Skip to main content

Modeling Refining Processes

  • Chapter
  • 5554 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Conversion of petroleum fractions and crude oils involves a vast number of chemical species. Modeling of such large reaction systems has been and will continue to be an active research area. There has been an array of approaches bearing on the subject scattered throughout the literature in different contexts. This chapter provides a brief, coherent overview of several selected approaches. The emphasis is on model simplification and mechanism reduction via heuristic concepts and formal mathematical techniques. Among the topics discussed are: top-down and bottom-up kinetic modeling, graph/matrix representation of chemical reactions, mechanistic versus pathways models, quantitative structure–reactivity relationships, asymptotic and optimization methods of dimension reduction, tradeoff between kinetics and hydrodynamics, continuum approximation, collective behavior, and overall kinetics of a large number of reactions. Some common features of dimension reduction approaches are discussed. The areas requiring further investigation are suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.M. Jacob, B. Gross, S.E. Voltz, V.W. Weekman: A lumping and reaction scheme for catalytic cracking, AIChE J. 22(4), 701–713 (1976)

    Article  CAS  Google Scholar 

  2. L. Lee, Y. Chen, T. Huang, W. Pan: Four-lump kinetic model for fluid catalytic cracking process, Can. J. Chem. Eng. 67(4), 615–619 (1989)

    Article  CAS  Google Scholar 

  3. S.B. Jaffe: Kinetics of heat release in petroleum hydrogenation, Ind. Eng. Chem. Proc. Des. Dev. 13, 34–39 (1974), http://pubs.acs.org/doi/abs/10.1021/i260049a006

    Article  CAS  Google Scholar 

  4. S.B. Jaffe: Hot spot simulation in commercial hydrogenation processes, Ind. Eng. Chem. Proc. Des. Dev. 15(3), 410–416 (1976), http://pubs.acs.org/doi/abs/10.1021/i260059a011

    Article  CAS  Google Scholar 

  5. I.A. Wiehe: A phase-separation kinetic model for coke formation, Ind. Eng. Chem. Res. 32(11), 2447–2454 (1993), http://pubs.acs.org/doi/abs/10.1021/ie00023a001

    Article  CAS  Google Scholar 

  6. Z. Huang, T.C. Ho: Effect of thermolysis on resid droplet vaporization in fluid catalytic cracking, Chem. Eng. J. 91(1), 4558 (2003), http://www.sciencedirect.com/science/article/pii/S1385894702001146

    Article  Google Scholar 

  7. P. Ghosh, K.J. Hickey, S.B. Jaffe: Development of a detailed gasoline composition-based octane model, Ind. Eng. Chem. Res. 45(1), 337–345 (2006), http://pubs.acs.org/doi/abs/10.1021/ie050811h

    Article  CAS  Google Scholar 

  8. R.J. Quann, S.B. Jaffe: Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31(11), 2483–2497 (1992), http://pubs.acs.org/doi/abs/10.1021/ie00011a013

    Article  CAS  Google Scholar 

  9. R.J. Quann, S.B. Jaffe: Building useful models of complex reaction systems in petroleum refining, Chem. Eng. Sci. 51(10), 1615–1635 (1996), http://www.sciencedirect.com/science/article/pii/0009250996000231

    Article  CAS  Google Scholar 

  10. M.T. Klein, G. Hou, R.J. Bertolcini, L.J. Broadbelt, A. Kumar: Molecular Modeling in Heavy Hydrcarbons Conversions (CRC, Boca Raton 2006)

    Google Scholar 

  11. L.J. Broadbelt, S.M. Stark, M.T. Klein: Computer generated reaction networks: On-the-fly calculation of species properties using computational quantum chemistry, Chem. Eng. Sci. 49(24), 4991–5010 (1994), http://www.sciencedirect.com/science/article/pii/0009250994003262

    Article  CAS  Google Scholar 

  12. L.J. Broadbelt, S.M. Stark, M.T. Klein: Computer generated reaction modelling: Decomposition and encoding algorithms for determining species uniqueness, Comput. Chem. Eng. 20(2), 113–129 (1998), http://www.sciencedirect.com/science/article/pii/009813549400009D

    Article  Google Scholar 

  13. R. Tanaka, C.A. Bennett, Z. Hou, M. Jones, M.T. Klein, G. Hou: Molecule-based kinetic modeling of naphtha hydrotreating, Proc. ACS Nat. Meet. (2006)

    Google Scholar 

  14. L.P. Hillewaert, J.L. Dierickx, G.F. Froment: Computer generation of reaction schemes and rate equations for thermal cracking, AIChE J. 34(1), 17–24 (1988)

    Article  CAS  Google Scholar 

  15. M.A. Baltanas, K.K.V. Raemdonck, G.F. Froment, S.R. Mohedas: Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization, Ind. Eng. Chem. Res. 28(7), 899–910 (1989)

    Article  CAS  Google Scholar 

  16. G.F. Froment: Single event kinetic modeling of complex catalytic processes, Catal. Rev. 47(1), 83–124 (2005)

    Article  CAS  Google Scholar 

  17. S.E. Senkan: Detailed chemical kinetic modeling: Chemical reaction engineering of the future. In: Advances in Chemical Engineering (Academic, Boston 1992) pp. 95–196, http://www.sciencedirect.com/science/article/pii/S0065237708601234

    Google Scholar 

  18. L.J. Broadbelt, R.Q. Snurr: Applications of molecular modeling in heterogeneous catalysis research, Appl. Catal. A 200(1/2), 23–46 (2000), http://www.sciencedirect.com/science/article/pii/S0926860X00006487

    Article  CAS  Google Scholar 

  19. M. Boudart, G. Djega-Mariadassou: Kinetics of Heterogeneous Catalytic Reactions (Princeton Univ. Press, Princeton 1984)

    Book  Google Scholar 

  20. F.G. Helfferich: Kinetics of Homogeneous Multistep Reactions (Elsevier, Amsterdam 2001)

    Google Scholar 

  21. R.D. Cortright, J.A. Dumesic: Kinetics of heterogeneous catalytic reactions: Analysis of reaction schemes, Adv. Catal. 46, 161–264 (2001)

    CAS  Google Scholar 

  22. G.R. Gavalas: The long chain approximation in free radical reaction systems, Chem. Eng. Sci. 21(2), 133–141 (1966), http://www.sciencedirect.com/science/article/pii/0009250966850042

    Article  Google Scholar 

  23. J.K. Bechtold, C.K. Law: The structure of premixed methane-air flames with large activation energy, Combust. Flame 97(3/4), 317–338 (1994), http://www.sciencedirect.com/science/article/pii/0010218094900248

    Article  CAS  Google Scholar 

  24. A.B. Mhadeshwar, D.G. Vlachos: Is the water–gas shift reaction on Pt simple?: Computer-aided microkinetic model reduction, lumped rate expression, and rate-determining step, Catal. Today 105(1), 162–172 (2005), http://www.sciencedirect.com/science/article/pii/S0920586105002075

    Article  CAS  Google Scholar 

  25. I. Fishtik, C.A. Callaghan, R. Datta: Reaction route graphs. I. Theory and algorithm, J. Phys. Chem. B 108(18), 5671–5682 (2004), http://pubs.acs.org/doi/abs/10.1021/jp0374004

    Article  CAS  Google Scholar 

  26. M.A. Vannice: Kinetics of Catalytic Reactions (Springer, New York 2005)

    Book  Google Scholar 

  27. A.B. Mhadeshwar, H. Wang, D.G. Vlachos: Thermodynamic consistency in microkinetic development of surface reaction mechanisms, J. Phys. Chem. B 107(46), 12721–12733 (2003), http://pubs.acs.org/doi/abs/10.1021/jp034954y

    Article  CAS  Google Scholar 

  28. K.J. Laidler: Chemical Kinetics, 3rd edn. (Harper Row, New York 1987)

    Google Scholar 

  29. M.R. Gray, W.C. McCaffrey: Role of chain reactions and olefin formation in cracking, hydroconversion, and coking of petroleum and bitumen fractions, Energy Fuels 16(3), 756–766 (2002), http://pubs.acs.org/doi/abs/10.1021/ef010243s

    Article  CAS  Google Scholar 

  30. J.T. Hwang, E.P. Dougherty, S. Rabitz, H. Rabitz: The Green’s function method of sensitivity analysis in chemical kinetics, J. Chem. Phys. 69, 5180–5191 (1978)

    Article  CAS  Google Scholar 

  31. H. Rabitz: Chemical dynamics and kinetics phenomena as revealed by sensitivity analysis techniques, Chem. Rev. 87(1), 101–112 (1987)

    Article  CAS  Google Scholar 

  32. S. Vajda, P. Valko, T. Turanyi: Principal component analysis of kinetic models, Int. J. Chem. Kinetics 17(1), 55–81 (1985)

    Article  CAS  Google Scholar 

  33. M.A. Sanchez-Castillo, N. Agarwal, C. Miller, R.D. Cortright, R.J. Madon, J.A. Dumesic: Reaction kinetics study and analysis of reaction schemes for isobutane conversion over USY zeolite, J. Catal. 205(1), 67–85 (2002), http://www.sciencedirect.com/science/article/pii/S0021951701934190

    Article  CAS  Google Scholar 

  34. V.K. Pareek, A.A. Adesina, A. Srivastava, R.J. Sharma: Sensitivity analysis of rate constants of Weekman’s riser kinetics and evaluation of heat of cracking using CATCRAK, J. Mol. Catal. A 181(1/2), 263–274 (2002), http://www.sciencedirect.com/science/article/pii/S1381116901003715

    Article  CAS  Google Scholar 

  35. I. Mochida, Y. Yoneda: Linear free energy relationships in heterogeneous catalysis: III. Temperature effects in dealkylation of alkylbenzenes on the cracking catalysts, J. Catal. 8(3), 223–230 (1967)

    Article  CAS  Google Scholar 

  36. I. Mochida, Y. Yoneda: Linear free energy relationships in heterogeneous catalysis: I. Dealkylation of alkylbenzenes on cracking catalysts, J. Catal. 7(4), 386–392 (1967), http://www.sciencedirect.com/science/article/pii/0021951767901674

    Article  CAS  Google Scholar 

  37. I. Mochida, Y. Yoneda: Linear free energy relationships in heterogeneous catalysis: II. Dealkylation and isomerization reactions on various solid acid catalysts, J. Catal. 7(4), 393–396 (1967), http://www.sciencedirect.com/science/article/pii/0021951767901686

    Article  CAS  Google Scholar 

  38. A. Nigam, M.T. Klein: A mechanism-oriented lumping strategy for heavy hydrocarbon pyrolysis: Imposition of quantitative structure-reactivity relationships for pure components, Ind. Eng. Chem. Res. 32(7), 1297–1303 (1993), http://pubs.acs.org/doi/abs/10.1021/ie00019a003

    Article  CAS  Google Scholar 

  39. B.A. Watson, M.T. Klein, R.H. Harding: Catalytic cracking of alkylbenzenes: Modeling the reaction pathways and mechanisms, Appl. Catal. A 160(1), 13–39 (1997), http://www.sciencedirect.com/science/article/pii/S0926860X97001221

    Article  CAS  Google Scholar 

  40. D.K. Liguras, D.T. Allen: Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures, Ind. Eng. Chem. Res. 28(6), 674–683 (1989), http://pubs.acs.org/doi/abs/10.1021/ie00090a005

    Article  CAS  Google Scholar 

  41. D.T. Allen: Structural Models of Catalytic Cracking Chemistry. In: Kinetic and Thermodynamic Lumping of Multicomponent Mixtures, ed. by G. Astarita, S.I. Sandler (Elsevier, Amsterdam 1991)

    Google Scholar 

  42. B. Sowerby, S.J. Becker, L.J. Belcher: Modeling of 2-methylpentane cracking: The application of adsorption equilibrium constants estimated using proton affinities, J. Catal. 161(1), 377–386 (1996), http://www.sciencedirect.com/science/article/pii/S0021951796901955

    Article  CAS  Google Scholar 

  43. B. Sowerby, S.J. Becker: Modeling catalytic cracking kinetics using estimated adsorption equilibrium constants. In: Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysts, ed. by G.F. Froment, K.C. Waugh (Elsevier, Amsterdam 1997)

    Google Scholar 

  44. M. Sun, A.E. Nelson, J. Adjaye: Correlating the electronic properties and HDN reactivities of organonitrogen compounds: An ab initio DFT study, J. Mol. Catal. A 222(1/2), 243–251 (2004), http://www.sciencedirect.com/science/article/pii/S1381116904005722

    Article  CAS  Google Scholar 

  45. J. Abbot, P.R. Dunstan: Catalytic cracking of linear paraffins: Effects of chain length, Ind. Eng. Chem. Res. 36(1), 76–82 (1997), http://pubs.acs.org/doi/abs/10.1021/ie960255e

    Article  CAS  Google Scholar 

  46. R.J. Quann, F.J. Krambeck: Olefine oligomerization kinetics over ZSM-5. In: Chemical Reactions in Complex Mixtures, ed. by A.V. Sapre, F.J. Krambeck (Van Nostrane Reinhold, New York 1991)

    Google Scholar 

  47. T.C. Ho, A.R. Katritzky, S.J. Cato: Effect of nitrogen compounds on cracking catalysts, Ind. Eng. Chem. Res. 31(7), 1589–1597 (1992)

    Article  CAS  Google Scholar 

  48. T.C. Ho: Property–reactivity correlation for HDS of middle distillates, Appl. Catal. A 244(1), 115–128 (2003), http://www.sciencedirect.com/science/article/pii/S0926860X02005720

    Article  CAS  Google Scholar 

  49. T.C. Ho, G.E. Markley: Property–reactivity correlation for hydrodesulfurization of prehydrotreated distillates, Appl. Catal. A 267(1/2), 245–250 (2004), http://www.sciencedirect.com/science/article/pii/S0926860X04001814

    Article  CAS  Google Scholar 

  50. M.A. Sharaf, D.L. Illman, B.R. Kowalski: Chemometrics (John Wiley, New York 1986)

    Google Scholar 

  51. S. Wold, P. Geladi, K. Esbensen, J. Ohman: Multi-way principal components-and PLS-analysis, J. Chemom. 1(1), 41–56 (1987)

    Article  CAS  Google Scholar 

  52. S.J. Qin: A statistical perspective of neural networks for process modeling and control, Proc. 1993 IEEE Int. Symp. Intell. (1993) pp. 599–604, https://doi.org/10.1109/ISIC.1993.397629

    Google Scholar 

  53. J.A. Dumesic, D.F. Rudd, L.M. Aparicio, J.E. Rekoske, A.A. Trevino: The Microkinetics of Heterogeneous Catalysis (Amer. Chem. Soc., Washington 1993)

    Google Scholar 

  54. G. Yaluris, J.E. Rekoske, L.M. Aparicio, R.J. Madon, J.A. Dumesic: Isobutane cracking over Y-zeolites: I. Development of a kinetic-model, J. Catal. 153(1), 54–64 (1995), http://www.sciencedirect.com/science/article/pii/S0021951785711074

    Article  CAS  Google Scholar 

  55. G. Yaluris, J.E. Rekoske, L.M. Aparicio, R.J. Madon, J.A. Dumesic: Isobutane Cracking over Y-zeolites: II. Catalytic cycles and reaction selectivity, J. Catal. 153(1), 65–75 (1995), http://www.sciencedirect.com/science/article/pii/S0021951785711086

    Article  CAS  Google Scholar 

  56. N.Y. Dewachtere, F. Santaella, G.F. Froment: Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54(15/16), 3653–3660 (1999)

    Article  CAS  Google Scholar 

  57. T.M. Moustafa, G.F. Froment: Kinetic modeling of coke formation and deactivation in the catalytic cracking of vacuum gas oil, Ind. Eng. Chem. Res. 42(1), 14–25 (2003)

    Article  CAS  Google Scholar 

  58. G. Christensen, M.R. Apelian, K.J. Hicky, S.B. Jaffe: Future directions in modeling the FCC process: An emphasis on product quality, Chem. Eng. Sci. 54(13/14), 2753–2764 (1999), http://www.sciencedirect.com/science/article/pii/S0009250999000020

    Article  CAS  Google Scholar 

  59. P.V. Joshi, S.D. Iyer, M.T. Klein: Automated kinetic modeling of gas oil catalytic cracking, Rev. Process Chem. Eng. 2, 111–140 (1998)

    Google Scholar 

  60. P.V. Joshi, M.T. Klein, A.L. Huebner, R.W. Leyerle: Automated kinetic modeling of catalytic reforming at the reaction pathway levels, Rev. Process. Chem. Eng. 2, 169–193 (1999)

    CAS  Google Scholar 

  61. M.S. Okino, M.L. Mavrovouniotis: Simplification of mathematical models of chemical reaction systems, Chem. Rev. 98(2), 391–408 (1998), http://pubs.acs.org/doi/abs/10.1021/cr950223l

    Article  CAS  Google Scholar 

  62. G. Li, A.S. Tomlin, H. Rabitz: Determination of approximate lumping schemes by a singular perturbation method, J. Chem. Phys. 99, 3562 (1993)

    Article  CAS  Google Scholar 

  63. R.J. Fisher, M.M. Denn: A modal approach to dynamics of nonlinear processes, AIChE J. 24(3), 519–523 (1978)

    Article  CAS  Google Scholar 

  64. C.C. Chen, H.C. Chang: Accelerated disturbance damping of an unknown distributed system by nonlinear feedback, AIChE J. 38(9), 1461–1476 (1992)

    Article  CAS  Google Scholar 

  65. S.H. Lam, D.A. Goussis: The CSP method for simplifying kinetics, J. Chem. Kinet. 26(4), 461–486 (1994)

    Article  CAS  Google Scholar 

  66. J. Wei, J.C. Kuo: Lumping analysis in monomolecular reaction systems. Analysis of the exactly lumpable system, Ind. Eng. Chem. Fundamen. 8(1), 114–123 (1969)

    Article  CAS  Google Scholar 

  67. P.G. Coxson, K.B. Bishoff: Lumping strategy. 2. System theoretic approach, Ind. Eng. Chem. Res. 26101, 2151 (1987), http://pubs.acs.org/doi/abs/10.1021/ie00070a037

    Article  Google Scholar 

  68. J.E. Bailey: Lumping analysis of reactions in continuous mixtures, Chem. Eng. J. 3, 52–61 (1972), http://www.sciencedirect.com/science/article/pii/0300946772850056

    Article  CAS  Google Scholar 

  69. G. Li, H. Rabitz: Determination of constrained lumping schemes for nonisothermal first-order reaction systems, Chem. Eng. Sci. 46(2), 583–596 (1991)

    Article  CAS  Google Scholar 

  70. G. Li, H. Rabitz: The direct lumping approach: An application to a catalytic reforming model, Chem. Eng. Sci. 48(10), 1903–1909 (1993), http://www.sciencedirect.com/science/article/pii/0009250993803603

    Article  CAS  Google Scholar 

  71. J.C. Kuo, J. Wei: Lumping analysis in monomolecular reaction systems. Analysis of approximately lumpable system, Ind. Eng. Chem. Fundamen. 8(1), 124–133 (1969), http://pubs.acs.org/doi/abs/10.1021/i160029a020

    Article  CAS  Google Scholar 

  72. J.C. Liao, E.N. Lightfoot: Lumping analysis of biochemical reaction systems with time scale separation, Biotech. Bioeng. 31(8), 869–879 (1988)

    Article  CAS  Google Scholar 

  73. G. Li: A lumping analysis in mono- or/and bimolecular reaction systems, Chem. Eng. Sci. 39(7-18), 1261–1270 (1984), http://www.sciencedirect.com/science/article/pii/0009250984850873

    CAS  Google Scholar 

  74. G. Li, H. Rabitz: A general analysis of exact lumping in chemical kinetics, Chem. Eng. Sci. 44(6), 1413–1430 (1989), http://www.sciencedirect.com/science/article/pii/0009250989850146

    Article  CAS  Google Scholar 

  75. G. Li, H. Rabitz: A general analysis of approximate lumping in chemical kinetics, Chem. Eng. Sci. 45(4), 977–1002 (1990), http://www.sciencedirect.com/science/article/pii/000925099085020E

    Article  CAS  Google Scholar 

  76. G. Li, H. Rabitz: New approaches to determination of constrained lumping schemes for a reaction system in the whole composition space, Chem. Eng. Sci. 46(1), 95–111 (1991), http://www.sciencedirect.com/science/article/pii/000925099180120N

    Article  CAS  Google Scholar 

  77. G. Li, H. Rabitz: A general analysis of exact nonlinear lumping in chemical kinetics, Chem. Eng. Sci. 49(3), 343–361 (1994), http://www.sciencedirect.com/science/article/pii/0009250994870063

    Article  Google Scholar 

  78. G. Li, A.S. Tomlin, H. Rabitz, J. Toth: A general analysis of approximate nonlinear lumping in chemical kinetics. I. Unconstrained lumping, J. Chem. Phys. 101, 1172 (1994)

    Article  CAS  Google Scholar 

  79. A.S. Tomlin, G. Li, H. Rabitz, J. Toth: A general analysis of approximate nonlinear lumping in chemical kinetics. II. Constrained lumping, J. Chem. Phys. 101, 1188 (1994)

    Article  CAS  Google Scholar 

  80. I.P. Androulakis: Kinetic mechanism reduction based on an integer programming approach, AIChE J. 46(2), 361–371 (2000)

    Article  CAS  Google Scholar 

  81. I. Banerjee, M.G. Ierapetritou: Development of an adaptive chemistry model considering micromixing effects, Chem. Eng. Sci. 58(20), 4537–4555 (2003), http://www.sciencedirect.com/science/article/pii/S0009250903003439

    Article  CAS  Google Scholar 

  82. I. Banerjee, M.G. Ierapetritou: An adaptive reduction scheme to model reactive flow, Comb. Flame 144(3), 619–633 (2006), http://www.sciencedirect.com/science/article/pii/S0010218005002683

    Article  CAS  Google Scholar 

  83. S.B. Pope: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1(1), 41–63 (1997)

    Article  CAS  Google Scholar 

  84. U. Mass, S.B. Pope: Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Comb. Flame 88(3/4), 239–264 (1992), http://www.sciencedirect.com/science/article/pii/001021809290034M

    Article  Google Scholar 

  85. V.W. Weekman: Lumps, Models, and Kinetics in Practice, AIChE Monograph, Vol. 75 (AiChE, New York 1979)

    Google Scholar 

  86. I.S. Han, C.B. Chung: Dynamic modeling and simulation of a fluidized catalytic cracking process. Part II: Property estimation and simulation, Chem. Eng. Sci. 56(5), 1973–1990 (2001), http://www.sciencedirect.com/science/article/pii/S0009250900004942

    Article  CAS  Google Scholar 

  87. B.G.M. Van Wachem, J.C. Schowten, C.M. Van Den Bleck: Krishna, R., Sinclair J. L.: CFD modeling of gas-fluidized beds with a bimodal particle mixture, AIChE J 47(6), 1292–1301 (2001)

    Article  Google Scholar 

  88. A.K. Das, J. De Wilde, G.J. Hegnderickx, G.B. Marin, J. Vierendeels, E. Dick: CFD simulation of dilute phase gas–solid riser reactors: Part I – a new solution method and flow model validation, Chem. Eng. Sci. 59(1), 167–186 (2004), http://www.sciencedirect.com/science/article/pii/S0009250903004433

    Article  CAS  Google Scholar 

  89. R.K. Gupta, K. Kumar, V.K. Srivastava: A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor, Chem. Eng. Sci. 62(17), 4510–4528 (2007), http://www.sciencedirect.com/science/article/pii/S0009250907004046

    Article  CAS  Google Scholar 

  90. C. Zhu, Y. Jun, R. Patel, D. Wang, T.C. Ho: Interactions of flow and reaction in fluid catalytic cracking risers, AIChE J. 57(11), 3122–3131 (2011)

    Article  CAS  Google Scholar 

  91. R. Patel, D. Wang, C. Zhu, T.C. Ho: Effect of injection zone cracking on fluid catalytic cracking, AIChE J. 59(4), 1226–1235 (2013)

    Article  CAS  Google Scholar 

  92. R. Patel, P. He, B. Zhang, C. Zhu: Transport of interacting and evaporating liquid sprays in a gas–solid riser reactor, Chem. Eng. Sci. 100, 433–444 (2013), http://www.sciencedirect.com/science/article/pii/S0009250913000079

    Article  CAS  Google Scholar 

  93. P. He, C. Zhu, T.C. Ho: A two-zone model for fluid catalytic cracking riser with multiple feed injectors, AIChE J. 61(2), 610–619 (2015)

    Article  CAS  Google Scholar 

  94. T.C. Ho: On catalyst–oil interactions in fluid catalytic cracking, J. Chin. Inst. Chem. Eng. 37(1), 25–35 (2006)

    CAS  Google Scholar 

  95. A.H. Lefebvre: Atomization and Sprays (Taylor Francis, Abingdon 1989)

    Google Scholar 

  96. C. Derouin, D. Nevicato, M. Forissier, G. Wild, J.R. Bernard: Hydrodynamics of Riser units and their impact on FCC operation, Ind. Eng. Chem. Res. 36(11), 4504–4515 (1997), http://pubs.acs.org/doi/abs/10.1021/ie970432r

    Article  CAS  Google Scholar 

  97. V. Kumar, A. Reddy: Why FCC riser is taller than model predictions?, AIChE J. 57(10), 2917–2920 (2011)

    Article  CAS  Google Scholar 

  98. T.C. Ho: Kinetic modeling of large-scale reaction systems, Catal. Rev. 50(3), 287–378 (2008)

    Article  CAS  Google Scholar 

  99. R. Aris, G.R. Gavalas: On the theory of reactions in continous mixtures, Phil. Trans. Roy. Soc. A. A260, 351 (1966)

    Article  Google Scholar 

  100. R. Aris: Prolegomena to the rational analysis of systems of chemical reactions, II. Some addendam, Arch. Ratl. Mech. Anal. 27, 356–364 (1968)

    Article  CAS  Google Scholar 

  101. G. Astarita, R. Ocone: Lumping nonlinear kinetics, AIChE J. 34(8), 1299–1309 (1988)

    Article  CAS  Google Scholar 

  102. M.Y. Chou, T.C. Ho: Continuum theory for lumping nonlinear reactions, AIChE J. 34(9), 1519–1527 (1988)

    Article  CAS  Google Scholar 

  103. S.S. Shih, S. Mizrahi, L.A. Green, M.S. Sarli: Deep desulfurization of distillates, Ind. Eng. Chem. Res. 31(4), 1232–1235 (1992), http://pubs.acs.org/doi/abs/10.1021/ie00004a040

    Article  CAS  Google Scholar 

  104. C.S. Laxminarasimhan, R.P. Verma, P.A. Ramachandran: Continuous lumping model for simulation of hydrocracking, AIChE J. 42(9), 2645 (1996)

    Article  CAS  Google Scholar 

  105. K. Basak, M. Sau, U. Manna, R. Verma: Industrial hydrocracker model based on novel continuum lumping approach for optimization in petroleum refinery, Catal. Today 98(1/2), 253–264 (2004), http://www.sciencedirect.com/science/article/pii/S0920586104004596

    Article  CAS  Google Scholar 

  106. I. Elizalde, M.A. Rodriguez, J. Ancheyta: Application of continuous kinetic lumping modeling to moderate hydrocracking of heavy oil, Appl. Catal. A 365(2), 237–242 (2009), http://www.sciencedirect.com/science/article/pii/S0926860X09004463

    Article  CAS  Google Scholar 

  107. J. Govindhakannan, J.B. Riggs: On the construction of a continuous concentration–reactivity function for the continuum lumping approach, Ind. Eng. Chem. Res. 46(5), 1653–1656 (2007), http://pubs.acs.org/doi/abs/10.1021/ie0607191

    Article  CAS  Google Scholar 

  108. K. Qian, W. Olmstead, J. English, L. Green, R. Saeger, S. Jaffe: Micro-hydrocarbon analysis, US Patent 20070114377 A1 (2007)

    Google Scholar 

  109. F. Bertoncini, B. Celse, C. Dartiguelongue: Method of determining physico-chemical properties of a petroleum sample from two-dimensional gas chromatography, US Patent 8301397 B2 (2012)

    Google Scholar 

  110. M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Ng, V.H.J. deBeer, B.C. Gates, H. Kwart: Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co–Mo/γ-Al2O3, J. Catal. 61(2), 523–528 (1980), http://www.sciencedirect.com/science/article/pii/0021951780904005

    Article  CAS  Google Scholar 

  111. R. Stephan, G. Emic, H. Hoffman: On the kinetics of hydrodesulfurization of gas oil, Chem. Eng. Process. Process Intensif. 19(6), 303–308 (1985), http://www.sciencedirect.com/science/article/pii/0255270185850030

    Article  CAS  Google Scholar 

  112. F.J. Krambeck: Computers and modern analysis in reactor design, Proc. ISCRE 8; IChemE Symp. Ser. 87 (1984) pp. 733–754

    Google Scholar 

  113. T.C. Ho: Aris, R.: On apparent second-order kinetics, AIChE J 33(6), 1050–1051 (1987)

    Article  Google Scholar 

  114. T.C. Ho, B.S. White, R. Hu: Lumped kinetics of many parallel nth-order reactions, AIChE J. 36(5), 685–700 (1990)

    Article  CAS  Google Scholar 

  115. T.C. Ho: Aggregate behavior and lumped kinetics of many reactions in backmixed and plug-flow reactors, AIChE J. 42(1), 214–231 (1996)

    Article  CAS  Google Scholar 

  116. T.C. Ho, B.S. White: Experimental and theoretical investigation of the validity of asymptotic lumped kinetics, AIChE J. 41(6), 1513–1520 (1995)

    Article  CAS  Google Scholar 

  117. S.T. Sie: Reaction order and role of hydrogen sulfide in deep hydrodesulfurization of gas oils: Consequences for industrial reactor configuration, Fuel Process. Technol. 61(1/2), 149–171 (1999), http://www.sciencedirect.com/science/article/pii/S0378382099000363

    Article  CAS  Google Scholar 

  118. G.I. Barenblatt: Scaling, Self-similarity and Intermediate Asymptotics (Cambridge Univ. Press, Cambridge 1996)

    Book  Google Scholar 

  119. T.C. Ho, B.S. White: On the continuum approximation of large reaction mixtures, AIChE J. 56(7), 1894–1906 (2010)

    Article  CAS  Google Scholar 

  120. T.C. Ho, B.S. White: Continuum approximation of large reaction mixtures in reactors with backmixing, AIChE J. 61(1), 159–165 (2015)

    Article  CAS  Google Scholar 

  121. M.R. Gray: Upgrading Petroleum Resids and Heavy Oils (Marcel Dekker, New York 1994)

    Google Scholar 

  122. H.A. Rangwala, S.E. Wanke, F.D. Otto, D.I.G. Lana: The hydrotreating of coker gas oil: Effects of operating conditions and catalyst properties, Proc. 10th Symp. Catal., Kinston (1986) pp. 20–28

    Google Scholar 

  123. L.C. Trytten, M.R. Gray, E.C. Sanford: Hydroprocessing of narrow-boiling gas oil fractions: Dependence of reaction kinetics on molecular weight, Ind. Eng. Chem. Res. 29(5), 725–730 (1990), http://pubs.acs.org/doi/abs/10.1021/ie00101a003

    Article  CAS  Google Scholar 

  124. R.H. Van Dongen, D. Bode, H. van der Eijk, J. van Klinken: Hydrodemetallization of heavy residual oils in laboratory trickle-flow liquid recycle reactors, Ind. Eng. Chem. Proc. Des. Dev. 19(4), 630 (1980), http://pubs.acs.org/doi/abs/10.1021/i260076a021

    Article  Google Scholar 

  125. T.C. Ho: A simple expression for the collective behavior of a large number of reactions, Chem. Eng. Sci. 46(1), 281–289 (1991), http://www.sciencedirect.com/science/article/pii/000925099180136M

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, T.C. (2017). Modeling Refining Processes. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_27

Download citation

Publish with us

Policies and ethics