Skip to main content

Green Composites: Versatile Material for Future

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The growing concern towards environmental problems and the urgent need for more versatile environmental friendly materials has led to increasing attention about polymer composites, i.e. fillers/reinforcing materials coming from renewable sources and biodegradable, especially from forest. The composites usually referred to as “green”, can find several industrial applications as discussed in this chapter. Biodegradable polymers coming from natural resources are also one important constituent of green composites. This chapter provides tactic for readers regarding the materials used for the fabrication and specific application of green composites in various fields. Furthermore, a discussion of the major material attributes of green composites is provided. From these focuses, a series of balancing application properties are explained. The chapter concludes that green composites have potential for use in a number of applications, but as with all design, one must carefully match the material to the application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Choi SH, Park MK et al (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macro Mater Eng 300:10–24

    Article  Google Scholar 

  • Azwa ZN, Yousif BF, Manalo AC et al (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  Google Scholar 

  • Bax B, Mussing J (2008) Impact and tensile properties of PLA/cordenka and PLA/flax composites. Comput Sci Technol 68:1601–1607

    Article  Google Scholar 

  • Bledzki AK, Faruk O, Huque M et al (2002) Physico-mechanical studies of wood fiber reinforced composites. Polym Plast Technol Eng 41:435–451

    Article  Google Scholar 

  • Bledzki AK, Jaszkiewicz A, Scherzer D et al (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Comput Part A Appl Sci Manuf 40:404–412

    Article  Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C et al (2007) Could biopolymers reinforced by randomly scattered flax fiber be used in structural applications. Comput Sci Technol 67:462–470

    Article  Google Scholar 

  • Buschow KHJ, Cahn R, Fleming MC et al (2001) Encyclopedia of materials: science and technology. Elsevier Science, Pergamon Press, Oxford

    Google Scholar 

  • Corbiere NT, Gfeller LB, Lundquist B et al (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resourc Conserv Recy 33:267–287

    Article  Google Scholar 

  • Dittenber DB, Gangarao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Comput Part A Appl Sci Manuf 43:1419–1429

    Article  Google Scholar 

  • Duigou AL, Pillin I, Bourmaud A et al (2008) Effect of recycling on mechanical behaviour of biocompostable flax/poly (L-lactide) composites. Comput Part A 39:1471–1478

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    Article  Google Scholar 

  • Febrianto F, Yoshioka M, Nagai Y et al (2006) The morphological, mechanical and physical properties of wood flour-poly lactic acid composites under various filler types. J Biol Sci 6:555–563

    Article  Google Scholar 

  • Finkenstadt VL, Liu LS, Willett JL et al (2007) Evaluation of poly (lactic acid) and sugar beet pulp green composite. J Polym Environ 15:1–6

    Article  Google Scholar 

  • Graupner N, Herrmann AS, Mussig J et al (2009) Natural and man-made cellulose fiber-reinforced poly(lactic acid) (PLA) composite: an overview about mechanical characteristics and application areas. Comput Part A 40:810–821

    Article  Google Scholar 

  • Herrera-Franco PJ, Valadez-Gonzalez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Comput Part A Appl Sci Manuf 35:339–345

    Article  Google Scholar 

  • Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. J Min Met Mater Soc 58:80–86

    Article  Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK et al (2008) Effect of fiber surface treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Comput Sci Technol 68:424–432

    Article  Google Scholar 

  • Joshi SV, Drzal LT, Mohanty AK et al (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Comput Part A Appl Sci Manuf 35:371–376

    Article  Google Scholar 

  • Karim Z (2014) Processing and characterization of membranes based on cellulose nanocrystals for water purification. Licentiate thesis, Lulea University of Technology, Sweden

    Google Scholar 

  • Karim Z, Afrin S (2015) Nanocellulose as novel supportive functional material for growth and development of cells. Cell Dev Biol 4:2–7

    Google Scholar 

  • Karim Z, Afrin S, Husain Q, Danish R et al (2016a) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 6:1–16

    Article  Google Scholar 

  • Karim Z, Claudpierre S, Grahn M et al (2016b) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Memb Sci 514:418–428

    Article  Google Scholar 

  • Karim Z, Grahn M, Oksman K et al (2016c) High flux affinity membranes based on cellulose nanocompoite for removal of heavy metal ions from industrial effluent. RCS Adv 6:20644–20653

    Google Scholar 

  • Karim Z, Hakalahti M, Tammelin T et al (2016d) Effect of in situ surface TEMPO function mineralization of nanocellulose membranes on the adsorption of metal ions from aqueous solution. RSC Adva (submitted)

    Google Scholar 

  • Karim Z, Mathew AP, Mouzon J et al (2014a) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676

    Article  Google Scholar 

  • Karim Z, Mathew AP, Oksman K et al (2014b) Fully biobased nanocomposite membranes: removal of heavy metals from polluted water. Dissemination workshop for the Nano4water Cluster

    Google Scholar 

  • Kim HS, Lee BH, Lee S et al (2011) Enhanced interfacial adhesion, mechanical and thermal properties of natural flour-filed biodegradable polymer bio-composites. J Therm Anal Calorim 104:331–338

    Article  Google Scholar 

  • Kumar R, Yakabu MK, Anandjiwala RD et al (2010) Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Comput Part A 41:1620–1627

    Article  Google Scholar 

  • Le Duigou A, Davies P, Baley C et al (2010) Interfacial bonding of flax fibre/poly(l-lactide) bio-composites. Comput Sci Technol 70:231–239

    Article  Google Scholar 

  • Lee BH, Kim HS, Lee S et al (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Comput Sci Technol 69:2573–2579

    Article  Google Scholar 

  • Manita PL, Morreale M (2011) Green composites: a brief review. Comput Part A Allie Sci Manuf 42:579–588

    Article  Google Scholar 

  • Mathew AP, Oksman K, Karim Z et al (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Ind Crop Prod 58:212–219

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT et al (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green material world. J Polym Environ 10:19–26

    Article  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G et al (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macomol Mater Eng 276:1–24

    Article  Google Scholar 

  • Nakamura R, Goda K, Noda J et al (2009) High temperature tensile properties and deep drawing of fully green composites. Exp Polym Lett 3:19–24

    Article  Google Scholar 

  • Nirma U, Jamil MMH, Ahmad M et al (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Inter 83:77–104

    Article  Google Scholar 

  • Nishino T, Hirao K, Kotera M et al (2003) Kenaf reinforced biodegradable composite. Comput Sci Technol 63:1281–1286

    Article  Google Scholar 

  • Niska KO, Sain M (eds) (2008) Wood–polymer composites. Elsevier, Amsterdam

    Google Scholar 

  • Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452

    Article  Google Scholar 

  • Oksman K, Skrifvars M, Selin JF et al (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comput Sci Technol 63:1317–1324

    Article  Google Scholar 

  • Oma F, Bledzki AK, Finkb HP et al (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  • Paul W, Jan I, Ignaas V et al (2003) Natural fibers: can they replace glass in fiber reinforced plastics? Comput Sci Technol 63:1259–1264

    Article  Google Scholar 

  • Petinakis E, Yu L, Edward G et al (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J Polym Environ 17:83–94

    Article  Google Scholar 

  • Placketta D, Andersen TL, Pedersenc WB et al (2003) Biodegradable composite based on L-polylactide and jute fibers. Comput Sci Technol 63:1287–1296

    Article  Google Scholar 

  • Ramamoorthya SK, Skrifvarsa M, Persson A et al (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55:107–162

    Article  Google Scholar 

  • Saravana DB, Kumar M (2010) Potential use of natural fiber composite materials in Indian. J Reinf Plast Comput 29:3600–3613

    Article  Google Scholar 

  • Satyanarayana KG, Ravikumar KK, Sukumaran K et al (1986) Structure and properties of some vegetable fibres. Part 3. Talipot and palmyrah fibres. J Mater Sci 21:57–63

    Article  Google Scholar 

  • Tao Y, Yan L, Jie R et al (2009) Preparation and properties of short natural fiber reinforced poly(lactic acid) composites. Trans Nonferrous Met Soc China 19:s651–s655

    Article  Google Scholar 

  • Tayommai T, Ong DA et al (2010) Natural fiber/PLA composites: mechanical properties and biodegradability by gravimetric measurement respirometric (GMR) system. Adv Mater Res 93(94):223–226

    Article  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK et al (2014) Review: raw natural fiber–based polymer composites. Inter J Polym Anal Charact 19:256–271

    Article  Google Scholar 

  • Ya L, Chouw N, Jayaraman K et al (2014) Flax fibre and its composites-a review. Comput Part B 56:296–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoheb Karim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, A.A., Afrin, S., Karim, Z. (2017). Green Composites: Versatile Material for Future. In: Jawaid, M., Salit, M., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49382-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49382-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49381-7

  • Online ISBN: 978-3-319-49382-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics