ExchanGE processes in mountainous regions (EGER)- documentation of the intensive observation period (IOP3) June, 13th to July, 26th 2011. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol 47:135. ISSN 1614-8916

    Google Scholar 

  • Shen S, Leclerc MY (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87:3–25

    Article  Google Scholar 

  • Sogachev A, Leclerc MJ, Karipot A, Zhang G, Vesala T (2005) Effect of clearcuts on footprints and flux measurements above a forest canopy. Agric For Meteorol 133:182–196

    Article  Google Scholar 

  • Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest. Theor Appl Climatol 80:91–104

    Article  Google Scholar 

  • Thomas C, Foken T (2007a) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound-Lay Meteorol 122:123–147

    Article  Google Scholar 

  • Thomas C, Foken T (2007b) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Lay Meteorol 123:317–337

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14:512–526

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Lay Meteorol 99:127–150

    Article  Google Scholar 

  • Zhang G, Thomas C, Leclerc MY, Karipot A, Gholz HL, Foken T (2007) On the effect of clearcuts on turbulence structure above a forest canopy. Theor Appl Climatol 88:133–137

    Article  Google Scholar 

  • Zhang Y, Liu H, Foken T, Williams QL, Liu S, Mauder M, Liebethal C (2010) Turbulence spectra and cospectra under the influence of large eddies in the energy balance experiment (EBEX). Bound-Lay Meteorol 136:235–251

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by the German Science Foundation within the DFG PAK 446 project, mainly the subproject FO226/21-1. H. Liu acknowledges support by the National Science Foundation AGS under grant 1419614. The heat storage in the biomass was calculated by Kathrin Gatzsche in her master’s thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Foken, T., Serafimovich, A., Eder, F., Hübner, J., Gao, Z., Liu, H. (2017). Interaction Forest–Clearing. In: Foken, T. (eds) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ecological Studies, vol 229. Springer, Cham. https://doi.org/10.1007/978-3-319-49389-3_13

Download citation

Publish with us

Policies and ethics