Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The petroleum refining industry produces small fractions of volatile olefins in addition to transportation fuels such as gasoline. In aggregate, these olefins represent very large quantities because of the huge scale of the primary refining industry. The availability of these olefins has given rise to a worldwide polyolefin industry which makes most of the common rubbers and plastics in use today. These olefins are converted to high polymers by the process of polymerization. The polymers span an unexpected range of thermal and mechanical properties. The introduction and the acceptance of these polymers arise from continuous innovation which improves the properties for use. The introduction of new fabrication processes allow the utilization of novel methods to produce forms with typical densities at or below 1.00 gm∕cc, leading to lightweight materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.A. Utracki: Commercial Polymer Blends (Springer, Dordrecht 1988)

    Google Scholar 

  2. R.J. Young, A.P. Lovell: Introduction to Polymers, 2nd edn. (Springer, Dordrecht 1991)

    Book  Google Scholar 

  3. J.D. Hottovy, B.E. Kreischer: Diluent recycle process, US Patent 6114501 (2000)

    Google Scholar 

  4. I. Burdett: Hydrocarbon Engineering (Palladian, Farnham 2008)

    Google Scholar 

  5. E. Benham, M. McDanie: High Density Polyethylene. In: Kirk-Othmer Concise Encyclopedia of Chemical Technology, 5th edn., ed. by A. Seide (Wiley, Hoboken 2007) p. 590

    Google Scholar 

  6. T. Hancock: Improvements in the method of manufacturing or preparing caoutchoc, either alone or in combination with other substances, English Patent 7549 (1838)

    Google Scholar 

  7. P. Pfleiderer: German Patent 10164 (1880)

    Google Scholar 

  8. F.H. Banbury: Machine for treating rubber and other heavy plastic material, US Patent 1200070 (1916)

    Google Scholar 

  9. R.T. Cooke: Rubber mixing or preparing machine, US Patent 215618A (1934)

    Google Scholar 

  10. J.W. Cho, P.S. Kim, J.L. White, L. Pomini: Flow visualization in an internal mixer using an adjustable rotor system comparison of double flighted and four flighted rotors, Kautsch. Gummi. Kunstst. 50, 496 (1997)

    CAS  Google Scholar 

  11. P. Pfleiderer: Innovations on kneading and mixing machines of Freyburger type, German Patent 18797 (1882)

    Google Scholar 

  12. H. Ahnhudt: Machine for producing patterned plastic materials, German Patent 397961C (1924)

    Google Scholar 

  13. P. Leistritz, F. Burghauser: German Patent 682787 (1939)

    Google Scholar 

  14. R. Colombo: Italian Patent 370578 (1939)

    Google Scholar 

  15. R. Colombo: German Patent 895058 (1953)

    Google Scholar 

  16. R. Erdmenger: German Patent 813154 (1951)

    Google Scholar 

  17. W. Winkelmuller, R. Erdmenger, S. Neidhardt, E. Hirschberg, B. Fortuna: German Patent 813154 (1951)

    Google Scholar 

  18. E.H. Ahlefeld, A.J. Baldwin, P. Hold, W.A. Rapetzki, H.R. Scharer: US Patent 3154808 (1964)

    Google Scholar 

  19. Y. Wang, J.L. White, W. Szydlowski: Flow in a modular intermeshing co-rotating twin screw extruder, Int. Polym. Process. 4, 262 (1989)

    Article  Google Scholar 

  20. D. Bang, J.L. White: Modular tangential counter-rotating twin screw extrusion: Non-Newtonian and non-isothermal simulation, Int. Polym. Process. 12, 278 (1997)

    Article  CAS  Google Scholar 

  21. F.R. Mayo, F.M. Lewis: Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization: The copolymerization of styrene and methyl methacrylate, J. Am. Chem. Soc. 66, 1594–1601 (1944)

    Article  CAS  Google Scholar 

  22. R. Popli, L. Mandelkern: Influence of structural and morphological factors on the mechanical properties of the polyethylenes, J. Polym. Sci. Part B. 25, 441–483 (1987)

    Article  CAS  Google Scholar 

  23. R.J. Young: Introduction to Polymers (Chapman & Hall, London 1981)

    Book  Google Scholar 

  24. H. von Pechmann: Pyrazol aus Acetylen und Diazomethan, Ber. dtsch. chem. Ges. 31, 2950 (1898)

    Article  Google Scholar 

  25. R. Kuhn, H. Kramer: Structures and properties of different low density polyethylenes, Colloid Polym. Sci. 260, 1083–1092 (1982)

    Article  CAS  Google Scholar 

  26. F.J. Karol: Encyclopedia of Polymer Science and Technology, Vol. 1 (Wiley, New York 1976) p. 120

    Google Scholar 

  27. J.P. Hogan: Applied Industrial Catalysis, Vol. 6 (Academic Press, New York 1983) p. 149

    Book  Google Scholar 

  28. D. Maxfield, L. Mandelkern: Crystallinity, supermolecular structure and thermodynamic properties of linear polyethylene fractions, Macromolecules 10, 1141–1153 (1979)

    Article  Google Scholar 

  29. M. Gahleitner, C. Tranninger, P. Doshev: Heterophasic copolymers of polypropylene: Development, design, principles and future challenges, J. Appl. Polym. Sci. 130, 3028–3037 (2013)

    Article  CAS  Google Scholar 

  30. M. Gahleitner, C. Paulik: Polypropylene. In: Ullmann Encyclopedia of Industrial Chemistry, ed. by M. Bohnet (Wiley, Weinheim 2014)

    Google Scholar 

  31. M. Gahleitner, L. Resconi, P. Doshev: Heterogeneous Ziegler-Natta, metallocene and post-metallocene catalysis: Successes and challenges in industrial application, Mater. Res. Soc. Bull. 38, 229–233 (2013)

    Article  CAS  Google Scholar 

  32. N. Pasquini: Polypropylene Handbook (Carl Hanser, Munich 2005)

    Google Scholar 

  33. J.F. Ross, W. Bowles: An improved gas – Phase polypropylene process, Ind. Eng. Chem. Prod. Res. Dev. 24, 149–154 (1985)

    Article  CAS  Google Scholar 

  34. G. DiDrusco, R. Rinaldi: Polypropylene-process, selection criteria, Hydrocarb. Process. 63, 113–117 (1984)

    CAS  Google Scholar 

  35. J.W. Shepard, J.L. Jezl, E.F. Peters, R.D. Hall: Divided horizontal reactor for the capor phase polymerization of monomers at different hydrogen levels, US Patent 3957448 (1976)

    Google Scholar 

  36. C. Tzoganakis, J. Vlachopoulos, A. Hamielec: Modeling of the peroxide degradation of polypropylene, Int. Polym. Process. 3, 141–150 (1988)

    Article  CAS  Google Scholar 

  37. M. Xanthos: Reactive Extrusion Principles and Practice (Carl Hanser, Munich 1992)

    Google Scholar 

  38. A. Neubauer, S. Rhee, G. Smitherman: Troubleshooting underwater pelletizing processes, SPE Tech. Papers, Proc. 61st Annu. Tech. Conf. Soc. Plast. Eng. (2003) pp. 241–245

    Google Scholar 

  39. C. Crumb: www.er-we-pa.de/public_html/Company/pubs/EP_defects.html

  40. H.G. Karian: Handbook of Polypropylene and Polypropylene Composites (Marcel Dekker, New York 2003)

    Book  Google Scholar 

  41. A.K. Doufas, L. Rice, W. Thurston: Shear and extensional rheology of polypropylene melts: Experimental and modeling studies, J. Rheology 55, 95–126 (2011)

    Article  CAS  Google Scholar 

  42. A. Ghijsels, J. De Clippeleir: Melt strength behavior of polypropylenes, Int. Polym. Process. 3(9), 252–257 (1994)

    Article  Google Scholar 

  43. H.C. Lau, S. Bhattacharya, G. Field: Melt strength of polypropylene: Its relevance to thermoforming, Polym. Eng. Sci. 38, 915–1923 (1998)

    Article  Google Scholar 

  44. S. Hatzikiriakos, K. Migler: Polymer Processing Instabilities: Control and Understanding (Marcel Dekker, New York 2004)

    Book  Google Scholar 

  45. I. Kazatchkov, S. Hatzikiriakos: Extrudate distortion in the capillary/slit extrusion of a molten polypropylene, Polym. Eng. Sci. 11, 1864–1871 (1995)

    Article  Google Scholar 

  46. O. Bartos: Fracture of polymer melts at high shear stress, J. Appl. Phys. 35, 2767 (1964)

    Article  CAS  Google Scholar 

  47. K. Kamide, Y. Inamoto, K. Ono: Int. Chem. Eng. 6, 340 (1966)

    Google Scholar 

  48. S. Barnett: A correlation for melt fracture, Polym. Eng. Sci. 7, 168 (1967)

    Article  CAS  Google Scholar 

  49. J. Ui, Y. Ishimaru, H. Murakami, N. Fukushima, Y. Mori: Study of flow properties of polymer melt with the screw extruder, Polym. Eng. Sci 4(4), 295–305 (1964)

    Article  CAS  Google Scholar 

  50. J.-C. Huang, Z. Tao: Melt fracture, melt viscosities and die swell of polypropylene resin in capillary flow, J. App. Polym. Sci. 1587, 1594 (2003)

    Google Scholar 

  51. G. Akay: Unstable capillary flow of reinforced polymer melts, J. Non-Newtonian Fluid Mech. 13(3), 309–323 (1983)

    Article  CAS  Google Scholar 

  52. M. Fujiyama, Y. Kawasaki: Rheological properties of polypropylene/high-density polyethylene blend melts. I. Capillary flow properties, J. Appl. Polym. Sci. 42(2), 467–480 (1991)

    Article  CAS  Google Scholar 

  53. Z. Tao, J.-C. Huang: Observation of melt fracture of polypropylene resins in capillary flow, Polymers 44, 719–727 (2003)

    Article  CAS  Google Scholar 

  54. J. Baik, C. Tzoganakis: A study of extrudate distortion in controlled-rheology polypropylenes, Polym. Eng. Sci. 38, 274–281 (1998)

    Article  CAS  Google Scholar 

  55. S.G. Hatzikiriakos: Wall slip of molten polymers, Progr. Polym. Sci. 37, 624–643 (2012)

    Article  CAS  Google Scholar 

  56. E.E. Rosenbaum, S.G. Hatzikiriakos: Wall slip in the capillary flow of molten polymer subject to viscous heating, AICHE J. 43, 598–608 (1997)

    Article  CAS  Google Scholar 

  57. E. Mitsoulis, I.B. Kazatchkov, S.G. Hatzikiriakos: The effect of slip on the flow of a branched PP: Melt visualization experiments and simulations, Rheologica Acta. 44, 418–426 (2005)

    Article  CAS  Google Scholar 

  58. R. Athey, R. Thamm, R. Souffie, R. Chapman: The processing behavior of polyolefins containing a fluoroelastomer additive, SPE Tech. Pap, Vol. 21, 1986) pp. 1149–1153

    Google Scholar 

  59. A. Rudin, A.T. Worm, J.E. Blacklock: Fluorocarbon elastomer processing aid for LLDPE, HDPE and PP resins, Proc. 1st Int. Conf. Process. Prop. Enhanc. Util. Modif. Addit. in Polym (1985)

    Google Scholar 

  60. E. Strangland, J. Dooley, M. Spalding, E. Kim: Fundamental characterization on polypropylene extrusion, SPE ANTEC Tech. Pap., Annu. Tech. Conf. 2001 (2002) p. 302

    Google Scholar 

  61. C. Cheng: Effects of polypropylene crystallinity on extrusion, SPE ANTEC Tech. Pap., Soc. Plast. Eng., Vol. 1 (1995) pp. 98–106

    Google Scholar 

  62. C. Chung: Extrusion of Polymers, Theory and Practice (Hanser Gadner, Cincinnatti 2000)

    Google Scholar 

  63. A.K. Doufas, E. Catalina, J. Avolio, R.J. Seung, K. Slusarz, B. Jonathan: Experimental studies of polypropylene extrusion instability, SPE ANTEC Tech. Pap., Proc. Annu. Tech. Conf. Soc. Plast. Eng. (2007) pp. 416–420

    Google Scholar 

  64. A.K. Doufas, E. Catalina, W. Thurston, R. Majewski: Propylene-based composition of enhanced appearance and excellent mold flowability, US Patent 20120157599A1 (2012)

    Google Scholar 

  65. K. Hirano, Y. Suetsugu, T. Kanai: Morphological analysis of the tiger stripe on injection molding of polypropylene/ethylene-propylene rubber/talc blends dependent on based polypropylene design, J. App. Polym. Sci. 104, 192–199 (2007)

    Article  CAS  Google Scholar 

  66. Y. Leong, M.A. Bakar, Z. Mohd-Ishak, A. Ariffin, B. Pukanszky: Comparison of the mechanical properties and interfacial interactions between talc, kaolin and calcium carbonate filled polypropylene composites, J. App. Polym. Sci. 91, 3315–3326 (2004)

    Article  CAS  Google Scholar 

  67. M. Denn: Computational Analysis of Polymer Processing (Applied Science, London 1983)

    Google Scholar 

  68. A. Ziabicki: Fundamentals of Fiber Formation (Wiley, New York 1976)

    Google Scholar 

  69. A.K. Doufas, A.J. McHugh, C. Miller: Simulation of melt spinning including flow-induced crystallization. Part I. Model development and prediction, J. Non-Newtonian Fluid Mech. 92, 27–66 (2000)

    Article  CAS  Google Scholar 

  70. R.M. Patel, A.K. Doufas, R.P. Paradkar: Raman spectroscopy for spinline crystallinity measurements. II. Validation of fundamental fiber-spinning models, J. App. Polym. Sci. 109, 3398–3412 (2008)

    Article  CAS  Google Scholar 

  71. R.P. Paradkar, R.M. Patel, E. Knickerbocker, A.K. Doufas: Raman spectroscopy for spinline crystallinity measurements. I. Experimental studies, J. App. Polym. Sci. 109, 3413–3420 (2008)

    Article  CAS  Google Scholar 

  72. W. Minoshima, J.L. White, J.E. Spruiell: Experimental investigations of the influence of molecular weight distribution on melt spinning and extrudate swell characteristics of polypropylene, J. App. Polym. Sci. 25, 287–306 (1980)

    Article  CAS  Google Scholar 

  73. S. Misra, F.-M. Lu, J. Spruiell, G. Richeson: Influence of molecular weight distribution on the structure and properties of melt-spun polypropylene filaments, J. App. Polym. Sci. 56, 1761–1779 (1995)

    Article  CAS  Google Scholar 

  74. E. Andreassen, O.J. Myhre, E.L. Hinrichsen, K. Grostad: Effects of processing parameters and molecular weight distribution on the tensile properties of polypropylene fibers, J. App. Polym. Sci. 51, 1505–1517 (1994)

    Article  Google Scholar 

  75. H. Geus, D. Frey, P. Schlag: Arrangement for the continuous production of a filament nonwoven fibrous web, US Patent 6981750B2 (2005)

    Google Scholar 

  76. H. Balk: Apparatus for making a spun-filament fleece, US Patent 4820142 (1989)

    Google Scholar 

  77. H. Bongaerts: Flat Film Extrusion Using Chill-Roll Casting (Hanser, Munich 1997)

    Google Scholar 

  78. K. Resch, G.M. Wallner, C. Teichert, G. Maier, M. Gahleitner: Optical properties of highly transparent polypropylene cast films: Influence of material structure, additives and processing conditions, Polym. Eng. Sci. 46(4), 520–531 (2006)

    Article  CAS  Google Scholar 

  79. N. Macauley, E. Harkin-Jones, W. Murphy: The influence of nucleating agents on the extrusion and thermoforming of polypropylene, Polym. Eng. Sci. 38(3), 516–523 (1998)

    Article  CAS  Google Scholar 

  80. K. McHugh, K. Ogale: High melt strength PP for melt phase thermoforming, SPE ANTEC Tech. Pap., Proc. Annu. Tech. Conf. Soc. Plast. Eng. (1990) pp. 452–455

    Google Scholar 

  81. D.V. Rosato, M.G. Rosato: Injection Molding Handbook (Springer, New York 2000)

    Book  Google Scholar 

  82. G. Peters, L. Balzano, R. Steenbakkers: Flow-induced crystallization. In: Handbook of Polymer Crystallization, ed. by E. Piorkowska, G.C. Rutledge (Wiley, New York 2013) pp. 399–431

    Chapter  Google Scholar 

  83. M. Gahleitner, P. Jääskeläinen, E. Ratajski, C. Paulik, J. Reussner, J. Wolfschwenger, W. Neibl: Propylene-ethylene random copolymers: Comomoner effects on crystallinity and application properties, J. App. Polym. Sci. 95, 1073–1081 (2005)

    Article  CAS  Google Scholar 

  84. S. Maeda, K. Fukunaga, E. Kamei: Flow mark in the injection molding of polypropylene/rubber/talc blends, Nihon Reoroji Gakkaishi 35, 293–299 (2007)

    Article  CAS  Google Scholar 

  85. B. Patham, P. Papworth, K. Jayaraman, C. Shu, M. Wolkowicz: Flow marks in injection molding of polypropylene and ethylene–propylene elastomer blends: Analysis of morphology and rheology, J. App. Polym. Sci. 96, 423–434 (2005)

    Article  CAS  Google Scholar 

  86. Phillips: GB Patent 848065 (1956)

    Google Scholar 

  87. B.F. Goodrich: DT Patent 1128143 (1958)

    Google Scholar 

  88. G. Marwede, B. Stollfuf: Actual state of butadiene rubber for tire application, RubberCon 87, 112–116 (1987)

    Google Scholar 

  89. M. Grippin: Ind. Eng. Chem. Proc. Res. Dev. 4, 160–165 (1965)

    Article  Google Scholar 

  90. L. Furukawa: Mechanism of diene polymerization, Pure Appl. Chern. 42, 495 (1975)

    Article  CAS  Google Scholar 

  91. A.E. Oberster, T.C. Bouton, J.K. Valaitis: Balancing wear and traction with lithium catalyzed polymers, Angew. Makromol. Chem. 29(1), 291–305 (1973)

    Article  Google Scholar 

  92. A.A. Morton, E.E. Magat, R.L. Letsinger: Polymerization. VI. The alfin catalysts, J. Amer. Chem. Soc. 69(4), 950–961 (1947)

    Article  CAS  Google Scholar 

  93. H.L. Hsieh: Synthesis of redial thermoplastic elastomers, Rubber Chem. Tech. 49(5), 1305–1310 (1976)

    Article  CAS  Google Scholar 

  94. W. Ring, H.J. Cantow: Untersuchungen zur Molekulargewichtssprungreaktion von 1,4-cis-Polybutadien, Makromol. Chem. Phys. 89(1), 138–155 (1965)

    Article  CAS  Google Scholar 

  95. I.G. Farbenindustrie: DR Patent 570980 (1929)

    Google Scholar 

  96. I.G. Farbenindustrie: DR Patent 891 025 (1939)

    Google Scholar 

  97. A.L. Glasebrook, A.N. Hoffmann, J.B. Montgomery: Rosin hydrogenation, US Patent 2776276A (1953)

    Google Scholar 

  98. F.S. Rostler: Rubber Age 69, 559 (1951)

    CAS  Google Scholar 

  99. J.M. Willis, W.W. Barbin: Rubber Age 100, 53–56 (1968)

    CAS  Google Scholar 

  100. B.F.P. Baldwin, G. Verstrate: Polyolefin elastomers, based on ethylene and propylene, Rubber Chem. Tech. 45, 709–781 (1972)

    Article  CAS  Google Scholar 

  101. S. Shiga, M. Futura: Processibility of EPR in an internal mixer. II. Morphological changes in carbon black, Rubber Chem. Tech. 58, 1 (1985)

    Google Scholar 

  102. A.Y. Coran: Blends of dissimilar rubbers – Cure rate incompability, RubberCon 87, A32 (1987)

    Google Scholar 

  103. S. Cesca, M. Bruzzzone, A. Priola, G. Ferraris, P. Giusti: Copolymerization of isobutene and isoprene at high temperature with syncatalyst systems based on aluminum organic compounds, Rubber Chem. Tech. 49(4), 937–959 (1976)

    Article  CAS  Google Scholar 

  104. R.L. Zapp, P. Hous: Butyl and chlorobutyl rubber. In: Rubber Technology, 2nd edn., ed. by M. Morton (Van Nostrand Reinold, New York 1973) p. 249

    Google Scholar 

  105. A. van Tongerloo, R. Vucov: Butyl rubber-halogenation mechanisms, Proc. IRC (1979) p. 70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fiscus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fiscus, D., Doufas, A., Datta, S. (2017). Polyolefins. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_37

Download citation

Publish with us

Policies and ethics