Skip to main content

Propagation of Elastic Waves in Solids

  • Chapter
  • First Online:
Acoustic Emission

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

Elasticity is a solid’s most important property for restoring its shape and volume after the termination of the action of the external forces applied to it, while for liquids and gases, only volume is restored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yermolov IN et al (1991) Akustichestke metody kontrolya (Acoustic methods of testing). In: Nondestructive testing, vol 2. Vysshaya Shkola, Moskva

    Google Scholar 

  2. Novatskiy V (1975) Teoriya uprugosti (Elasticity theory). Mir, Moskva

    Google Scholar 

  3. Aki A, Richards PD (1983) Kolichestvennaya seysmologiya. Teoriya i metody (Qualitative seismology. Theory and methods), vol 1. Mir, Moskva

    Google Scholar 

  4. Chebanov VY (1986) Lazernyy ul’trazvukovoy kontrol’ materialov (Laser ultrasonic testing of materials). Izdat. Leningrad. U-ta, Leningrad

    Google Scholar 

  5. Mazon U, Tereton R (eds) (1973) Fizicheskaya akustika (Physical acoustics), vol 6. Mir, Moskva, p 132

    Google Scholar 

  6. Viktorov IA (1981) Ul’trazvukovye poverchnostnye volny v tverdych telach (Ultrasound surface waves in solids). Nauka, Moskva

    Google Scholar 

  7. Krasilnikov VA, Krilov VV (1984) Vvedenie v fizicheskuyu akustiku (Introduction to physical acoustics). Nauka, Moskva

    Google Scholar 

  8. Brehovskikh LM, Godin OA (1989) Akustika sloistych sred (Acoustics of layered media). Nauka, Moskva

    Google Scholar 

  9. Birchon D (1979) Cries of stress. Spectrum 165:5–8

    Google Scholar 

  10. Budenkov GA et al (1981) Vozbuzhdenie voln Releya istochnikom tipa garmonicheskoy sosredotochennoy sily, deystvuyuschey nad poverchnost’yu uprugogo poluprostranstva (Excitation of the Raleigh waves by a source of the harmonic concentrated force type acting over the surface of an elastic half-space). Defektoskopia 2:37–42

    Google Scholar 

  11. Vakshys E, Botava E (1982) Rasprostranenie uprugich voln pri akustiko-emisionnom kontrole yadernych reaktorov (Propagation of elastic waves during acoustic emission testing of Nuclear reactors). Materialy 10-y Mezhdunarodnoy konferenzii po nerazrushayuschemu kontrolyu (Proceedings of the 10th international conference on nondestructive testing), vol 4. Moscow, pp 33–37

    Google Scholar 

  12. Stryzhkov SA, Vynkler ON (1988) Issledovanie charaktera rasprostraneniya uprugich kolebaniy v trubach pri akustiko-emissionnom kontrole (Investigation of the character of elastic vibrations propagation in pipes during acoustic emission testing). In: Nerazrushayuschiy kontrol’ i diagnostika truboprovodov (Nondestructive testing and disgnostics of pipelines). Nauka, Moskva, pp 15–21

    Google Scholar 

  13. Alioshyn NP (ed) (1989) Metody akusticheskogo kontrolya metallov (Methods of acoustic testing of metals). Mashynostroyenie, Moskva

    Google Scholar 

  14. Jaffrey D (1979) Sources of acoustic emission (AE) in metals. A review. Aust Chem Eng 20(9–10): 9–17, 21

    Google Scholar 

  15. Skalskiy VR, Andreykiv OY, Serhiyenko OM (2003) Doslidzhennya plastychnogo deformuvannya materialiv metodom akustichnoyi emisiyi. Oglyad (Investigation of the materials plastic deformation by the acoustic emission method. A review). Fizyko-chimichna mechanika materialiv (Physico-chemical mechanics of materials) 1:77–94

    Google Scholar 

  16. Schofield BH (1961) Acoustic emission under applied stress. Contract AF-33(616)—5640. Progress Report, vol 11. Lessells and Associates, Inc., Boston, Massachusetts

    Google Scholar 

  17. Hatano H (1976) Strain-rate dependence of acoustic-emission power and spectra in aluminum alloys. J Appl Phys 47(9):3873–3876

    Article  Google Scholar 

  18. Siegel E (1977) Burst acoustic emission during the Bauschinger effect in FCC and HCP metals and alloys. Acta Metall 2S(4):383–394

    Article  Google Scholar 

  19. Eshelby JD (1949) Dislocations as a cause of mechanical damping in metals. Proc Roy Soc L A 197(1050):396–416

    Article  MATH  Google Scholar 

  20. Eshelby JD (1956) A continuum theory of lattice defects. Prog Solid State Phys 3:79–85

    Google Scholar 

  21. Kosakevych AM, Margvelashvili IG (1967) Izluchenie elektromagnitnych i zvukovych voln dislokaziey, ravnomerno dvizhuscheysya v ionnom kristalle (Irradiation of electromagnetic and sound waves by dislocation moving uniformly in ion crystal). Izvestiya AN SSSR. Seriya Fizika (Reports of the Academy of Sciences of the USSR. Ser. Physics) 31(5):848–850

    Google Scholar 

  22. Cortellazzi G et al (1973) A lattice-dynamics approach to the acoustic signal by a uniformly moving dislocation. J Appl Phys 44(4):1518–1523

    Article  Google Scholar 

  23. Natsyk VD (1968) Izluchenie zvuka dislokaziey, vychodyaschey na poverchnost’ kristalla (Irradiation of a sound by dislocation, appearing on the crystal surface). Pisma zhurnal eksperimentalnoi i tekhnicheskoy fiziki 8(6):324–328

    Google Scholar 

  24. Graff KF (1975) Wave motion in solids. Clarendon Press, Oxford

    MATH  Google Scholar 

  25. Natsyk VD, Chyshko KA (1972) Zvukovoe izluchenie pri annigilyazii dislokaziy (Sound irradiation caused by annihilation of dislocations). Fizika tverdogo tela (Phys Solids) 14(11):3126–3132

    Google Scholar 

  26. Schofield BH (1972) Research on the source and characteristics of acoustic emission. In: Acoustic emission. ASTM STP 505. American Society for Testing and Materials, Philadelphia, Pennsylvania, pp 11–19

    Google Scholar 

  27. Kim HC (1976) Atomic structure and mechanical properties of metals. In: Proceedings of the International School of Physics “Enrico Fermi”, 8–10 July 1976

    Google Scholar 

  28. Mirabile M (1975) Acoustic emission energy and mechanisms of plastic deformation and fracture. Non-Destr Test 8(2):77–85

    Article  Google Scholar 

  29. Dunegan HL, Harris D, Tatro CA (1968) Fracture analysis by use of acoustic emission. Eng Fract Mech 1(1):105–122

    Article  Google Scholar 

  30. Gillis PP (1972) Dislocation motions and acoustic emission. In: Acoustic emission. ASTM STP 505. American Society for Testing and Materials. Philadelphia, Pennsylvania, pp 20–29

    Google Scholar 

  31. Malen I, Bolin LA (1974) Theoretical estimate of acoustic-emission stress amplitudes. Physica Status Solidi (B) Basic Res 61(2):637–645

    Google Scholar 

  32. Kim HC (1975) Characterization of mechanical properties by acoustic emission using an energy criterion. In: Ultrasonic symposium proceedings. Institute of Electrical and Electronics Engineers, Inc., Los Angeles, California. 22–24 Sep 1975

    Google Scholar 

  33. Sedgwick RT (1968) Acoustic emission from single crystals of LiF and KCl. J Appl Phys 39(3):1728–1740

    Article  Google Scholar 

  34. Day CI (1969) An investigation of acoustic emission for defect formation in stainless steel weld coupons. Richlai, Washington

    Book  Google Scholar 

  35. Fisher RM, Lally LS (1967) Microplasticity detected by an acoustic technique. Canad J Phys 45(2):1147–1159

    Article  Google Scholar 

  36. James DR, Carpenter SH (1971) Relationship between acoustic emission and dislocation kinetics in crystalline solids. J Appl Phys 42(12):4685–4697

    Article  Google Scholar 

  37. Carpenter SH, Higgins FP (1977) Sources of acoustic emission generated during the plastic deformation of 7075 aluminum alloy. Met Trans A 8A(10):1629–1632

    Article  Google Scholar 

  38. Carpenter SH (1976) Report No. AFML-TR-75–212. Rockwell Science Center, Thousand Oaks, Jan 1976

    Google Scholar 

  39. Tetelman AS (1972) Acoustic emission and fracture mechanics testing of metals and composites. In: Proceedings of the U.S.–Japan Joint symposium on acoustic emission, 4–6 July 1972

    Google Scholar 

  40. Kaiser J (1953) Erkenntnisse und Folgerungen aus der Messung von Gerauschen bei Zugbeanspruchung von Metallischen Werkstoffen. Arch Eisenhuttenwesen 1/2:43–45

    Google Scholar 

  41. Woodward B, McDonald NR (1975) Flaw identification using acoustic emission. In: Proceedings of the 3rd international conference on structural mechanics in reactor technology, London, England, 1–5 Sep 1975

    Google Scholar 

  42. Tanaka H, Horiuchi R (1975) Acoustic emission accompanied by twin formation in titanium and titanium alloy. Bull Inst Space Aeronaut Sci Univ Tokyo 11(2A):427–435

    Google Scholar 

  43. Toronchuk JP (1977) Acoustic emission during twining of zinc single crystals. Mater Eval 35(10):51–53

    Google Scholar 

  44. BoikoVS Gaber RI, Kryvenko LF (1974) Zvukovaya emissiya pri annigilyazii dislokazionnogo skopleniya (Sound emission during annihilation of dislocation group). Fizika tverdogo tela (Phys Solids) 16(4):1233–1235

    Google Scholar 

  45. Boiko VS et al (1970) Zvukovoe izluchenie dvoynikuyuschich dislokaziy (Sound irradiation of twinning dislocations). Ibid 12(6):1753–1755

    Google Scholar 

  46. Speich GR, Schwaeble AJ (1975) Acoustic emission during phase transformation in steel. In: Spanner JC, McElroy JW (eds) Monitoring structural integrity by acoustic emission, ASTM STP 571. Pennsylvania, Philadelphia, pp 40–58

    Chapter  Google Scholar 

  47. Speich GR, Fisher RM (1972) Acoustic emission during martensite formation. Acoustic emission, ASTM STP 505. American Society for Testing and Materials. Philadelphia, Pennsylvania, pp 140–151

    Google Scholar 

  48. Liptai RG, Dunegan HL, Tatro CA (1969) Acoustic emission generated during phase transformations in metals and alloys. Int J Nondestr Test 1:213–221

    Google Scholar 

  49. Pascual R et al (1975) Acoustic emission and the martensitic transformation of β-brass. Scripta Metall 9(1):79–84

    Article  Google Scholar 

  50. Hartman WF, Kline RA (1977) Variations in frequency content of acoustic emission during extension of HF-I steel. Mater Eval 35(7):47–51

    Google Scholar 

  51. Palmer IG, Holt J, Goddard DJ (1974) Acoustic emission measurements on type 316 stainless steel. In: EWGAE—ISPRA: proceedings of third meeting of the european working group on acoustic emission, ISPA, Italy, 25–26 Sept 1974, pp 11–26

    Google Scholar 

  52. Ono K (1974) Acoustic emission and microscopic deformation and fracture processes. In: Proceedings of the second acoustic emission symposium, Japan, 2–4 Sep 1974, pp 1–63

    Google Scholar 

  53. Tetelman AS, Chow R (1972) Acoustic emission testing and microcracking processes. In: Acoustic Emission, ASTM STP 505. American Society for Testing and Materials. Philadelphia, Pennsylvania, pp 30–40

    Google Scholar 

  54. Jaffrey D (1979) Sources of acoustic emission (AE) in metals. A review. Australian Chemical Eng 20(11):9–11, 20(12):13–17

    Google Scholar 

  55. Andreykiv OYe, Skalskiy VR, Serhiyenko OM (2001) Viznachennya ob’yemnoyi poshkodzhenosti alyuminiyevych splaviv za sygnalamy akustichnoyi emisiyi (Determination of volume damaging of aluminium alloys by the acoustic emission signals). Fizyko-chimichna mechanika materialiv (Physicochem Mech Mater) 3:77–90

    Google Scholar 

  56. Andreykiv OY, Skalskiy VR, Serhiyenko OM (2001) Akustiko-emisiyni kryteriyi dlya ekspres ozinky vnutrishnich poshkodzhen’ kompozitnich materialiv (Acoustic-emission criteria for express estimation of internal damages in composite materials). Ibid 1:91–100

    Google Scholar 

  57. Ivanov BI, Belov VM (1981) Akustiko–emissionnyy kontrol’ svarki i svarnych soedineniy (Acoustic emission testing of welding and welded joints). Mashynostriyenie, Moskva

    Google Scholar 

  58. Shibata M, Ono К (1981) Magnetomechanical acoustic emission—a new method for non-destructive stress measurement. NDT Int 14(5):227–234

    Article  Google Scholar 

  59. Lindgren M, Lepisto T (2000) Application of a novel type Barkhausen noise sensor to continuous fatigue monitoring. NDT & E Int 33(6):423–428

    Article  Google Scholar 

  60. Song YY et al (2000) The effect of microstructural changes on magnetic Barkhausen noise and magnetomechanical acoustic emission in Mn–Mo–Ni pressure vessel steel. J Appl Phys 87(9):5242–5244

    Article  Google Scholar 

  61. Park DG et al (1999) Nondestructive evaluation of irradiation effects in RPV steel using Barkhausen noise and magnetoacoustic emission signals. J Magn Magn Mater 196–197:382–384

    Article  Google Scholar 

  62. Schwalbe H-J, Bamfaste G, Franke R-P (1999) Non-destructive and non-invasive observation of friction and wear of human joints and of fracture initiation by acoustic emission. J Eng Med 213(1):41–48

    Article  Google Scholar 

  63. Baranov VM, Kudryavtsev EM, Sarychev GA (1997) Modelling of the parameters of acoustic emission under sliding friction of solids. Wear 202(2):125–133

    Article  Google Scholar 

  64. Jiaa CL, Dornfeld DA (1990) Experimental studies of sliding friction and wear via acoustic emission signal analysis. Wear 139(2):403–424

    Article  Google Scholar 

  65. Druillard TF (1979) Acoustic emission. A bibliography with abstracts. IFI/Plenum, New York

    Google Scholar 

  66. Spanner JC (1974) Acoustic emission: technique and applications, vol 12. Intex publ, Co, Evanston, Illinois

    Google Scholar 

  67. Williams RV (1980) Acoustic emission. Adam Hilger, Bristol

    Google Scholar 

  68. Vakar KB (1980) Akusticheskaya emissiya i ee primenenie dlya nerazrushayuschego kontrolya v yadernoy energetike (Acoustic emission and its application for nondestructive testing in nuclear power generation industry). Atomizdat, Moskva

    Google Scholar 

  69. Andreykiv AY, Lysak NV (1989) Metod akusticheskoy emissii v issledovanii prozessov razrusheniya (A method of acoustic emission in investigation of fracture processes). Naukova dumka, Kiev

    Google Scholar 

  70. Collacott R (1989) Diagnostika povrezhdeniy (Damages diagnostics) (trans: Babaievskyi PG). Mir, Moskva

    Google Scholar 

  71. Stryzhalo VA et al (1990) Prochnost’ i akusticheskaya emissiya materialov i elementov konstrukziy (Strength and acoustic emission of materials and structural elements). Naukova Dumka, Kiev

    Google Scholar 

  72. Dunegan HL, Tatro CA (1971) Acoustic emission effect during mechanical deformation. In: Bunshan RF (ed) Techniques of metals research, vol 5(2/12). Interscience, New York, pp 273–312

    Google Scholar 

  73. Tanaka Kh, Horiuyi Kh, Sakakibara Y (1977) Akusticheskaya emissiya pri plasticheskoy deformazii – metallovedcheskie faktory (Acoustic emission under plastic deformation—material science factors). Kindzoku dzajre 13(2):21–26

    Google Scholar 

  74. Wadley HNG, Scruby CB, Speake JH (1980) Acoustic emission for physical examination of metals. Int Met Rev 25(2):41–64

    Google Scholar 

  75. Ono K (1994) Trends of recent acoustic emission literature. J Acoust Emis 12(3/4):177–198

    Google Scholar 

  76. Skalskiy VR, Demchyna BG, Karpukhin II (2000) Ruynuvannya betoniv i akustichna emisiya (Oglyad). Povidomlennya 1. Statichne navantazhennya i vplyv temperaturnogo polya (Concrete fracture and acoustic emission (A review). Report 1. Static loading and effect of temperature field). Tekhnicheskaia Diagnostika i Nerazrushyuschii kontrol (Technical diagnostics and nondestructive testing) 1:12–23

    Google Scholar 

  77. Skalskiy VR, Demchyna BG, Karpukhin II (2000) Ruynuvannya betoniv i akustychna emisiya (Oglyad). Povidomlennya 2. Koroziya zalizobetonu. Aparaturni zasoby. AE – kontrol’ ta diagnostyka budivel’nych sporud (Concrete fracture and acoustic emission (A review). Report 2. Corrosion of the reinforced concrete. Equipment. AE examination and diagnostics of building constructions). Ibid 2:9–27

    Google Scholar 

  78. Andreykiv OY et al (2000) Rozvytok doslidzhen’ prozesiv ruynuvannya iz zastosuvannyam yavischa akustichnoyi emisiyi u FMI Im. G.V. Karpenka NAN Ukrayini (Development of fracture processes researches using the phenomenon of acoustic emission at H.V. Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine). Preprint, NAN Ukrayini, Fizyko-mechanichnyi institut, 1(2000), L’viv

    Google Scholar 

  79. Schnitt-Thomas KG, Stengel W (1983) Möglichkeiten zur Früherkennung von Wasserstoffschädigungen in metallischen Werkstoffen durch Anwendung der Schallemissionanalyse. Werkst Korros 34:7–13

    Article  Google Scholar 

  80. Andreykiv AY et al (1990) Zastosuvannya metodu akustychnoyi emisiyi pry doslidzhenni materialiv u vodnevomu ta koroziynomu seredovischach (Application of the method of acoustic emission for investigation of materials in hydrogen and corrosive environments). Fizyko-chimichna mechanika materialiv (Physicochem Mech Mater) 5:26–36

    Google Scholar 

  81. Andreykiv OY, Lysak MV, Skalsky VR (1996) A method of accelerated evaluation of Kiscc under stress corrosion cracking. Eng Fract Mech 54(3):387–394

    Google Scholar 

  82. Andreykiv AY et al (1992) Metodika opredeleniya KIscc stali v srede vodoroda s pomosch’yu metoda akusticheskoy emissii (A method of determining K Iscc values of steel in hydrogen using acoustic emission). Tekhnicheskaia Diagnostika i Nerazrushyuschii kontrol (Tech Diagn Nondestr Test) 1:18–26

    Google Scholar 

  83. Skalskiy VR (1995) Vliyanie vodoroda na rastreskivanie metallov i kontrol’ takich prozessov metodom AE (Influence of hydrogen on metal cracking and testing of such processes by AE method). Ibid 1:52–65

    Google Scholar 

  84. Skalskiy VR, Andreykiv OYe, Serhiyenko OM (1999) Ozinka vodnevoyi poshkodzhenosti materialiv za amplitudamy signaliv akustichnoyi emisiyi (Estimation of hydrogen damaging of materials by acoustic emission signal amplitudes). Ibid 1:17–27

    Google Scholar 

  85. Hartbower CE, Gerberich WW, Crimmins PP (1967) Mechanisms of slow crack growth in high-strength steels. Aerojet-General Corporation, Sacramento, California. Feb 1967, vol 1, pp 213–245

    Google Scholar 

  86. Hartbower CE et al (1972) Use of acoustic emission for the detection of weld and stress-corrosion cracking. Acoustic emission, ASTM STP 505. American Society for Testing and Materials. Philadelphia, Pennsylvania, pp 187–221

    Google Scholar 

  87. Jaffrey D (1979) Sources of acoustic emission (AE) in metals. A review. Non Destr Test (Aust) 16(6):16–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentyn Skalskyi or Oleh Serhiyenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nazarchuk, Z., Skalskyi, V., Serhiyenko, O. (2017). Propagation of Elastic Waves in Solids. In: Acoustic Emission. Foundations of Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-49350-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49350-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49348-0

  • Online ISBN: 978-3-319-49350-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics