Skip to main content

Cellulosic Biocomposites: Potential Materials for Future

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Bionanocomposite is one of the remarkable achievements of nanotechnology in material science to replace conventional non-biodegradable petroleum based plastics for packaging applications. In general, bionanocomposites are made up of biodegradable polymers (biopolymers) and bio based reinforcing material in the size range of 10–100 nm in one or more dimensions. Bio based materials could provide a solution for petroleum shortage and waste management problems. One of the potential reinforcing agents is agro industrial based is cellulose. Such composites demonstrate improved properties as compared to the neat biopolymers due the large surface area and high aspect ratio of nanoparticles. This study has given a clear overview of nanocellulose based composites by describing their isolation, surface modification, composite preparation, properties, and applications. Furthermore, the obtained results for developed bionanocomposites materials shows that it can be a promising alternative for conventional packaging materials with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Halim E, Al-Deyab SS (2011) Low temperature bleaching of cotton cellulose using peracetic acid. Carbohydr Polym 86:988–994

    Article  Google Scholar 

  • Abdelwahab MA, Flynn A, Chiou B-S, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97:1822–1828

    Article  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  Google Scholar 

  • Ahmed J, Varshney SK (2011) Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop 14:37–58

    Article  Google Scholar 

  • Alavi S, Thomas S, Sandeep K, Kalarikkal N, Varghese J, Yaragalla S (2014) Polymers for packaging applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compo Sci Technol 68:557–565

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  • Arrieta M, Fortunati E, Dominici F, Rayón E, López J, Kenny J (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24

    Article  Google Scholar 

  • Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites. Springer, London

    Book  Google Scholar 

  • Babu R, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2

    Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  Google Scholar 

  • Bhardwaj R, Mohanty AK, Drzal L, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051

    Article  Google Scholar 

  • Bhat AH, Khalil HPSA, Bhat IUQ, Banthia AK (2011) Development and characterization of novel modified red mud nanocomposites based on poly (hydroxy ether) of bisphenol A. J Appl Polym Sci 119(1):515–522

    Article  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  Google Scholar 

  • Börjesson M, Westman G (2015) Crystalline nanocellulose—preparation, modification, and properties, cellulose. In: Poletto M, Ornaghi HL Jr (eds) Fundamental aspects and current trends. InTech

    Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8

    Google Scholar 

  • Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  Google Scholar 

  • Carlsson DO, Lindh J, Nyholm L, Strømme M, Mihranyan A (2014) Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv 4:52289–52298

    Article  Google Scholar 

  • Carlsson DO, Lindh J, Strømme M, Mihranyan A (2015) Susceptibility of Iα-and Iβ-dominated cellulose to TEMPO-mediated oxidation. Biomacromolecules 16:1643–1649

    Article  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  Google Scholar 

  • Chandramohan D, Marimuthu K (2011) A review on natural fibers. Int J Res Rev Appl Sci 8:194–206

    Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech 3:415–431

    Google Scholar 

  • Cheaburu-Yilmaz C, Yilmaz O, Vasile C (2015) Eco-friendly chitosan-based nanocomposites: chemistry and applications. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites, vol 74. Springer, India, pp 341–386

    Chapter  Google Scholar 

  • Clarke AJ (1996) Biodegradation of cellulose: enzymology and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Cristaldi G, Latteri A, Recca G, Cicala G (2010) Composites based on natural fibre fabrics. Woven Fabr Eng 17:317–342

    Google Scholar 

  • Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309–1319

    Article  Google Scholar 

  • de Moura MR, Cordeiro FAAHM, Mattoso LHC (2012) Microfluidizer technique for improving microfiber properties incorporated into edible and biodegradable films. INTECH Open Access Publisher, Croatia

    Book  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  Google Scholar 

  • Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod 62:552–559

    Article  Google Scholar 

  • Fang J, Sun R, Salisbury D, Fowler P, Tomkinson J (1999) Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions. Polym Degrad Stab 66:423–432

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  • George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45

    Article  Google Scholar 

  • Ghanbarzadeh B, Almasi H (2013) Biodegradable polymers. In: Chamy R, Rosenkranz F (eds) Biodegradation—Life of Science. InTech, Rijeka, Croatia, pp. 141–186

    Google Scholar 

  • Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  Google Scholar 

  • Grossman, RF, Nwabunma D, Dufresne A, Thomas S, Pothan LA (2013) Biopolymer nanocomposites: processing, properties, and applications, vol 8. Wiley, Hoboken

    Google Scholar 

  • Guan Q, Naguib HE (2014) Fabrication and characterization of PLA/PHBV-chitin nanocomposites and their foams. J Polym Environ 22:119–130

    Article  Google Scholar 

  • Gunaratne L, Shanks R (2005) Multiple melting behaviour of poly (3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur Polymer J 41:2980–2988

    Article  Google Scholar 

  • Gupta RB, Demirbas A (2010) Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge University Press, New York

    Google Scholar 

  • Ha C-S, Cho W-J (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27:759–809

    Article  Google Scholar 

  • Haafiz MKM, Eichhorn, SJ, Hassan A, Jawaid M: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93:628–634

    Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  Google Scholar 

  • Han JH (2005) Innovations in food packaging. Academic Press, New York, p 2005

    Google Scholar 

  • Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass

    Google Scholar 

  • Hideno A, Kawashima A, Endo T, Honda K, Morita M (2013) Ethanol-based organosolv treatment with trace hydrochloric acid improves the enzymatic digestibility of Japanese cypress (Chamaecyparis obtusa) by exposing nanofibers on the surface. Bioresour Technol 132:64–70

    Article  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  Google Scholar 

  • Ioelovich M (2012) Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotechnol 2:9–13

    Article  Google Scholar 

  • Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Eng Technol 2:5451

    Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  Google Scholar 

  • Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466

    Article  Google Scholar 

  • Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18, 1 Aug 2011

    Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  Google Scholar 

  • Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238

    Article  Google Scholar 

  • Josset S, Orsolini P, Siqueira G, Tejado A, Tingaut P, Zimmermann T (2014) Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord Pulp Pap Res J 29:167–175

    Article  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith B, Avérous L, Njuguna J et al (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci 2011:1–5 (2011)

    Google Scholar 

  • Kalia S, Kaith B, Kaur I (2011b) Cellulose fibers: bio-and nano-polymer composites green chemistry and technology. Springer, Heidelberg

    Book  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J et al (2011c) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:1–35

    Google Scholar 

  • Karimi K (2015) Lignocellulose-based bioproducts, vol 1. Springer, Cham

    Google Scholar 

  • Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885

    Article  Google Scholar 

  • Khalil HA, Bhat A, Yusra AI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  Google Scholar 

  • Khalil HA, Fizree H, Bhat AH, Jawaid M, Abdullah CK (2013) Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Compos B Eng 53:324–333

    Article  Google Scholar 

  • Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  Google Scholar 

  • Khan A, Vu KD, Chauve G, Bouchard J, Riedl B, Lacroix M (2014) Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose 21:3457–3468

    Article  Google Scholar 

  • Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158

    Article  Google Scholar 

  • Lani N, Ngadi N, Johari A, Jusoh M (2014) Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J Nanomaterials 2014:13

    Article  Google Scholar 

  • Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30:321–328

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  Google Scholar 

  • Lee H, Hamid S, Zain S (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014

    Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  Google Scholar 

  • Li J, Wei X, Wang Q, Chen J, Chang G, Kong L et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  Google Scholar 

  • Li J, Wang Y, Wei X, Wang F, Han D, Wang Q et al (2014) Homogeneous isolation of nanocelluloses by controlling the shearing force and pressure in microenvironment. Carbohydr Polym 113:388–393

    Article  Google Scholar 

  • Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852

    Article  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polymer J 59:302–325

    Article  Google Scholar 

  • Lindström T, Aulin C (2014) Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics. Scand J Res 29:345–351

    Article  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84:316–322

    Article  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296

    Article  Google Scholar 

  • Mangalam AP, Simonsen J, Benight AS (2009) Cellulose/DNA hybrid nanomaterials. Biomacromolecules 10:497–504

    Article  Google Scholar 

  • Manohar B, Sridhar B (2001) Size and shape characterization of conventionally and cryogenically ground turmeric (curcuma domestica) particles. Powder Technol 120:292–297

    Article  Google Scholar 

  • Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  Google Scholar 

  • Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mater Sci 30:225–242

    Google Scholar 

  • Miron J, Ben-Ghedalia D (1982) Effect of hydrolysing and oxidizing agents on the composition and degradation of wheat straw monosaccharides. Eur J Appl Microbiol Biotechnol 15:83–87

    Article  Google Scholar 

  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766

    Article  Google Scholar 

  • Mittal K (2015) Progress in adhesion and adhesives. Wiley, West Sussex

    Book  Google Scholar 

  • Moe ST, Janga KK, Hertzberg T, Hägg M-B, Øyaas K, Dyrset N (2012) Saccharification of lignocellulosic biomass for biofuel and biorefinery applications–a renaissance for the concentrated acid hydrolysis? Energy Procedia 20:50–58

    Article  Google Scholar 

  • Mofokeng J., Luyt A (2015) Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO 2 as nanofiller. Thermochimica Acta

    Google Scholar 

  • Moniruzzaman M, Ono T, Yusup S, Chowdhury S, Bustam MA, Uemura Y (2013) Improved biological delignification of wood biomass via ionic liquids pretreatment: a one step process. J Energy Technol Policy 3:144–152

    Google Scholar 

  • Nair SS, Zhu J, Deng Y, Ragauskas AJ (2014) Characterization of cellulose nanofibrillation by micro grinding. J Nanopart Res 16:1–10

    Article  Google Scholar 

  • Narayanaswamy N, Dheeran P, Verma S, Kumar S (2013) Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin, pp 3–34

    Chapter  Google Scholar 

  • Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50:531–541

    Article  Google Scholar 

  • Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200

    Article  Google Scholar 

  • Nguyen HD, Mai TTT, Nguyen NB, Dang TD, Le MLP, Dang TT (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci Nanosci Nanotechnol 4:015016

    Article  Google Scholar 

  • Oksman K, Mathew AP, Långström R, Nyström B, Joseph K (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:1847–1853

    Article  Google Scholar 

  • Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari L (2004) Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl Biochem Biotechnol 117:1–17

    Article  Google Scholar 

  • Panagiotopoulos I, Chandra R, Saddler J (2013) A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips. Bioresour Technol 130:570–577

    Article  Google Scholar 

  • Panthapulakkal S, Sain M (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plast. Polym Technol 2:9–16

    Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity–relating pH to biomatrix opening. New Biotechnol 27:739–750

    Article  Google Scholar 

  • Peng B, Dhar N, Liu H, Tam K (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  Google Scholar 

  • Pilla S (2011) Handbook of bioplastics and biocomposites engineering applications, vol 81. Wiley, Hoboken

    Book  Google Scholar 

  • Pracella M, Haque M, Alvarez DPV (2012) Preparation and characterization of PLA nanocomposites with nanocellulose filled PVAC. In: The European conference on composite materials, pp. 24–28

    Google Scholar 

  • Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222

    Article  Google Scholar 

  • Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  Google Scholar 

  • Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications

    Google Scholar 

  • Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    Article  Google Scholar 

  • Rosa M, Medeiros E, Malmonge J, Gregorski K, Wood D, Mattoso L et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  Google Scholar 

  • Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396, October 2014

    Google Scholar 

  • Sánchez O, Alméciga-Díaz CJ, Sierra R (2011) Delignification process of agro-industrial wastes an alternative to obtain fermentable carbohydrates for producing fuel. INTECH Open Access Publisher, Croatia

    Book  Google Scholar 

  • Saunders KJ (2013) Organic polymer chemistry: an introduction to the organic chemistry of adhesives, fibres, paints, plastics, and rubbers. Springer Science & Business Media, Netherlands

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Plant Biol 61:263

    Article  Google Scholar 

  • Shchipunov Y (2012) Bionanocomposites: green sustainable materials for the near future. Pure Appl Chem 84:2579–2607

    Article  Google Scholar 

  • Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33:7–22

    Article  Google Scholar 

  • Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  Google Scholar 

  • Smith R (2005) Biodegradable polymers for industrial applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Song Q, Winter WT, Bujanovic BM, Amidon TE (2014) Nanofibrillated cellulose (NFC): a high-value co-product that improves the economics of cellulosic ethanol production. Energies 7:607–618

    Article  Google Scholar 

  • Souza SF, Leao AL, Cai JH, Wu C, Sain M, Cherian BM (2010) Nanocellulose from curava fibers and their nanocomposites. Mol Cryst Liq Cryst 522:42/[342]–52/[352]

    Google Scholar 

  • Stamboulis A, Baillie C, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos A Appl Sci Manuf 32:1105–1115

    Article  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Google Scholar 

  • Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913–3929

    Article  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    Article  Google Scholar 

  • Ten E, Jiang L, Wolcott MP (2013) Preparation and properties of aligned poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 92:206–213

    Article  Google Scholar 

  • Thakur VK (2014) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Valentini L, Cardinali M, Fortunati E, Torre L, Kenny J (2013) A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater Lett 105:4–7

    Article  Google Scholar 

  • Visakh P, Thomas S, Oksman K, Mathew AP (2012) Cellulose nanofibres and cellulose nanowhiskers based natural rubber composites: diffusion, sorption, and permeation of aromatic organic solvents. J Appl Polym Sci 124:1614–1623

    Article  Google Scholar 

  • Wang B, Sain M (2006) Dispersion of soybean stock-based nanofiber in plastic matrix. ACS Symp Ser, pp. 187–208

    Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103

    Article  Google Scholar 

  • Wang Y, Wei X, Li J, Wang F, Wang Q, Chen J et al (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fibers Polym 16:572–578

    Article  Google Scholar 

  • Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316

    Article  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y et al (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145

    Article  Google Scholar 

  • Yan C, Zhang J, Jiasong H, Huiquan L, Zhang Y (2010) Homogeneous acetylation of cellulose at relatively high concentrations in an ionic liquid. Chin J Chem Eng 18:515–522

    Article  Google Scholar 

  • Yinghuai Z, Yuanting KT, Hosmane NS (2013) Applications of ionic liquids in lignin chemistry. INTECH Open Access Publisher, Croatia

    Book  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100:2580–2587

    Article  Google Scholar 

  • Zhang K, Ran X, Wang X, Han C, Han L, Wen X et al (2011) Improvement in toughness and crystallization of poly (L-lactic acid) by melt blending with poly (epichlorohydrin-co-ethylene oxide). Polym Eng Sci 51:2370–2380

    Article  Google Scholar 

  • Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly (3-hydroxybutyrate-co-hydroxyvalerate) and poly (butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101

    Article  Google Scholar 

  • Zhao H, Cui Z, Wang X, Turng L-S, Peng X (2013) Processing and characterization of solid and microcellular poly (lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Compos B Eng 51:79–91

    Article  Google Scholar 

  • Zhao Y, Xu C, Xing C, Shi X, Matuana LM, Zhou H et al (2015) Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing. Ind Crops Prod 65:96–101

    Article  Google Scholar 

  • Zhou Y, Fu S, Zheng L, Zhan H (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films. Express Polym Lett 6:794–804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bhat, A.H., Dasan, Y.K., Khan, I., Jawaid, M. (2017). Cellulosic Biocomposites: Potential Materials for Future. In: Jawaid, M., Salit, M., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49382-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49382-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49381-7

  • Online ISBN: 978-3-319-49382-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics