Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Gasoline is a volatile, flammable mixture of liquid hydrocarbons primarily obtained from refining petroleum. Most gasoline is consumed as a fuel in spark-ignition engines, primarily those which power automobiles and certain airplanes. For engine performance, important gasoline properties include volatility (Reid vapor pressure), octane number and heat content. Reid vapor pressure (RVP) is one of the gasoline specifications for performance in engine. Reformulated gasoline laws now protect the environment by limiting smog precursors, banning tetraethyl lead (GlossaryTerm

TEL

) and regulating concentrations of sulfur, olefins, benzene and oxygenates in gasoline. Refineries produce gasoline from blendstocks derived from various processes – crude oil distillation, catalytic reforming, fluid catalytic cracking (GlossaryTerm

FCC

), thermal cracking, hydrocracking, alkylation, isomerization and catalytic polymerization. Finished products sold in the market include additives, which inhibit oxidation, inhibit corrosion, passivate trace metals, reduce deposition of carbon on intake valves and combustion chambers, and minimize the formation of ice in cold weather. Relative gasoline demand is highest in North America, while automotive diesel is preferred in most of the rest of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Pugh: Carless, Capel, Leonard plc – The Growth of a Family Firm into an International Oil Company (Carless, Capel Leonard, Hackney Wick 1986)

    Google Scholar 

  2. J. Nilsson: Why did Henry Ford double his minimum wage?, The Saturday Evening Post (2014)

    Google Scholar 

  3. C. Song, C.S. Hsu, I. Mochida (Eds.): Chemistry of Diesel Fuels (Taylor Francis, Philadelphia 2000)

    Google Scholar 

  4. J. Clew: The Scott Motorcycle: The Yowling Two-Stroke (Haynes, Newbury Park 2004)

    Google Scholar 

  5. A. Nahum: The Rotary Aero Engine (NMSI Trading, London 1999)

    Google Scholar 

  6. Wikipedia: Wankel Engine, https://en.wikipedia.org/wiki/Wankel_engine (2016)

  7. Wikipedia: Otto cycle, https://en.wikipedia.org/wiki/Otto_cycle (2016)

  8. G.D. Hobson (Ed.): Modern Petroleum Technology Part II, 5th edn. (Wiley, Chichester 1984) p. 786

    Google Scholar 

  9. M.A. Barrufet: Reservoir fluids petroleum engineering, www.pe.tamu.edu/barrufet/public_html/PETE310/APIDATA.XLS (2016)

  10. International Energy Agency: Advanced motor fuels: Fuel formation, http://www.iea-amf.org/content/fuel_information/fuel_info_home (2016)

  11. The Columbia Encyclopedia: Octane number, http://www.encyclopedia.com/topic/octane_number.aspx#1-1E1:octanenu-full (2016)

  12. Chevron Phillips LP: Safety data sheet for PRF isooctane + TEL, http://www.cpchem.com/msds/100000014063_SDS_EU_EN.PDF

  13. TransportPolicy.net: Data from EN-228, ASTM D4814 and TransportPolicy.net, http://transportpolicy.net/index.php?title=Main_Page (2016)

  14. J.H. Gary, G.E. Handwerk: Petroleum Refining Technology and Economics, 4th edn. (Dekker, New York 2001)

    Google Scholar 

  15. J. Jechura: Refinery feedstocks and products – Properties and specifications, Colorado School of Mines, http://inside.mines.edu/~jjechura/Refining/02_Feedstocks_&_Products.pdf (2016)

  16. US Dept of Energy: Appendix A: Lower and higher heating values of gas, liquid and solid fuels. In: Biomass energy data book 2011 (2016), http://cta.ornl.gov/bedb/appendix_a/Lower_and_Higher_Heating _Values_of_Gas_Liquid_and_Solid_Fuels.pdf

    Google Scholar 

  17. National Institute of Standards and Technology (NIST): NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/ (2016)

  18. A. Lengyel, S. Magyar, J. Hancsók: Upgrading of delayed coker light naphtha in a crude oil refinery, Petroleum Coal 51(2), 80–90 (2009)

    CAS  Google Scholar 

  19. H. Virdi, G. Sieli, D. Torchia: Impact of processing heavy coker gas oils in hydrocracking units, Proc. Natl. Petrochem. Petroleum Refiners Assoc., Natl. Meet., Phoenix (2010)

    Google Scholar 

  20. Energy Policy Research Foundation: A primer on gasoline blending, http://eprinc.org/2009/06/a-primer-on-gasoline-blending/ (2009)

  21. US Environmental Protection Agency: Gasoline Reid vapor pressure: Gasoline standards, https://www.epa.gov/gasoline-standards/gasoline-reid-vapor-pressure (2016)

  22. J. Erwin: Vapor pressure and interactions of ethanol with butane and pentane in gasoline, Proc. 207th Am. Chem. Soc. Natl. Meet., San Diego (1994)

    Google Scholar 

  23. Occupational Safety and Health Administration: OSHA Technical Manual, Sect. IV, Chap. 2 Petroleum Refining Processes (US Dept. Labor, Washington), https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_2.html

  24. J.G. Speight: The Chemistry and Technology of Petroleum, 4th edn. (CRC, Boca Raton 2006)

    Google Scholar 

  25. H. Connor: Platinum reforming catalysts – Production of high-octane fuels and of aromatic chemicals, Platinum Metals Rev. 5(1), 9–12 (1961)

    Google Scholar 

  26. L.E. Dean, H.R. Harris, D.H. Belden, V. Haensel: The penex process for pentane isomerization, Platimum Metal Rev. 3(1), 9–11 (1959)

    Google Scholar 

  27. Shell: The Petroleum Handbook, 6th edn. (Elsevier, Amsterdam 1986)

    Google Scholar 

  28. T.C. Holcombe: Total isomerization process, US Patent (Application), Vol. 4210771A, 1980)

    Google Scholar 

  29. T. Zak, A. Behkish, W. Shum, S. Wang, L. Candela, J. Ruszkay: Isomerization of butenes: LyondellBasell’s isomplus technology developments. In: Proc. DGMK Conf. (2009)

    Google Scholar 

  30. N.J. Emms: Catalytic reforming, Can. J. Chem. Engr. 36(6), 267–270 (1958)

    Article  CAS  Google Scholar 

  31. Honeywell UOP: Gasoline, https://www.uop.com/processing-solutions/refining/gasoline/#naphtha-reforming (2016)

  32. A. Poparad, B. Ellis, B. Glover, S. Metro: Reforming solutions for improved profits in an up-down world, UOP LLC, AM-11-59, 1-32 (2011). https://www.uop.com/?document=uop-reforming-solutions-for-improved-profits-paper&download=1

  33. P.-Y. Le Goff, J. de Bonneville, B. Domergue, M. Pike: Increasing semi-regenerative reformer performance through catalytic solutions, http://www.axens.net/document/120/increasing-semi-regenerative-reformer-performance/english.html (2016)

  34. T.J. Nelson: Catalytic reforming process with sulfur removal, US Patent (Application), Vol., Vol. 4225417A, 1980)

    Google Scholar 

  35. ChemPedia: The powerforming process, http://chempedia.info/info/170935 (2016)

  36. J. Evans: Ultraforming – 8 Years Later (Petroleum, London 1955) pp. 419–424

    Google Scholar 

  37. T.A. Albahri: Petroleum Refining – Course material, http://www.albahri.info/Refinery/Ch11%20-%20Finishing.pdf (2016)

  38. G. Stefanidakis, J.E. Gwyn: Alkylation. In: Chemical Processing Handbook, ed. by J.J. McKetta (CRC, Boca Raton 1993) pp. 80–138

    Google Scholar 

  39. K. Krantz: Alkylation Chemistry: Mechanisms, Operating Variables and Olefin Interactions (STRATCO, Leawood 2003)

    Google Scholar 

  40. M.B. Simpson, M. Kester: Hydrofluoric acid alkylation, ABB Rev. 3, 23–26 (2007)

    Google Scholar 

  41. J. Branzaru: Introduction to sulfuric acid alkylation unit process design, Stratco Inc. Leawood, http://www2.dupont.com/Clean_Technologies/en_US/assets/downloads/AlkyUnitDesign2001.pdf (2001)

  42. Z. Liu, R. Zhang, C, Xu, R. Xia: Ionic liquid alkylation process produces high-quality gasoline. Oil and Gas J. 104(40), 52-56 (2006)

    Google Scholar 

  43. Z. Liu, X. Meng, R. Zhang, C. Xu, H. Dong, Y. Hu: Reaction performance of isobutane alkylation catalyzed by a composite ionic liquid at a short contact time. AIChE J. 60(6), 2244-2253 (2014)

    Google Scholar 

  44. PetroChina Lanzhou Greenchem ILs (Center for Greenchemistry and Catalysis), Ionilkylation process: http://www.ionicliquid.org/en/application/2014-04-24/40.html (2014)

  45. Honeywell UOP: Honeyqwell UOP ontroduces ionic liquids alkylation technology, https://www.uop.com/?press_release=honeywell-uop-introduces-ionic-liquids (2016)

  46. CBI: AlkyClean solid acid catalyst alkylation technology, Rep. 02M082014H, http://www.cbi.com/getattachment/61818074-13d9-4b08-9c5f-1261ccdefad2/AlkyClean-Solid-Acid-Catalyst-Alkylation-Technolo.aspx (2016)

  47. Albemarle: Albemarle’s alkyStar catalyst successfully employed in the world’s first solid acid alkylation unit in Shandong, China, facility, http://investors.albemarle.com/phoenix.zhtml?c=117031&p=irol-newsArticle&ID=2123306 (2016)

  48. V.N. Ipatieff, B.B. Corson, G. Egloff: Polymerization, a new source of gasoline, Ind. Eng. Chem. 27(9), 1077–1081 (1935)

    Article  CAS  Google Scholar 

  49. E. Weinert: Polymerization with solid phosphoric acid catalyst, Proc. 3rd World Petroleum Congr., The Hague (1951)

    Google Scholar 

  50. R. Sadeghbeigi: Fluid Catalytic Cracking Handbook, 2nd edn. (Gulf, Houston 2000)

    Google Scholar 

  51. P. O’Connor: Kinetics and mechanisms of fluid catalytic cracking. In: Practical Advances in Petroleum Processing, ed. by C.S. Hsu, P.R. Robinson (Springer, New York 2006) pp. 169–175

    Chapter  Google Scholar 

  52. S.C. Eastwood, C.V. Hornberg, A.E. Potas: Pilot plants – Thermofor catalytic cracking unit, Ind. Eng. Chem. 39(12), 1685–1690 (1947)

    Article  CAS  Google Scholar 

  53. American Chemical Society: Houdry process for catalytic cracking, https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/houdry.html (1996)

  54. P.R. Robinson: Petroleum processing overview. In: Practical Advances in Petroleum Processing, ed. by C.S. Hsu, P.R. Robinson (Springer, New York 2006) pp. 25–28, Chap. 1

    Google Scholar 

  55. M. Bhaskar, G. Valavarasu, K.S. Balaraman: Mild hydrocracking of FCC feeds yields more fuels, boosts margins, Oil and Gas J. 100(23), 62–65 (2002)

    CAS  Google Scholar 

  56. A. Dahlberg, U. Mukherjee, C.W. Olsen: Consider using integrated hydroprocessing methods for processing clean fuels: New catalyst systems fine-tune cracking heavy refractory feeds for FCC and hydrocracking units, Hydrocarb. Process., 111–120 (2007), http://www.chevrontechnologymarketing.com/Documents/HP_Sept2007.pdf

  57. Axens Process Licensing: Prime-G+: The benchmark technology for ultra-low sulfur, Axens, Rueil-Malmaison

    Google Scholar 

  58. J.V. Laan: ConocoPhillips S Zorb gasoline sulfur removal technology, http://www.icheh.com/Files/Posts/Portal1/S-Zorb.pdf (2016)

  59. P. Palmas: Traces the history of RFCC and provides guidelines for choosing the appropriate regenerator style, Hydrocarb. Eng., https://www.uop.com/?document=uop-25-years-of-rfcc-innovation-tech-paper&download=1 (2009)

  60. Honeywell UOP: Residue upgrading, https://www.uop.com/processing-solutions/refining/residue-upgrading/#resid-fcc (2016)

  61. United States Environmental Protection Agency: EPA history, https://www3.epa.gov/aboutepa/epa-history (2016)

  62. M. Centrone: How the Environmental Protection Agency Became a Public Health Risk, National Center for Public Policy Research, National Policy Analysis 304, www.nationalcenter.org/NPA304.html (2000)

  63. Wikipedia: Butanol fuel, https://en.wikipedia.org/wiki/Butanol_fuel (2016)

  64. M.R. Wilkins, H. Atiye: Fermentation. In: Food and Industrial Bioproducts and Bioprocessing, ed. by N.T. Dunford (Wiley, Chichester 2012) p. 195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Samuel Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hsu, C.S., Robinson, P.R. (2017). Gasoline Production and Blending. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_17

Download citation

Publish with us

Policies and ethics