Skip to main content

The Generation of Elastic Acoustic Emission Waves Due to the Fracture of Solids

  • Chapter
  • First Online:
Acoustic Emission

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

A real solid always contains defects that reveal themselves as sharp stress concentrators, i.e., cracks. In such cases, the approaches of classic continuum mechanics cannot be used in calculating the strength of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McClintok F, Argon I (1970) Deformaziya i razrushenie materialov (Deformation and fracture of materials). Mir, Moskva

    Google Scholar 

  2. Honeycombe RWK (1972) Plasticheskaya deformaziya metallov (The plastic deformation of metals). Mir, Moskva

    Google Scholar 

  3. Dahl V, Anton V (eds) (1986) Staticheskaya prochnost’ i mechanika razrusheniya staley (Static strength and fracture mechanics of steels). Metallurgia, Moskva

    Google Scholar 

  4. Panasyuk VV, Andreikiv AY, Parton VZ (1988) Osnovy mechaniki razrusheniya materialov (Bases of fracture mechanics of materials). In: Panasyuk VV (ed) Mechanika razrusheniya i prochnost’ materialov (Fracture mechanics and strength of materials), vol 1. Naukova Dumka, Kiev

    Google Scholar 

  5. Neimitz A (1998) Mechanika pękania. Wydawnictwo Naukowe PWN SA, Warszawa

    Google Scholar 

  6. Griffith AA (1920) The phenomena of rupture and flow in solids. Phil Trans Roy Soc London A 221(1):163–198

    Google Scholar 

  7. Irwin GR (1957) Analysis of stress and strain near end of a crack traversing a plate. J Appl Mech 24(3):361–364

    Google Scholar 

  8. Felbek DK, Orowan EI (1955) Energy criteria of fracture. Weld J Res Suppl 34:157–160

    Google Scholar 

  9. Morozov EM (1971) Energeticheskiy kriteriy razrusheniya dlya uprugo–plasticheskich tel (Energy fracture criterion for elasto-palstic bodies). Konzentraziya napryazheniy (Stress Concentration) 3:85–90

    Google Scholar 

  10. Morozov EM (1985) Mechanika uprugoplasticheskogo razrusheniya (Elasto-plastic fracture mechanics). Nauka, Moskva

    Google Scholar 

  11. Cherepanov GP (1974) Mechanika khupkogo razrusheniya (Brittle fracture mechanics). Nauka, Moskva

    Google Scholar 

  12. Rice J (1968) Nezavisyaschiy ot puti integral i priblizhennyy analiz konzentrazii deformaziy u vyrezov i treschin (Path-independent integral and approximate analysis of deformation concentration at notches and cracks). Prikl. mechanika. Ser. E (Appl Mech Ser E) 35(4):340–349

    Google Scholar 

  13. Rice J (1976) Matematicheskie metody v mechanike razrusheniya (Mathematical methods in fracture mechanics). Razrushenie (Fracture), vol 2. Mir, Moskva, pp 204–209

    Google Scholar 

  14. Libowitz H, Eflis L (1971) On non–linear effects in fracture mechanics. Eng Frac Mech 3(2):267–281

    Article  Google Scholar 

  15. Eshelby JD (1956) A continuum theory of lattice defects. On progress solid state physics, vol 3. Academic Press, New York, pp 79–85

    Google Scholar 

  16. Sih G (1974) Strain energy density factor applied to mixed mode crack problems. Int J Fract 10(3):124–129

    Article  Google Scholar 

  17. Weighardt E (1907) Über das Spalten und Zerressen elestischer Körpes. Z Math Und Phys 50:60–103

    Google Scholar 

  18. Sneddon I (1966) Preobrazovanie Fur’e (Fourier transformation). Inostrannaya Literatura, Moskva

    Google Scholar 

  19. Williams ML (1957) On the stress distribution at the base of a stationery crack. J Appl Mech 24(1):109–114

    MathSciNet  Google Scholar 

  20. Irwin GR (1958) Fracture. Handbuch der Physik, vol 6. Springer, Berlin, pp 551–590

    Google Scholar 

  21. (1985) GOST 25.506–85. Raschety i ispytaniya na prochnost’. Metody mechanicheskich ispytaniy metallov. Opredelenie charakteristik treschinostoykosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii. Vved. v deystvie 27.03.1985 g. (State Standard 25.506–85. Calculations and tests for strength. Methods of mechanical testing of materials. Determination of crack growth (fracture toughness) characteristics under static loading. Approved 27.03.1985). Izdatel’stvo standartov, Moskva

    Google Scholar 

  22. Wells AA (1961) Unstable crack propagation in metal: cleavage fast fracture. In: Symposium on Crack Propagation, College of Aeronautics, Cranfield, 1961

    Google Scholar 

  23. Cottrell AH (19610 Theoretical aspects of radiation damage and brittle fracture in pressure vessels steel. Iron Steel Inst Spec Report 69:261–296

    Google Scholar 

  24. Leonov MYa, Panasyuk VV (1959) Rozvytok naydribnishych trischyn v tverdomu tili (Development of the smallest cracks in a solid). Prykladna Mekhanika 5(4):391–401

    Google Scholar 

  25. Leonov MYa, Panasyuk VV (1961) Rozvytok trischiny, yaka v plani maye formu kruga (Developemnt of a crack, which in plane has a shape of a circle). Dopovidi AN URSR (Reports of the Academy of Sciences of the Ukrainian SSR) 2:165–168

    Google Scholar 

  26. Panasyuk VV (1960) Do teoriji poshirennya trischyn pry deformazii krychkogo tila (To the theory of crack distribution during brittle body deformation). Ibid 9:1185–1189

    Google Scholar 

  27. Panasyuk VV (1968) Hranychna rivnovaha til z trischynamy (Limiting equilibrium of bodies with cracks). Naukova Dumka, Kiev

    Google Scholar 

  28. Vitvitski PM, Panasyuk VV, Yarema SYa (1975) Plastic deformation around crack and fracture criteria. Eng Fract Mech 2:305–319

    Article  Google Scholar 

  29. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–108

    Article  Google Scholar 

  30. Orowan E (1948) Cleavage fracture of metals. Rep Prog Phys 12:185–189

    Article  Google Scholar 

  31. McClintock F (1976) Plasticheskie aspekty razrusheniya (Plastic aspects of fracture). Razrushenie (Fracture), vol 3. Mir, Moskva, pp 67–262

    Google Scholar 

  32. Ritchie RO, Knott JF, Rice JR (1973) On the relationship between critical tensile stress and fracture toughness in mild steel. J Mech Phys Solids 21(3):359–410

    Google Scholar 

  33. Zener C (1949) Micromechanism of fracture. Fracturing of metals. ASM, Novelty, Ohio, pp 3–31

    Google Scholar 

  34. Stroh AN (1954) The formation of cracks as a result of plastic flow I. Proc Roy Soc A223:404–414

    Article  MathSciNet  MATH  Google Scholar 

  35. Stroh AN (1955) The formation of cracks in plastic flow II. Ibid A232:548–560

    MATH  Google Scholar 

  36. Cottrel AH (1958) Theory of brittle fracture in steel and similar metals. Trans AIME 212:192–203

    Google Scholar 

  37. Panasyuk VV (1991) Mechanika kvazichrupkogo razrusheniya materialov (Quasi-brittle fracture mechanics of materials). Naukova Dumka, Kiev

    Google Scholar 

  38. Hull D (1960) Twinning and fracture of single crystals of 3% silicon iron. Acta Met 8:11–18

    Article  Google Scholar 

  39. Romaniv OM, Zyma YuV, Karpenko GV (1974) Elektronna fraktografiya zmiznenich staley (Electron fractography of strengthened steels). Naukova Dumka, Kiyv

    Google Scholar 

  40. Romaniv ON et al (1990) Fatigue and fatigue crack growth resistance of structural steels. In: Panasyuk VV (ed) Fracture Mechanics and strength of materials: reference book, vol 4. Naukova Dumka, Kiev

    Google Scholar 

  41. (2003) DSTU 4227-2003 Rekomendaziyi schodo akustyko–emisiynogo kontrolyu ob’yektiv pidvischenoyi nebezpeky (State Standard of Ukraine 4227-2003 Recommendations on the acoustic-emission control of objects of a special danger). Derzhspozhyvstandart Ukrainy, Kyiv

    Google Scholar 

  42. Skalskiy VR, Andreykiv OY, Serhiyenko OM (2003) Doslidzhennya plastychnogo deformuvannya materialiv metodom akustichnoyi emisiyi. Oglyad (Investigation of plastic deformation of materials by the method of acoustic emission. A review). Fizyko–chimichna mechanika materialiv (Physico-Chem Mech Mater) 1:77–94

    Google Scholar 

  43. Nazarchuk ZT, Koshoviy VV, Skalskiy VR (2001) Neruynivni metody kontrolyu materialiv i technichna diagnostyka (Nondestructive test methods of materials and technical diagnostics). Fiziko–mechanichniy institut: postup i zdobutki (Physico-Mechanical Institute: progress and achievements). Prostir, Lviv, pp 171–214

    Google Scholar 

  44. Skalskiy VR, Demchyna BH, Karpukhin II (2000) Ruynuvannya betoniv i akustichna emisiya (Oglyad). Povidomlennya 1. Statychne navantazhennya i vplyv temperaturnogo polya (Failure of concretes and acoustic emission (A review). Report 1. Static loading and temperature field effect). Tekhnicheskaya diagnostika i nerazrushayushchii control (Tech Diagn nondestructive testing) 1:12–23

    Google Scholar 

  45. Skalskiy VR, Demchyna VR, Karpukhin II (2000) Ruynuvannya betoniv i akustichna emisiya (Oglyad). Povidomlennya 2. Koroziya zalizobetonu. Aparaturni zasobi. AE – kontrol’ ta diagnostyka budivel’nich sporud (Failure of concretes and acoustic emission (A review). Report 2. Static loading and temperature field influence). Ibid 2:9–27

    Google Scholar 

  46. Skalskiy VR, Demchyna BH (2000) Stan i perspektyvy rozvytku akustiko–emisiynogo diagnostuvannya budivel’nich konstrukziy (The state and prospects of development of acoustic – emission diagnostics of building constructions) In: Mechanika i fizyka ruynuvannya budivel’nich materialiv i konstrukziy (Mechanic and physics of failure of building materials and constructions), is 4. Lviv, pp 520–531

    Google Scholar 

  47. Andreykiv OY et al (2000) Rozvitok doslidzhen’ prozesiv ruynuvannya iz zastosuvannyam yavyscha akustichnoyi emisiyi u FMI im. HV. Karpenka NAN Ukrayiny (Development of researches of fracture processes with application of the phenomenon of acoustic emission in Karpenko Physico-Mechanical Institute of NASU). Preprint, NAN Ukrayiny, Fizyko-mechanichnyi instytut, 1(2000), L’viv

    Google Scholar 

  48. Fitzgerald ER (1960) Mechanical resonance dispersion and plastic flow in crystalline solids. J Acoust Soc Am 32(10):1270–1289

    Article  Google Scholar 

  49. Ookawa A, Yazu I (1963) The energy radiated from a dislocation by an accelerated motion through impurity fields. J Phys Soc Jpn 18(A):36–43

    Google Scholar 

  50. Engle RB (1966) Acoustic emission and related displacements in lithium fluoride single crystals. Dissertation, Michigan State University

    Google Scholar 

  51. Fisher RM, Lally LS (1967) Microplasticity detected by an acoustic technique. Canad J Phys 45(2):1147–1159

    Article  Google Scholar 

  52. Boiko VS et al (1970) Zvukovoe izluchenie dvoynikuyuschich dislokaziy (Sonic irradiaton of twinning dislocations). Fizika tviordogo tela (Phys Solid) 12(6):1753–1755

    Google Scholar 

  53. Melekhin VP, Mints RI, Kugler LM (1971) Vliyanie mechanizmov plasticheskoy deformazii zinka na akusticheskuyu emissiyu (The effect of the mechanisms of plastic deformations of zinc on acoustic emission). Izvestiya VUZov. Zvetnaya metallurgiya (Reports of High Schools. Non-ferrous metallurgy) 3:128–131

    Google Scholar 

  54. Schofield BH (1972) Research on the sources and characteristics of the acoustic emission. In: Acoustic emission, ASTM STP 505. Baltimor, pp 11–19

    Google Scholar 

  55. Yudin AA, Ivanov VI (1985) Akusticheskaya emissiya pri plasticheskoy deformazii metallov (obzor) (Acoustic emission during plastic deformation of metals (A review)). Probl Prochn (Strength Mater) 6:92–107

    Google Scholar 

  56. James DR (1971) The source of acoustic emission in deforming single crystals. In: International conference on mechanical behaviour of materials, vol 3. Kyoto, pp 960–961

    Google Scholar 

  57. Segwick RT (1968) Acoustic emission from single crystals of LiF and KCl. J Appl Phys 39(3):1728–1740

    Article  Google Scholar 

  58. James DR, Carpenter SH (1971) Relationship between acoustic emission and dislocation kinetics in crystalline solids. J Appl Phys 42(12):4685–4697

    Article  Google Scholar 

  59. Gusev OV (1982) Akusticheskaya emissiya pri deformirovanii monokristallov tugoplavkich metallov (Acoustic emission during deformation of monocrystals of refractory metals). Nauka, Moskva

    Google Scholar 

  60. (1994) DSTU 2374-94 Rozrachunky na miznist’ ta viprobuvannya technichnich vyrobiv. Akustichna emisiya. Termini ta viznachennya (State Standard of Ukraine 2374-94 Calculations of strength and testing of technical products. Acoustic emission. Terms and definitions)

    Google Scholar 

  61. Dunegan HL, Harris AT (1968) Acoustic emission: and new nondestructive testing tool. In: Proceedings of the third annual symposium on nondestructive testing of welds and materials joining, Los Angeles, California, 12 Mar 1968

    Google Scholar 

  62. Dunegan HL (1969) Ultrasonic acoustic emission from materials. IEEE Trans Sonics Ultrason 1:16–32

    Google Scholar 

  63. Engle RB, Dunegan HL (1969) Acoustic emission: stress wave detection as a tool for nondestructive testing and material evaluation. Int J Nondestr Test 1(7):109–125

    Google Scholar 

  64. Dunegan HL, Harris DI, Tetelman AS (1970) Detection of fatigue crack growth by acoustic emission techniques. Mater Eval 28(10):221–227

    Google Scholar 

  65. Dunegan HL, Green AT (1971) Factors affecting acoustic emission response from materials. Mater Res Stand 11(3):21–24

    Google Scholar 

  66. Dunegan HL (1969) Ultrasonic acoustic emission from materials. IEEE Trans Sonics Ultrason 16(1):32–35

    Google Scholar 

  67. Borchers H, Tensi H-M (1960) Untersuchung von Vorgangen in Metallen bei Mechanischer Beanspruchung und bei Phasenanderung. Z für Metallkd 51(4):212–218

    Google Scholar 

  68. Kerawalla JN (1965) An investigation of the acoustic emission from commercial ferrous materials subjected to cyclic tensile loading. Dissertation, University of Michigan

    Google Scholar 

  69. Eisenblatter J (1971) Schallemissionsanalyse als zerstorungsfreies Prufverfahren zur Feststellung von Fehlern in Kernreaktordruckgefassen. In: Proceedings of the first international conference on structural mechanism in reactor technology, vol 4. Battelle–Institut eV, Frankfurt am Main, Germany, pp 529–530

    Google Scholar 

  70. Greshnikov VA et al (1971) Primenenie emissii voln napryazheniy dlya nerazrushayuschego kontrolya i technicheskoy diagnostiki kachestva materialov i izdeliy (Application of emission of stress waves for nondestructive testing and technical diagnostics of the quality of materials and products). In: Materialy seminara “Novye metody nerazrushayuschego kontrolya kachestva materialov i izdeliy”, Chabarovsk, 2 aprelya 1971 g. (Trans. Seminar “New methods of nondestructive testing of the quality of materials and products”, Khabarovsk, April 2 1971), Khabarovsk, 1971

    Google Scholar 

  71. Averbukh II, Vainberg VYe (1973) Zavisimost’ akusticheskoy emissii ot deformazii v raznych materialach (Dependence of acoustic emission on deformation in different materials). Defectoskopia 4:25–32

    Google Scholar 

  72. Spanner JC (1974) Acoustic emission: technique and applications, vol 12. Intex publication, Co, Evanston, Illinois

    Google Scholar 

  73. Stephens RWB, Pollock AA (1971) Waveforms and spectra of acoustic emission. J Acoust Soc Am 50(3):904–910

    Article  Google Scholar 

  74. Hatano H (1971) Quantitative measurements of acoustic emission related to its microscopic mechanisms. Ibid 57(3):639–645

    Google Scholar 

  75. Hatano H (1976) Strain–rate dependence of acoustic–emission power and spectra in aluminum alloys. J Appl Phys 47(9):3873–3876

    Article  Google Scholar 

  76. Fleischmann P, Lakestani F, Baboux JC (1977) Analise spectrale et energétique d’une source ultrasonore en mouvement. Application a l’émission acoustique de l’aluminium soumis d’éformation plastique. Mater Sci Eng 29(1):205–212

    Google Scholar 

  77. Rouby D, Fleischmann P (1978) Spectral analysis of acoustic emission from aluminium crystals undergoing plastic deformation. Phys Stat Solidi (A) 48(2):439–445

    Article  Google Scholar 

  78. Hutton PH et al (1968) Crack detection in pressure piping by acoustic emission. In: Nuclear Safety Quarterly Report–July, August, September, October, 1967 for Nuclear Safety Branch of USAEC Division of Reactor Development and Technology. BNWL–754. – Battelle–Northwest, Richland, Washington. June 1968

    Google Scholar 

  79. Nosov VV, Potapov AI (1996) Strukturno–imitazionnaya model’ parametrov akusticheskoy emissii (Structural simulation model of acoustic emission). Defektoskopia 6:31–38

    Google Scholar 

  80. (1986) Akusticheskaya emissiya geterogennych materialov (Acoustic emission of heterogeneous materials). A.F. Ioffe Physico-Technical Institute, Leningrad

    Google Scholar 

  81. Borodin YuP, Gulievskyi IV (1980) Statisticheskaya model’ akusticheskoy emissii defektov v materialach i konstrukziyach pri nagruzhenii (Statistical model of acoustic emission of defects in materials and structures under loading). Uchenye zapiski Zentral’nogo aerogidrodinamicheskogo instituta (Scientific notes. Central Areodynamic institute) 11(2):86–95

    Google Scholar 

  82. Robsman VA (1996) Nelineynaya transformaziya veroyatnostnych raspredeleniy signalov akusticheskoy emissii pri evolyuzii ansamblya defektov v tverdom tele (Nonlinear transformation of probabilistic distributions of acoustic emission signals during evolution of an ensemble of defects in a solid). Akusticheskiy zhurnal (J Acoust) 42(6):846–852

    Google Scholar 

  83. Andreykiv OYe et al (1990) Metodicheskie aspekty primeneniya metoda akusticheskoy emissii pri opredelenii staticheskoy treschinostoykosti materialov (Methodical aspects of application of the acoustic emission method in evaluation of static crack growth resistance of materials). Preprint, NAN Ukrayiny, Fizyko-mechanichnyi instytut, 165(1990), L’viv

    Google Scholar 

  84. Takahashi H et al (1981) Acoustic emission crack monitoring in fracture–toughness tests for AISI 4340 and SA 533B steels. Exp Mech 21(3):89–99

    Article  Google Scholar 

  85. Dunegan HL, Harris DO, Tatro IA (1967) Fracture analysis by use of acoustic emission. Eng Fract Mech 1(1):105–122

    Article  Google Scholar 

  86. Hartbower CE et al (1972) Acoustic emission for the detection of weld and stress–corrosion cracking. In: Acoustic emission, ASTM STP 505. Baltimore, pp 187–221

    Google Scholar 

  87. Gerberich WW, Alteridge DG, Lessar JE (1975) Acoustic emission investigation of microscopic ductile fracture. Met Trans A 6(2):797–801

    Article  Google Scholar 

  88. Gerberich WW, Hartbower CE (1967) Some observations on stress wave emission as a measure of crack growth. Int J Fract Mech 3(3):185–192

    Google Scholar 

  89. Radon IC, Pollock AA (1972) Acoustic emission and energy transfer during crack propagation. Eng Fract Mech 4(2):295–310

    Article  Google Scholar 

  90. Maslov LA (1975) Investigation of acoustic pulses in cracking. Dissertation, University of Novosibirsk

    Google Scholar 

  91. Greshnikov VA, Drobot YuB (1976) Akusticheskaya emissiya. Primenenie dlya ispytaniy materialov i izdeliy (Acoustic emission. Application in material and products testing). Izdatel’stvo standartov, Moskva

    Google Scholar 

  92. Collaquot R (1989) Diagnostika povrezhdeniy (Damage diagnostics) (trans: Babayevsky PG). Mir, Moskva

    Google Scholar 

  93. Baranov VM (1990) Akusticheskie izmereniya v yadernoy energetike (Acoustic measuring in nuclear power engineering). Energia, Moskva

    Google Scholar 

  94. Andreykiv OYe et al (1987) Teoreticheskie konzepzii metoda akusticheskoy emissii v issledovanii prozessov razrusheniya (Theoretical concepts of acoustic emission method in the fracture processes investigations). Preprint, NAN Ukrayiny, Fizyko-mechanichnyi instytut, 137(1987), L’viv

    Google Scholar 

  95. Palmer IG, Brindley BJ, Harrison RP (1974) The relationship and crack opening displacement measurements. Mat Sci Eng 14(1):3–6

    Article  Google Scholar 

  96. Liptai RG et al (1971) Acoustic emissions technique in materials research. Int J Nondestr Test 3:215–275

    Google Scholar 

  97. Palmer IG, Heald PT (1973) The application of acoustic emission measurement to fracture mechanics. Mat Sci Eng 13(11):181–184

    Article  Google Scholar 

  98. Bolotin YuI et al (1975) Analiz akusticheskoy emissii, vyzvannoy rostom treschiny v pryamougol’noy plastine (Analysis of acoustic emission caused by crack growth in a rectangular plate). Izmeritelnaja Tekhnika (Measuring Equip) 1:54–57

    Google Scholar 

  99. Hartbower CE, Gerberich WW, Liebowitz H (1968) Investigation of crack growth stress wave relationships. Eng Fract Mech 1(2):291–308

    Article  Google Scholar 

  100. Bolotin YuI, Maslov LA, Polunin BI (1975) Ustanovlenie korelyaziy mezhdu razmerom treschiny i amplitudoy impul’sov akusticheskoy emissii (Establishment of correlation between crack sizes and acoustic emission pulse amplitude). Defektoskopia 4:119–122

    Google Scholar 

  101. Sinclair ACE, Formby CL, Connors DC (1975) Acoustic emission from defective C/Mn steel pressure vessel. Int J Press Vessels Pip 3(3):l53–174

    Article  Google Scholar 

  102. Kishi T, Kuribayashi K (1978) Akustichna emisiya u viprobuvannyach na v’yazkist’ ruynuvannya (Acoustic emission in the tests on fracture toughness). Kindzoku 48(2):56–60

    Google Scholar 

  103. Ishikawa K, Kim HC (1974) Stress wave emission and plastic work of notched specimens. J Mat Sci 9(5):737–743

    Article  Google Scholar 

  104. Palmer AG (1973) Acoustic emission measurements on reactor pressure vessel steel. Mater Sci Eng 11(4):227–236

    Article  Google Scholar 

  105. Tetelman AS, Chow R (1972) Acoustic emission testing and microcracking processes. In: Acoustic emission, ASTM STP 505. Baltimore, pp 30–40

    Google Scholar 

  106. Tetelman AS (1972) Acoustic emission and fracture mechanics testing of metals and composites. In: Proceedings of the U.S.–Japan joint symposium on acoustic emission—Tokyo, Japan, 4–6 July 1972

    Google Scholar 

  107. Lottermoser J et al (1982) Report No 780236–TW. Institut für Zerstorungs freie Prufvertahren

    Google Scholar 

  108. Pollock AA (1973) Acoustic emission—2. Acoust emission amplitudes. Non-Destr Test 6(5):264–269

    Article  Google Scholar 

  109. Pollock AA (1976) Acoustic emission. A review of recent progress and technical aspects. In: Stephens RW, Leventhall HG (eds) Acoustic and vibration progress, vol 1(1). Charman and Hall, London, pp 51–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentyn Skalskyi or Oleh Serhiyenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nazarchuk, Z., Skalskyi, V., Serhiyenko, O. (2017). The Generation of Elastic Acoustic Emission Waves Due to the Fracture of Solids. In: Acoustic Emission. Foundations of Engineering Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-49350-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49350-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49348-0

  • Online ISBN: 978-3-319-49350-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics