Skip to main content

Evaluation of Mechanical Characteristics and Static Crack Growth Resistance of Materials with the Use of Aes

  • Chapter
  • First Online:
  • 1855 Accesses

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

To diagnose the products, structures or state of their separate elements, it is important to estimate the strength characteristics of materials and the parameters of their static crack growth resistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Skalskiy VR (2003) Development of methods and facilities for estimation of volume damaging and fracture of materials and products by the parameters of acoustic emission. Theses of Doctor’s Degree in Engineering, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv

    Google Scholar 

  2. Skalskiy VR, Andreikiv OY (2000) Do problemi avtomatizatsiyi diagnostuvannya konstrukziy metodom akustichnoyi emisiyi (To the problem of automation of diagnostics of constructions by the acoustic emission method). Tekhnicheskaja diagnostika i nerazrushajuschii control (Technical diagnostics and nondestructive testing) 4:3–9

    Google Scholar 

  3. Pollock AA (1979) Quantitative evaluation of acoustic emission from plastic zone growth. Int Advances in NDT 6:239–262

    Google Scholar 

  4. Kisi T, Ono T, Kuribajasi T (1981) Generation of acoustic emission and mechanical conditions during fracture toughness testing in elasto-pastic region. Khihakai Kensa 30(11):896–902

    Google Scholar 

  5. Irwin GR (1960) Plastic zone near a crack and fracture toughness. In: Proceedings of 7th sagamore conference

    Google Scholar 

  6. Stadnyk MM (1988) Ob odnom metode priblizhennogo resheniya trechmernoy uprugoy zadachi dlya tela s tonkim vklyucheniem (On one method of approximation solution of 3D elastic problem for a body with a fine inclusion). Fiziko-chimicheskaya mechanika materialov (Physicochemical Mech Mater) 1:53–65

    Google Scholar 

  7. Cherepanov GP (1974) Mechanika chrupkogo razrusheniya (Brittle Fract Mech). Nauka, Moskva

    Google Scholar 

  8. (1985) GOST 25.506–85. Raschety i ispytaniya na prochnost’. Metody mecha-nicheskich ispytaniy metallov. Opredelenie charakteristik treschino-stoykosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii. Vved. v deystvie 27.03.1985 g. (State Standard 25.506–85. Calculation and testing for strength. Methods of materials mechanical testing. Determination of crack growth resistance characteristics (fracture toughness). Implemented 27.03.1985). Izdatel’stvo standartov, Moskva

    Google Scholar 

  9. Skalskiy VR et al (1998) Pristroyi i ustanovki dlya viznachennya trischinostiykosti konstrukziynich materialiv metodom akustichnoyi emisiyi (Devices and equipment for assessment of crack growth resistance of structural materials by the method of acoustic emission). Preprint, NAN Ukrayiny, Fizyko-mechanichnyi institut, 1(1998), L’viv

    Google Scholar 

  10. Andreykiv AY et al (1990) Metodicheskie aspekty primeneniya metoda akusticheskoy emissii pri opredelenii staticheskoy treschinostoykosti materialov (Methodical aspects of application of the acoustic emission method for determining static crack growth resistance of materials). Preprint, NAN Ukrayini, Fizyko-mechanichnyi institut, 165(1990), L’viv

    Google Scholar 

  11. Lysak MV, Skalskyi VR (1997) Metodichnyi pidchid dlya eksperimental’noyi akustiko–emisiynoyi ozinky trischinotryvkosti konstrukziynych materialiv (Methodical approach to experimental acoustic-emission assessment of crack growth resistance of structural materials). Fizyko-chimichna mechanika materialiv (Physicochemical Mech Mater) 5:17–30

    Google Scholar 

  12. Andreikiv OY, Skalskyi VR, Lysak MV (1994) Sposib kontrolu rostu trischyn u zrazkakh materialiv (A method of checking the growth of cracks in the material specimens). Patent of Ukraine N2914, MPK: G01N29/14, Bul. 5–1, 26 Dec 1994

    Google Scholar 

  13. Kishi T (1985) Acoustic emission source characterization and its application to micro-cracking. Z Metall 76(7):512–518

    Google Scholar 

  14. Novikov NV, Likhatskii SI, Maistrenko AL (1973) Opredelenie momenta stragivaniya treschiny akusticheskim metodom pri ispytanii obrazzov s nadrezom na vnezentrennoe rastyazhenie (Determination of the crack start moment by the acoustic method during eccentric tensile testing of specimens with notches). Problemy prochnosti (Prob Strength) 9:21–25

    Google Scholar 

  15. Vainberg VYe, Sosedpov VN, Kushnir AM (1975) Issledovanie rosta treschin metodom akusticheskoy emissii (Investigation of the crack growth by the acoustic emission method). Defektoskopia 3:127–129

    Google Scholar 

  16. Andreykiv OY et al (1998) Determination of threshold values of stress intensity factor using acoustic emission method. In: Proceedings of 18–th symposium on experimental mechanics of solids. Jachranka near Warsaw, Poland, 14–16 Oct 1998

    Google Scholar 

  17. Smirnov VI (1979) Ob ozenke razmerov defektov metodom akusticheskoy emissii s pozizii lineynoy mechaniki razrusheniya (On estimation of defects sizes by the acoustic emission method from the positions of linear fracture mechanics). Defektoskopia 2:45–50

    Google Scholar 

  18. Korovkin ED, Skoblo AB, Dudina LP (1980) Opredelenie starta treschiny akusticheskim metodom (Determination of the crack start by the acoustic method). Zavod Lab 9:865–867

    Google Scholar 

  19. Jones MH, Brown WF Jr (1964) Acoustic detection of crack initiation in sharply notched specimens. Mater Res Stand 4(3):120–129

    Google Scholar 

  20. Kaiser J (1950) Untersuchungen uber das Auftreter Geraushen beim Zugversuch. Ph. D. Thesis, Technische Hochschule München

    Google Scholar 

  21. Lysak MW, Andrejkiw OJe, Skalskyj WR (1998) Schallemissionsmessungen beim Rißfortschritt in Stah unter statischer Belastung. Mater und Werkstofftechnik 29(2):90–93

    Article  Google Scholar 

  22. Zazuliak VA et al (1984) Treschinostoykost’ materiala krupnych opornych valkov prokatnych stanov (Crack growth resistance of large support rolls of rolling mills). Fiziko-chimicheskaya mechanika materialov (Physicochemical Mech Mater) 5:95–96

    Google Scholar 

  23. Tkach AN et al (1988) Metodicheskie osobennosti opredeleniya staticheskoy treschinostoykosti chugunok (Methodical peculiarities of determination of static crack growth resitance of cast irons). Ibid 1:68–73

    Google Scholar 

  24. Andreykiv OY et al (1990) Zastosuvannya akustychnoyi emisiyi dlya viznachennya statichnoyi trischynostiykosti lytych tytanovych splaviv (Application of acoustic emission for determination of static crack growth resistance of cast titanium alloys). Ibid 1:103–107

    Google Scholar 

  25. Lysak NV, Skalskiy VR, Luchko YY (1989) Akusticheskaya emissiya i razrushenie betona pri staticheskom nagruzhenii (Acoustic emission and fracture of concrete under static loading). Izvestia Vyshykh Uchebnykh Zavedenii. Stroitelstvo i Arkhitektura 12:48–51

    Google Scholar 

  26. Lysak NV, Skalskiy VR (1986) Issledovanie subkriticheskogo rosta treschin s pomosch’yu akusticheskoy emissii (Investigation of subcritical crack growth using acoustic emission). Fiziko-chimicheskaya mechanika materialov (Physicochemical Mech Mater) 4:113–114

    Google Scholar 

  27. Lysak NV, Skalskiy VR, Serhienko ON (1989) Ispol’zovanie metoda akusticheskoy emissii dlya issledovaniya razrusheniya chugunov (Application of the acoustic emission method for investigation of cast irons fracture). Technicheskaja diagnostika i nerazrushajuschij kontrol (Tech Diagn Nondestr Test) 3:37–45

    Google Scholar 

  28. Andreykiv AYe, Lysak NV (1989) Metod akusticheskoy emissii v issledovanii prozessov razrusheniya (A method of acoustic emission in investigation of the fracture processes). Naukova Dumka, Kiev

    Google Scholar 

  29. Aravas N, McMeecking RM (1985) Finite element analysis of void growth near blunting crack tip. J Mech Phys Solids 13(1):25–49

    Article  Google Scholar 

  30. McMeeking RM (1977) Finite deformation analysis of crack tip opening in elastic-plastic materials and implications for fracture. J Mech Phys Solids 25(5):357–381

    Article  MathSciNet  Google Scholar 

  31. Skalskiy VR et al (2004) Doslidzhennya tverdinnya betonu za sygnalamy akustychnoi emisii (Investigations of concrete hardening by acoustic emission signals). Fizyko-chimichna mechanika materialiv (Physicochemical Mech Mater) 5:104–106

    Google Scholar 

  32. Postanova Kabinetu ministriv Ukrayiny “Pro zabezpechennya nadiynosti i bezpechnoyi ekspluataziyi budivel’ sporud ta inzhenernych sporud” No 409 vid 05 travnya 1997 r. (Resolution of the Cabinet of Ministers of Ukraine “On providing reliability and safe exploitation of buildings and engineering constructions” No. 409, May 05, 1997)

    Google Scholar 

  33. Normativni dokumenty z pytan’ obstezhen’, pasportyzaziyi, bezpechnoyi ta nadiynoyi ekspluataziyi vyrobnychych budivel’ ta sporud. Vvedeni 01 grudnya 1997 r. (Normative documents on the problems of inspections, certification, safe and reliable exploitation of production buildings and constructions. Implemented on December 01, 1997)

    Google Scholar 

  34. Iosylevskyi LI et al (1986) Zhelezobetonnye proletnye stroeniya mostov industrial’nogo izgotovleniya (Konstruirovanie i metody rascheta) (Iron-concrete span constructions of prefabricated bridges (Design and methods of calculation)). Transport, Moskva

    Google Scholar 

  35. (1995) DSTU 2865-94. Kontrol’ neruynivnyi. Terminy ta vyznachennya (Standard 2865-94. Nondestructive testing. Terms and definitions. Izdatel’stvo standartov, Kiev)

    Google Scholar 

  36. Muravin GB, Mochulskyi VA, Pavlovskaya FS (1989) Issledovaniya mechanizma izlucheniya voln napryazheniy pri tverdenii dvuchkompozitnoy smesi (Investigations of the irradiation mechanism of elastic waves during hardening of a two-composite mixture). Transpornoye Stroitelstvo 5:28–29

    Google Scholar 

  37. Muravin GB, Pavlovskaya GS, Shchurov AT (1984) Issledovanie akusticheskoy emissii tverdeyuschego betona (Investigation of acoustic emission of hardening concrete). Defektoskopia 10:77–81

    Google Scholar 

  38. Skalskiy VR, Demchyna BG, Karpukhin II (2000) Ruynuvannya betoniv i akustychna emisiya (Oglyad). Povidomlennya 1. Statychne navantazhennya i vplyv temperaturnogo polya (Fracture of concretes and acoustic emission (a review). Report 1. Static loading and temperature field effect). Tekhnicheskaja diagnostika i nerazrushajuschii kontrol (Technical diagnostics and nondestructive testing) 1:12–23

    Google Scholar 

  39. Muravin GB, Sniezhytskyi YuS, Pavlovskaya GS (1989) Issledovanie prozessa tverdeniya betona pri nizkich temperaturach metodom akusticheskoy emissii (Investigation of the process of concretes hardening at low temperatures by acoustic emission). Defektoskopia 10:9–15

    Google Scholar 

  40. Skalskiy VR, Lototskyi YL (2004) Ozinka amplitud sygnaliv akustychnoyi emisiyi pid chas ruynuvannya betonnych kubiv (Estimation of acoustic emission signals amplitude during concrete cubes fracture). Fizychni metody ta zasoby kontrolyu seredovysch, materialiv ta vyrobiv (Physical methods and facilities for testing environments, materials and products) 9:54–61

    Google Scholar 

  41. Skalskyi VR (2001) Okremi metodologichni zasady rozroblennya prystroyiv dlya peredavannya akustychnoyi emisiyi (Some methodological bases for designing devices for acoustic emission transmission). Mashinoznavstvo (Mech Eng) 7:49–52

    Google Scholar 

  42. Grinchenko VT (1978) Ravnovesie i ustanovivshiesya kolebaniya uprugich tel konechnych razmerov (Equilibrium and steady-state vibrations of elastic bodies of finite dimensions). Naukova Dumka, Kiev

    Google Scholar 

  43. Chernyshov VV, Shegai VV (1977) Sobstvennye kolebaniya tverdych zilindrov konechnoy dliny (Natural vibrations of solid cylinders of infinite length). Acusticheskii zhurnal (Acoust J) 23(4):627–631

    Google Scholar 

  44. Komissarova GA (1975) O podchode k issledovaniyu nestazionarnych kolebaniy zilindra konechnoy dliny (On an approach to investigation of non-stationary vibrations of a cylinder of finite length). Voprosy matematicheskoi fiziki i teorii kolebanii 3:96–102

    Google Scholar 

  45. Imenitova Y, Chernyshov VV, Shegai VV (1976) O raschete svobodnych kolebaniy uprugich zilindrov konechnoy dliny (On calculations of free vibrations of elastic cylinders of finite length). Doklady AN SSSR. 226(2):315–317

    Google Scholar 

  46. Lysak MV, Skalskiy VR, Serhiyenko OM (1994) Doslidzhennya vplyvu chvylevodu na zminu parametriv sygnaliv akustychnoyi emisiyi (Investigation of the waveguide effect on the change in acoustic emission signals parameters). Fizyko-chimichna mechanika materialiv (Physicochemical Mech Mater) 2:64–70

    Google Scholar 

  47. Andreykiv OYe et al (2001) Analysis of acoustic emission caused by internal cracks. Eng Fract Mech 68(7):1317–1333

    Article  Google Scholar 

  48. Andreykiv OYe (1982) Prostranstvennye zadachi teorii treschin (Spatial problems of the crack theory). Naukova Dumka, Kiev

    Google Scholar 

  49. Kikuchi E (ed) (1972) Ul’trazvukovye preobrazovateli (Ultrasonic transducers). Mir, Moskva

    Google Scholar 

  50. Zienkiewicz OC (1975) Metod konechnych elementov v technike (The finite element method in engineering science). Mir, Moskva

    Google Scholar 

  51. Steng G, Fink GJ (1977) Teoriya metoda konechnych elementov (An analysis of the finite element method). Mir, Moskva

    Google Scholar 

  52. Mironov SA, Malinina LA (1961) Uskoreniya tverdeniya betonu (Acceleration of concrete hardening). Academy of construction and architecture of the USSR, Moskva

    Google Scholar 

  53. Sheikin AYe (1974) Struktura, prochnost’ i treschinostoykost’ zementnogo kamnya (Structure, strength and crack growth resistance of cement stone). Strojizdat, Moskva

    Google Scholar 

  54. Krivenko PV (ed) (1993) Budivel’ni materialy (Building materials). Vyshcha shkola, Kiev

    Google Scholar 

  55. Koval PM (2003) Vykorystannya metodu akustichnoyi emisiyi pry doslidzhenni mostiv (The use of acoustic emission method for bridges investigation). Avtoshliakhovyk Ukrainy 1:34–37

    Google Scholar 

  56. (2003) DSTU 4227-2003. Rekomendaziji scodo akustyko-emisijnoho kontroliu objektiv pidvyschenoji nebezpeky (Standard of Ukraine 4227-2003. Recommendations for acoustic emission monitoring of high-risk facilities), Kiev, Derzhspozhyvstandart Ukrayiny

    Google Scholar 

  57. Koval PM, Stashuk PM, Fal YA (2003) Doslidzhennya progonovoyi budovy novogo stalezalizobetonnogo avtodorozhn’ogo mosta z vykoristannyam metodu akustychnoyi ekmisiyi (Investigations of span structure of a new steel reinforced concrete transport bridge with the use of acoustic emission method). Diagnostyka, dovgovichnist’ ta rekonstrukziya mostiv i budivel’nich konstrukziy (Diagnostics, durability and reconstruction of bridges and building structures) 5:85–93

    Google Scholar 

  58. Rusch H (1959) Physikalishe Fragen der Betonprufung. Zement–Kalk–Gips 12(1):1–9

    Google Scholar 

  59. L’Hermite RL (1959) What do we know about the plastic deformation and creep of concrete. RILEM Bull RILBA 1:21–51

    Google Scholar 

  60. L’Hermite RG (1960) Volume changes of concrete. In: Chemistry of cement: Proceedings of the 4th Internalioral Symposium, Washington, 1960

    Google Scholar 

  61. Green AT (1969) Detection of incipient failure in pressure vessel materials by the stress–wave analysis technique. In: Gas–cooled reactor program semiannual progress. Report for Period Ending March 31, 1969

    Google Scholar 

  62. Dunegan HL, Green AT (1971) Factors affecting acoustic emission response from materials. Mater Res Stand 11(3):21–24

    Google Scholar 

  63. Dunegan HL, Tetelman AS (1971) Acoustic emission. Res Dev 22(5):20–24

    Google Scholar 

  64. Wells D (1959) An acoustic apparatus to record emission from concrete under strain. Nucl Eng Des 12(1):80–88

    Article  Google Scholar 

  65. Pochtovik GYa et al (1972) Ispol’zovanie shumometricheskoy apparatury dlya ozenki energii razrusheniya zementno–peschanogo rastvora (Application of audio-noise meter equipment for evaluation of the fracture energy of cement – send solution). Energetycheskoje Stroitelstvo 4:64–66

    Google Scholar 

  66. Pochtovik GYa, Temnik NL, Fillipova NB (1974) K metodike ozenki energii razrusheniya betona akusticheskimi metodami (To the methods of evaluation of concrete fracture energy by acoustics methods). Nauchnye trudy Akademii komunal’nogo chozyaystva (Scientific publications of Academy of Municipal economy) 104:3–19

    Google Scholar 

  67. Smolenskaya NG, Pochtovik GYa, Temnik NL (1974) Issledovanie akusticheskimi metodami prozessa treschinoobrazovaniya betona pri dlitel’nom nagruzhenii (Investigation by acoustic methods of crack formation process in concrete under long-term loading). Ibid 104:20–26

    Google Scholar 

  68. Pochtovik GY, Tsybinoga BG, Gritsenko BS (1977) Sravnitel’noe issledovanie prozessov treschinoobrazovaniya v rastyanutom betone metodami akusticheskoy emissiii i mikroskopicheskim (Comparative investigation of crack formation process in a tensioned concrete by the acoustic emission and microscopic methods). Trudy MISI (Proceedings of MISI) 51:111–117

    Google Scholar 

  69. Arrington M, Evans BM (1977) Acoustic emission testing of high alumina cement concrete. NDT Int 7:81–87

    Article  Google Scholar 

  70. Tomachevsky EG, Drouet A, Despreslas PJ (1975) Recherche de la dimination de resistance en fraction du beton par detection d’emission d’ondes de contrainte. J d’Etudes sur I’Emission Acoustique 17:336–360

    Google Scholar 

  71. Reymond MC (1980) Acoustic emission in rock and concrete under laboratory conditions. Microseismic Act Geologic Struct Mater Ser Rock Soil Mech 5:27–34

    Google Scholar 

  72. Sokolov GB et al (1977) Vliyanie vozrasta betona na prozessy mikrotreschinoobrazovaniya (The influence of concrete age on microcracks formation). Izvestiya VNII “Gidrotechnika” (Reports of VNII “Gidrotekhnika”) 116:44–49

    Google Scholar 

  73. Pochtivik GYa, Pshenichkin AP, Gritsenko BS (1984) Mechanizm razrusheniya neodnorodnych tel i ego svyaz’ s parametrami akusticheskoy emissii (Fracture mechanism of heterogeneous bodies and it correlation with the parameters of acoustic emission). In: Sbornik tezisov i dokladov I Vsesoyuznoy konferenzii “Akusticheskaya emissiya materialov i konstrukziy” (Proc. All-Union Conf. “Acoustic Emission Mater. and Struct.”, 11–13 Sept 1984, Rostov-upon the-Don), vol 1. Rostov-na Donu, 1984

    Google Scholar 

  74. Muravin GB, Shchurov AF (1985) Issledovanie prirody akusticheskoy emissii pri staticheskom deformirovanii betona (Investigation of nature of acoustic emission under concrete static deformation). Mechanika kompozitnych materialov (Mekhanika kompozitnykh materialov) 3:557–560

    Google Scholar 

  75. Leshchinskyi MYu (1980) Ispytanie betona (Testing of concrete). Strojizdat, Moskva, Moscow

    Google Scholar 

  76. Bordiugov DM, Yermisson AL (1992) Energiya akusticheskoy emissii v prozesse razrusheniya betona (Energy of acoustic emission in concrete fracture process). Doklady i tezisy III Vsesoyuznoy konferenzii po akusticheskoy emissii. Teoriya i praktika (Reports and theses of the III All-union Conf. on acoustic emission. Theory and Practice), vol 1. Obninsk, 1992

    Google Scholar 

  77. Koval PM, Luchko YY, Stashuk PM (2001) Ozinka trischynostiykosti betoniv v mostovych konstrukziyach z vykorystannyam metodu akustychnoyi emisiyi (Estimation of crack growth resistance of concretes in bridge structures with the use of acoustic emission method). Diagnostyka, dovgovichnist’ ta rekonstrukziya mostiv i budivel’nich konstrukziy (Diagnostics, durability and reconstruction of bridges and building structures) 3:91–100

    Google Scholar 

  78. Fal AYe (2003) Akustychna emisiya pry doslidzhenni betoniv dlya plyt proyiznoyi chastyny avtodorozhnich mostiv (Acoustic emission in investigation of concretes for the plates of roadway of the transport bridges). Perspektyvy rozvytku budivel’nych konstrukziy, budivel’, sporud ta ich osnov (Prospects of development of building structures, buildings, structures and their bases) 58:406–412

    Google Scholar 

  79. Koval PM, Stashuk PM (2000) Doslidzhennya trischynostiykosti betonu metodom akustychnoyi emisiyi (Investigation of concrete crack growth resistance by the method of acoustic emission). Resursoekonomni materialy, konstrukziyi, budivli ta sporudy (Resource-saving materials, structures, and buildings) 5:309–315

    Google Scholar 

  80. (1990) GOST 1497-84. Metally. Metody ispytaniy na rastyazhenie. Vved. 01.11.90 g. (State Standard 497-84. Metals. Tensile test methods. Implemented 01.11.90)

    Google Scholar 

  81. Fitzgerald ER (1960) Mechanical resonance dispersion and plastic flow in crystalline solids. J Acoust Soc America 32(10):1270–1289

    Article  Google Scholar 

  82. Ookawa A, Yazu К (1963) The energy radiated from a dislocation by an accelerated motion through impurity fields. J Phys Soc Japan 18:36–43

    Google Scholar 

  83. Brown WF(Jr), Srawley JE (1966) Current status of plane crack toughness testing. NASA TM X-52209. Cleveland, Ohio

    Google Scholar 

  84. Brown WF(Jr), Srawley JE (1967) Plane strain crack toughness testing of high strength metallic materials. In: American society for testing and materials. Philadelphia: Pennsylvania

    Google Scholar 

  85. Dunegan HL (1969) Ultrasonic acoustic emission from materials. IEEE Trans Sonics Ultrasonics 1:16–32

    Google Scholar 

  86. Engle RB (1966) Acoustic emission and related displacements in lithium fluoride single crystals. Ph.D. Thesis. Michigan State University

    Google Scholar 

  87. Fisher RM, Lally LS (1967) Microplasticity detected by an acoustic technique. Canad J Phys 45(2):1147–1159

    Article  Google Scholar 

  88. Boiko VS et al (1970) Zvukovoye izluchenije dvojnikuuschikh dislokatsij (Sonic radiation of twin dislocations). Phizika Tverdogo Tela (Phys Solid) 12(6):1753–1755

    Google Scholar 

  89. Melekhin VP, Mints RI, Kugler LM (1971) Vliyanie mechanizmov plasticheskoy deformazii zinka na akusticheskuyu emissiyu (The influence of mechanisms of zinc plastic deformation on acoustic emission). Izvestija Vuzov. Tsvetnaia metallurgia 3:128–131

    Google Scholar 

  90. Schofield BH (1972) Research on the sources and characteristics of the acoustic emission. In: Acoustic emission, ASTM STP 505. Baltimor, pp 11–19

    Google Scholar 

  91. James DR (1971) The sours of acoustic emission in deforming single crystals. In: International conference on mechanical behavior of materials, 1971, Kyoto

    Google Scholar 

  92. Segwick RT (1968) Acoustic emission from single crystals of LiF and KCl. J Appl Phys 39(3):1728–1740

    Article  Google Scholar 

  93. James DR, Carpenter SH (1971) Relationship between acoustic emission and dislocation kinetics in crystalline solids. J Appl Phys 42(12):4685–4697

    Article  Google Scholar 

  94. Gusiev OV (1982) Akusticheskaya emissiya pri deformirovanii monokristallov tugoplavkich metallov (Acoustic emission during deformation of monocrystals of refractory metals). Nauka, Moskva

    Google Scholar 

  95. Skoblo AV et al (1979) Primenenie akusticheskoy emissii dlya opredeleniya predela uprugusti konstrukzionnych staley (Usage of acoustic emission for determining the elasticity limit of structural steels). Zavod Lab 3:363–367

    Google Scholar 

  96. Pichkov SM et al (1980) Issledovanie deformirovaniya obrazzov s vytochkami metodom akusticheskoy emissii (Investigation of deformed specimens with notches by a method of acoustic emission). Fiziko-chimicheskaya mechanika materialov (Physicochemical Mech Mater) 3:120–122

    Google Scholar 

  97. Fadeiev YuI et al (1987) Opredelenie mechanicheskich charakteristik stali metodom akusticheskoy emissii (Determination of physicomechanical characteristics of steel by the method of acoustic emission). Defektoskopia 8:44–49

    Google Scholar 

  98. Barteniev OA, Khamitov VA, Fadieiev YuI (1982) Pribor akustiko-emissionnogo kontrolya treschinoobrazovaniya AKT-1 (Acoustic emission device for checking crack formation AKT-1). Information letter No 25-82. Udmurtskiy vezhotraslevoj terrritorial’nyj TsNTI, Izhevsk

    Google Scholar 

  99. Baikov VN, Sigalov EE (1991) Zhelezobetonnye konstrukzii: Obschiy kurs (Reinforced concrete structures: A review course), 5th edn. Strojizdat, Moskva

    Google Scholar 

  100. Koval PM, Stashuk PM (2001) Doslidzhennya zalizobetonnych konstrukziy metodom akustychnoyi emisiyi (Investigation of iron - concrete structures by the method of acoustic emission). Avtomobilni dorohy i dorozhnie budivnytstvo 63:276–282

    Google Scholar 

  101. (1984) SNiP 2.03.01—84*. Betonnye i zhelezobetonnye konstrukzii (Building regulations 2.03.01—84*. Concrete and reinforced concrete structures). Strojizda, Moskva

    Google Scholar 

  102. Ivanov GM, Veits RI (1968) Statika sooruzheniya (Static of constructions), 2nd edn. Strojizdat, Leningrad

    Google Scholar 

  103. Filonenko SF (1999) Akusticheskaya emissiya. Izmereniya, kontrol’, diagnostika (Acoustic emission. Measurements, testing, diagnostics). KMGUA, Kiev

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentyn Skalskyi or Oleh Serhiyenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nazarchuk, Z., Skalskyi, V., Serhiyenko, O. (2017). Evaluation of Mechanical Characteristics and Static Crack Growth Resistance of Materials with the Use of Aes. In: Acoustic Emission. Foundations of Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-49350-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49350-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49348-0

  • Online ISBN: 978-3-319-49350-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics