Skip to main content

Okra Fibers: Potential Material for Green Biocomposites

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Okra bahmia (Abelmoschus esculentus) plant is considered as one of the abundant sources of natural fibers. Huge amount of okra plant stem is discarded on the field annually after collecting vegetable, without proper utilization. However, this biomass from the okra plant is a renewable, biodegradable, cost efficient and low-density source for production of bast fibers, and other industrial cost-efficient eco-friendly materials. The research on okra bast fiber has started in 2007. After that, the fiber extraction process, composition of fiber, morphology and performance properties of fiber, fiber modification techniques, and some important applications of the fiber etc. have been established. It was found that the okra bast fiber contains high cellulose content, excellent mechanical strength and stiffness, and good thermal resistance which are comparable to some traditional bast fibers like jute, hemp and ramie. Some okra bast fiber reinforced biocomposites were successfully fabricated with different matrices including biodegradable corn starch, Poly(lactic acid), P(vinyl alcohol), urea formaldehyde resin etc. via application of various processing methods. These studies revealed that the okra bast fiber biocomposites exhibited better mechanical properties, water resistance and thermal properties at optimized processing conditions. Therefore, by suitably optimizing the fiber, matrix, processing conditions, the future expectations of the okra bast fibers can be dramatically enhanced and its usage in composite field can be widened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad SH, Rasid R, Bonnia NN, Zainol I, Mamun AA, Bledzki AK, Beg MDH (2011) Polyester-kenaf composites: effects of alkali fiber treatment and toughening of matrix using liquid natural rubber. J Compos Mater 45:203–217. doi:10.1177/0021998310373514

  • Alam MS, Khan GMA (2007) Chemical analysis of okra bast fiber (Abelmoschus esculentus) and its physico-chemical properties. J Text Apparel Technol Manag 5:1–9

    Google Scholar 

  • Arbelaiz A, Fernández B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol 65:1582–1592. doi:10.1016/j.compscitech.2005.01.008

  • Asim M, Abdan K, Jawaid M, Nasir M, Dashtizadeh Z, Ishak MR, Hoque ME (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–17

    Article  Google Scholar 

  • Bismarck A, Aranberri-Askargorta I, Springer J, Mohanty AK, Misra M, Hinrichsen G, Czapla S (2001) Surface characterization of natural fibers; surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chem 3:100–107. doi:10.1039/b100365h

    Article  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. doi:10.1016/S0079-6700(98)00018-5

    Article  Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470. doi:10.1016/j.compscitech.2006.08.024

    Article  Google Scholar 

  • Colom X, Carrasco F, Pagès P, Cañavate J (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63:161–169. doi:10.1016/S0266-3538(02)00248-8

    Article  Google Scholar 

  • Dányádi L, Móczó J, Pukánszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos Part A Appl Sci Manuf 41:199–206. doi:10.1016/j.compositesa.2009.10.008

    Article  Google Scholar 

  • De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122. doi:10.1016/j.compscitech.2009.09.013

    Article  Google Scholar 

  • De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254. doi:10.1016/j.compscitech.2010.11.023

    Article  Google Scholar 

  • Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. doi:10.1016/j.compscitech.2006.06.019

    Article  Google Scholar 

  • Dhande GA, Patil VM, Raut R V, Rajput JC, Ingle AG (2012) Regeneration of okra (Abelmoschus esculentus L.) via apical shoot culture system 11:15226–15230. doi:10.5897/AJB12.907

  • Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl Sci Manuf 35:1267–1276. doi:10.1016/j.compositesa.2004.04.004

    Article  Google Scholar 

  • Evans JD, Akin DE, Foulk JA (2002) Flax-retting by polygalacturonase-containing enzyme mixtures and effects on fiber properties. J Biotechnol 97:223–31. doi:10.1016/S0168-1656(02)00066-4

  • FAOSTAT (2015) Okra, production quantity (tons)—for all countries

    Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. doi:10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  • Ford ENJ, Mendon SK, Thames SF, Ph D, Rawlins JW (2010) X-ray diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. J Eng Fiber Fabr 5:10–20

    Google Scholar 

  • Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Foresti ML, Vazquez A, Kenny JM (2013a) Okra (Abelmoschus esculentus) fibre based PLA composites: mechanical behaviour and biodegradation. J Polym Environ 21:726–737. doi:10.1007/s10924-013-0571-5

  • Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013b) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230. doi:10.1002/app.38524

    Article  Google Scholar 

  • Frone AN, Panaitescu DM, Donescu D, Spataru CI, Radovici C, Trusca R, Somoghi R (2011) Preparation and charaterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6:487–512

    Google Scholar 

  • Gassan J, Bledzki AK (1997) Effect of moisture content on the properties of silanized jute-epoxy composites. Polym Compos 18:179–184. doi:10.1002/pc.10272

    Article  Google Scholar 

  • Guleria A, Singha AS, Rana RAJK (2015) Mechanical, thermal, morphological, and biodegradable studies of okra cellulosic fiber reinforced starch-based biocomposites. Adv Polym Technol 21646:1–9. doi:10.1002/adv.21646

    Google Scholar 

  • Islam MS, Pickering KL, Foreman NJ (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos Part A Appl Sci Manuf 41:596–603. doi:10.1016/j.compositesa.2010.01.006

    Article  Google Scholar 

  • JankauskienÄ— Z, GruzdevienÄ— E (2013) Physical parameters of dew retted and water retted hemp (Cannabis sativa L.) fibres. Zemdirbyste Agric 100:71–80. doi:10.13080/z-a.2013.100.010

    Article  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B Eng 43:2883–2892. doi:10.1016/j.compositesb.2012.04.053

    Article  Google Scholar 

  • Karmaker AC (1997) Effect of water absorption on dimensional stability and impact energy of jute fibre reinforced polypropylene. J Mater Sci Lett 16:462–464. doi:10.1023/A:1018508209022

    Article  Google Scholar 

  • Khan GMA, Saheruzzaman M, Razzaque SMA, Islam MS, Alam MS, Islam MM (2009a) Grafting of acrylonitrile monomer onto bleached okra bast fibre and its textile properties. Indian J Fibre Text Res 34:321–327

    Google Scholar 

  • Khan GMA, Shaheruzzaman M, Rahman MH, Abdur Razzaque SM, Islam MS, Alam MS (2009b) Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers Polym 10:65–70

    Article  Google Scholar 

  • Khan GMA, Alam MS, Terano M (2012a) Thermal characterization of chemically treated coconut husk fibre. Indian J Fibre Text Res 37:20–26

    Google Scholar 

  • Khan GMA, Shahrear Palash SR, Shamsul Alam M, Chakraborty AK, Gafur MA, Terano M (2012b) Isolation and characterization of betel nut leaf fiber: its potential application in making composites. Polym Compos 33:764–772. doi:10.1002/pc.22204

    Article  Google Scholar 

  • Khan GMA, Alam Shams MS, Kabir MR, Gafur MA, Terano M, Alam MS (2013) Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites. J Appl Polym Sci 128:1020–1029. doi:10.1002/app.38197

  • Khan GMA, Abedin SMA, Choudhury MJ, Gafur MA, Alam MS (2014a) Renewable okra bast fiber reinforced phenol formaldehyde resin composites: mechanical and thermal studies. Res Rev: J Mater Sci 2:32–36

    Google Scholar 

  • Khan GMA, Haque MA, Alam MS (2014b) Studies on okra bast fibre-reinforced phenol formaldehyde resin composites. In: Hakeem KR, Rashid U, Jawaid M (eds) Biomass and bioenergy: processing and properties. Springer, Switzerland, pp 157–175

    Google Scholar 

  • Khan GMA, Shaikh H, Alam MS, Gafur MA (2015) Effect of chemical treatments on the physical properties of non-woven jute/PLA biocomposites. Res Rev: J Mater Sci 10:7386–7404

    Google Scholar 

  • Khan GMA, Yilmaz ND, Yilmaz K (2016a) Okra bast fiber as potential reinforcement element of biocomposites: can it be the flax of the future? In: Thakur VK (ed) Handbook of composite from renewable materials. Wiley Scrivener

    Google Scholar 

  • Khan GMA, Yilmaz ND, Yilmaz K (2016b) Recent developments in design and manufacturing of biocomposites of Bombyx mori silk fibroin. In: Handbook of composites from renewable materials. Wiley Scrivener

    Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44:120–127. doi:10.1016/j.compositesb.2012.07.004

    Article  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856–873. doi:10.1016/j.compositesb.2011.01.010

    Article  Google Scholar 

  • Lee S-H, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci Manuf 37:80–91. doi:10.1016/j.compositesa.2005.04.015

    Article  Google Scholar 

  • Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485. doi:10.1016/j.ultsonch.2011.11.007

    Article  Google Scholar 

  • Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 49:755–767. doi:10.1016/j.indcrop.2013.06.012

    Article  Google Scholar 

  • Mir SS, Hasan SMN, Hossain MJ, Hasan M (2012) Chemical modification effect on the mechanical properties of coir fiber. Eng J 16:73–83. doi:10.4186/ej.2012.16.2.73

    Article  Google Scholar 

  • Mohanty JR, Das SN, Das HC, Swain SK (2013) Effective mechanical properties of polyvinylalcohol biocomposites with reinforcement of date palm leaf fibers. Polym Compos 34:959–966. doi:10.1002/pc.22502

    Article  Google Scholar 

  • Moniruzzaman M, Maniruzzaman M, Gafur MA, Santulli C (2009) Lady’s finger fibres for possible use as a reinforcement in composite materials. J Biobased Mater Bioenergy 3:286–290

    Article  Google Scholar 

  • Munoz E, Garcia-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci 2015:390275. doi:10.1155/2015/390275

    Article  Google Scholar 

  • Müssig J, Schmehl M, von Buttlar H-B, Schönfeld U, Arndt K (2006) Exterior components based on renewable resources produced with SMC technology—considering a bus component as example. Ind Crops Prod 24:132–145. doi:10.1016/j.indcrop.2006.03.006

    Article  Google Scholar 

  • Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324. doi:10.1016/S0266-3538(03)00103-9

    Article  Google Scholar 

  • Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. doi:10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  • Puglia D, Biagiotti J, Kenny J (2004) A review on natural fibre-based composites—part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibers 1:23–65. doi:10.1300/J395v01n03_03

    Article  Google Scholar 

  • Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247. doi:10.1002/app.30116

    Article  Google Scholar 

  • Raghavendra S, Shetty PB, Mukunda PG (2013) Mechanical properties of short banana fiber reinforced natural rubber composites. Res Rev: J Mater Sci 2:1652–1655

    Google Scholar 

  • Rashid B, Leman Z, Jawaid M, Ghazali MJ, Ishak MR (2016) Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment

    Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447. doi:10.1016/S0266-3538(01)00046-X

    Article  Google Scholar 

  • Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R, Rajini N (2013) Characterization of natural fiber and composites—a review. J Reinf Plast Compos 32:1457–1476. doi:10.1177/0731684413495322

    Article  Google Scholar 

  • Srinivasababu N (2015) An overview of okra fibre reinforced polymer composites. IOP Conf Ser Mater Sci Eng 83:012003. doi:10.1088/1757-899X/83/1/012003

    Article  Google Scholar 

  • Srinivasababu N, Rao KMM (2009) Tensile properties characterization of okra woven fiber reinforced polyester composites. Int J Eng 3:403–412

    Google Scholar 

  • Sule U (2014) Studies on the properties of short okra/glass fibers reinforce depoxy hybrid composites. Int J Sci Technoledge 2:260–265

    Google Scholar 

  • Wan WK, Hutter JL, Milton L, Guhados G (2006) Bacterial cellulose and its nanocomposites for biomedical applications. In: Cellulose nanocomposites. American Chemical Society, pp 15–221

    Google Scholar 

  • Wang L, Han G, Zhang Y (2007) Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydr Polym 69:391–397

    Article  Google Scholar 

  • Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B Eng 56:296–317. doi:10.1016/j.compositesb.2013.08.014

    Article  Google Scholar 

  • Yilmaz ND (2013) Effect of chemical extraction parameters on corn husk fibres characteristics. Indian J Fibre Text Res 38:29–34

    Google Scholar 

  • Yilmaz ND (2014) Agro-residual fibers as potential reinforcement elements for biocomposites. In: Vijay Kumar T (ed) Lignocellulosic polymer composites: processing, characterization, and properties. Wiley-Scrivener, New York, pp 231–270

    Google Scholar 

  • Yilmaz ND (2015) Agro-residual fibers as potential reinforcement elements for biocomposites. In: Thakur VK (ed) Lignocellulosic polymer composites: processing Characterization and Properties. Wiley Scrivener, New York, pp 233–270

    Google Scholar 

  • Yilmaz ND (2016) Design of acoustic textiles: environmental challenges and opportunities for future direction. In: Nayak R, Padhye R (eds) Textiles for acoustic applications. Springer

    Google Scholar 

  • Yilmaz ND, Powell NB (2015) Biocomposite structures as noise control elements. In: Thakur VK, Kessler M (eds) Green biorenewable biocomposites: from knowledge to industrial applications. Apple Academic Press—CRC Press, p 405

    Google Scholar 

  • Yilmaz ND, Michielsen S, Banks-Lee P, Powell NB (2012) Effects of material and treatment parameters on noise-control performance of compressed three-layered multifiber needle-punched nonwovens. J Appl Polym Sci 123:2095–2106

    Article  Google Scholar 

  • Yilmaz ND, Powell NB, Banks-Lee P, Michielsen S (2013) Multi-fiber needle-punched nonwoven composites: effects of heat treatment on sound absorption performance. J Ind Text 43:231–246. doi:10.1177/1528083712452899

    Article  Google Scholar 

  • Yilmaz ND, ÇaliÅŸkan E, Yilmaz K (2014a) Effect of xylanase enzyme on mechanical properties of fibres extracted from undried and dried corn husks. Indian J Fibre Text Res 39:60–64

    Google Scholar 

  • Yilmaz ND, Konak S, Yilmaz K (2014b) Okra bast fibers as potential reinforcement elements for biocomposites. In: 1st international conference on sustainable composite technologies. Isparta, pp 32–33

    Google Scholar 

  • Yilmaz ND, Koyundereli Cilgi G, Yilmaz K (2015) Natural polysaccharides as pharmaceutical excipients. In: Thakur VK, Thakur MK (eds) Handbook of polymers for pharmaceutical technologies, vol 3., Biodegradable polymersWiley Scrivener, New York, pp 483–516

    Chapter  Google Scholar 

  • Yilmaz ND, Khan GMA, Yilmaz K (2016a) Biofiber reinforced acrylated epoxidized soybean oil (AESO) composites. In: Thakur VK, Thakur MK (eds) Handbook of composites from renewable materials. Wiley Scrivener

    Google Scholar 

  • Yilmaz ND, Konak S, Yilmaz K, Kartal AA, Kayahan E (2016b) Characterization, modification and use of biomass: okra fibers. Bioinspired Biomim Nanobiomaterials. doi:10.1680/jbibn.15.00014

    Google Scholar 

  • Yu H, Yu C (2010) Influence of various retting methods on properties of kenaf fiber. J Text Inst 101:452–456. doi:10.1080/00405000802472564

    Article  Google Scholar 

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A Appl Sci Manuf 41:499–505. doi:10.1016/j.compositesa.2009.12.006

    Article  Google Scholar 

  • Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Clean Prod 15:1032–1040. doi:10.1016/j.jclepro.2006.05.036

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gazi Md Arifuzzaman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arifuzzaman Khan, G.M., Yilmaz, N.D., Yilmaz, K. (2017). Okra Fibers: Potential Material for Green Biocomposites. In: Jawaid, M., Salit, M., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49382-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49382-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49381-7

  • Online ISBN: 978-3-319-49382-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics