Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Petrophysicists utilize laboratory and borehole geophysical measurements as input into petrophysical models to estimate reservoir hydrocarbon resources and recoverable reserves. Unlike surface and airborne geophysicists, who work with one to three scientific disciplines, petrophysicists comfortably work with eight or more scientific disciplines on a daily basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.L. Russell: Principles of Petroleum Geology (McGraw-Hill, New York 1960)

    Google Scholar 

  2. E.C. Thomas: personal communication (2009)

    Google Scholar 

  3. R.M. Batman: personal communication (2009)

    Google Scholar 

  4. S. Winchester: The Map that Changed the World (Harper Collins, New York 2001)

    Google Scholar 

  5. P.F. Worthington: personal communication (2011)

    Google Scholar 

  6. R.M. Bateman: Petrophysical data acquisition, transmission, recording, and processing: A brief history of change from dots to digits. In: Trans. SPWLA, Vol. 50 (2009), Paper D

    Google Scholar 

  7. D.G. Hill: Appendix A – Historical Review: Milestone Developments in Petrophysics (Scrivener, Beverly 2012)

    Google Scholar 

  8. A.G. Schlumberger: The Schlumberger Adventure (Arco, New York 1982)

    Google Scholar 

  9. R.G. Van Nostrand, K.L. Cook: Interpretation of Resistivity Data, U.S. Geological Survey Professional Paper 499 (Washington, 1966)

    Google Scholar 

  10. D. Ross, R. Alger, D. Bishop, J. Dumanoir, J. Nawkins, F. Millard, J.T. Wall, D. Youngblod: The Art of Ancient Log Analysis (Society of Professional Well Log Analysts, Houston 1979)

    Google Scholar 

  11. C. Schlumberger, M. Schlumberger, E.G. Leonardon: Electrical coring – A method of determining bottom hole data by electrical measurements, Trans. AIME 110, 503 (1932)

    Google Scholar 

  12. G.E. Archie: The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146, 54–62 (1942)

    Article  Google Scholar 

  13. G.E. Archie: Introduction to petrophysics or reservoir rocks, Bulletin AAPG 34, 943–961 (1950)

    Google Scholar 

  14. M.R.J. Wyllie, A.R. Gregory, G.H.F. Gardner: An experimental investigation of factors affecting elastic wave velocities in porous media, Geophysics 23, 459–493 (1958)

    Article  Google Scholar 

  15. J.G. Burgen Jr.: Direct Digital Laserlogging. In: SPE, Paper 5506-MS (1975)

    Google Scholar 

  16. A.F. Veneruso, R.S. Simpson, C. Arnold (Eds.): High Temperature Electronics and Instrumentation seminar Proceedings (Sandia National Laboratory, Albuquerque 1979), SAND80-0834

    Google Scholar 

  17. R.P. Hoelscher, J.N. Arnold, S.H. Pierce: Graphic Aids in Engineering Computation (McGraw-Hill, New York 1952)

    Google Scholar 

  18. J.J. Arps: The effect of temperature on the density and electrical resistivity of sodium chloride solutions, Pet. Trans. AIME 198, 327–330 (1953)

    Google Scholar 

  19. H.F. Dunlap, R.R. Hawthorn: The calculation of water resistivities from chemical analyses, Trans. AIME 192, 373–375 (1951)

    Google Scholar 

  20. K.P. Desai, E.J. Moore: Equivalent NaCl determination from ionic concentrations, The Log Analyst 10, 12–21 (1969)

    Google Scholar 

  21. J. Logan: Estimation of electrical conductivity from chemical analyses of natural waters, JGR 66, 2479–2483 (1961)

    Article  Google Scholar 

  22. E.J. Moore: A graphical description of new methods for determining equivalent NaCl concentration from chemical analysis. In: Trans. SPWLA, Vol. 7 (1968), Paper M

    Google Scholar 

  23. E.J. Moore, S.E. Szasz, B.F. Whitney: Determining formation water resistivity from chemical analysis, Trans. AIME 237, 273–276 (1966)

    Google Scholar 

  24. A.W. Talash: An improved method for calculating water resistivities from chemical analyses, JPT 22, 1396–1398 (1965)

    Article  Google Scholar 

  25. Wireline Services Log Interpretation – Chart Book (Weatherford, Houston 2007)

    Google Scholar 

  26. D.V. Ellis, J.M. Singer: Well Logging for Earth Scientists (Springer, Dordrecht 2007)

    Book  Google Scholar 

  27. W.F. Guerard: Heavy Oil in California (California Division of Oil and Gas, 1998) Publication TR28

    Google Scholar 

  28. A. Timur, W.B. Hempkins, A.E. Worthington: Porosity and pressure dependence of formation resistivity factor for sandstones. In: Trans. Canadian Well Logging Society, Vol. 4 (1972), Paper D

    Google Scholar 

  29. R.M. Cohen, J.W. Mercer: DNAPL Site Evaluation (C.K. Smoley/CRC, Boca Raton 1992)

    Google Scholar 

  30. M.C. Leverett: Capillary behavior in porous solids, Trans. AIME 141, 152–169 (1941)

    Article  Google Scholar 

  31. D.M. Olson, W.R. Berry II: Deriving pseudo-capillary pressure curves from standard core analysis data in heavy oil reservoirs and their use in estimation of original Sw. In: AAPG Joint Annual Meeting (2015), Pacific Section

    Google Scholar 

  32. L.L. Raymer, E.R. Hunt, J.S. Gardner: An improved sonic transit time-to-porosity transform. In: 21st Annual Logging Symposium, SPWLA (1980), Paper P

    Google Scholar 

  33. J. Raiga-Clemenceau, J.P. Martin, S. Nicoletis: The concept of acoustic formation factor for more accurate porosity determination from sonic transit time data, The Log Analyst 29(1), 54–60 (1988)

    Google Scholar 

  34. D.V. Ellis, C.R. Chase, J.M. Chiaramonte: Porosity from neutron logs I: Measurement, Petrophysics 44(6), 383–395 (2003)

    Google Scholar 

  35. T.M. Swulius: Porosity calibration of neutron logs, SACROC unit, JPT 38, 468–476 (1986)

    Article  Google Scholar 

  36. Anonymous: Recommended Practice for Standard Calibration and Form for Nuclear Logs (American Petroleum Institute, New York 1974), API RP-33

    Google Scholar 

  37. D.V. Ellis: Well Logging for Earth Scientists (Elsevier, New York 1987)

    Google Scholar 

  38. W.A. Gilchrist, I. Freyzi, L. Roberts: Nuclear source replacement – Promises and pitfalls. In: Trans. SPWLA, Vol. 52 (2011), Paper KKK

    Google Scholar 

  39. A. Badruzzaman, S. Barns, F. Blair, K. Grice: Radioactive Sources in Petroleum Industry: Applications, Concerns, and Alternatives. In: SPE (2009), Paper 123593-MS

    Google Scholar 

  40. R.J.S. Brown, I. Fatt: Measurements of fractional wettability of oilfield blocks by Nuclear Magnetic Relaxation method, AIME Petroleum Trans. 207, 262–264 (1956)

    CAS  Google Scholar 

  41. R.J.S. Brown, W.B. Gamson: Nuclear magnetism logging, AIME Petroleum Trans. 219, 201–209 (1960)

    CAS  Google Scholar 

  42. P. Hull, J.E. Coolidge: Field examples of nuclear magnetism logging, JPT 12, 14–22 (1960)

    Article  CAS  Google Scholar 

  43. G.R. Coates, L. Xiao, M.G. Prammer: NMR Logging Principles and Applications (Halliburton Energy Services, Houston 1999)

    Google Scholar 

  44. M.B. Dobrin: Introduction to Geophysical Prospecting (McGraw-Hill, New York 1960)

    Google Scholar 

  45. D.O. Seevers: A nuclear magnetic method of determining the permeability of Sandstones. In: SPWLA Transactions, Vol. 7 (1966), Paper L

    Google Scholar 

  46. G.R. Coates, M. Miller, M. Gillen, G. Henderson: The MRIL in CONOCO 33-1 An investigation of a new magnetic resonance imaging log. In: SPWLA Transactions, Vol. 32 (1991), Paper DD

    Google Scholar 

  47. D. Allen, C. Flaum, T.S. Ramakrishnan, J. Bedford, K. Castelijns, D. Fairhurst, G. Gubelin, N. Heaton, C.C. Minh, M.A. Norville, M.R. Seim, T. Pritchard, R. Ramamoorthy: Trends in NMR logging, Oilfield Review 12, 2–19 (2000)

    CAS  Google Scholar 

  48. B. Sun, M. Skalinski, J. Brantjes, G.A. LaTorraca, G. Menard, K.-J. Dunn: The impact of T1/T2 ratio on porosity estimation. In: SPWLA Transactions, Vol. 49 (2008), Paper V

    Google Scholar 

  49. K.J. Dunn, D.J. Bergman, G.A. LaTorraca: Petrophysical And Logging Applications, Nuclear Magnetic Resonance (Pergamon/Springer, Amsterdam 2002)

    Google Scholar 

  50. W.E. Kenyon: Petrophysical principles of applications of NMR logging, The Log Analyst 48(2), 21–43 (1997)

    Google Scholar 

  51. O. Serra, J. Baldwin, J. Quirein: Theory, interpretation, and practical applications of gamma ray spectroscopy. In: SPWLA Transactions, Vol. 21 (1980), Paper Q

    Google Scholar 

  52. H. Maurer, Y. Antonov, B. Corley, M. Rabinovich, Z. Zhou: Advanced processing for a new array laterolog tool. In: SPWLA Transactions, Vol. 50 (2009), Paper AA

    Google Scholar 

  53. R. Griffiths, J.W. Smits, O. Faivre, I. Duburg, E. Legendre, J. Doduy: Better saturation from new array laterolog. In: SPWLA Transactions, Vol. 40 (1999), Paper DDD

    Google Scholar 

  54. W.G. Ballengee: Resistivity logging. In: Chevron Formation Evaluation Seminar, Laguna Beach (1990)

    Google Scholar 

  55. B.I. Anderson, T.D. Barber: Induction Logging (Schlumberger Wireline and Testing, Sugarland 1996)

    Google Scholar 

  56. D.W. Martin, M.C. Spencer, H. Patel: Digital induction – A new approach to improving the response of induction measurement. In: Trans. SPWLA, Vol. 25 (2000), Paper C

    Google Scholar 

  57. J. Hou, L. Sanmartin, D. Wu, D. Torres, T. Celepcikay: A new multi-frequency triaxial array induction tool for enhancing evaluation of anisotropic formations and its field testing. In: Trans. SPWLA, Vol. 54 (2013), Paper CCC

    Google Scholar 

  58. M.G. Lüling, N. Seleznev, R. Chemali: Dielectric effects in petrophysics. In: SPWLA Continuing Education Course, Cartagena (2012)

    Google Scholar 

  59. R. Beste, T. Hagiwara, G. King, R. Strickland, G.A. Merchant: A new high resolution array induction tool. In: Trans. SPWLA, Vol. 41 (1984), Paper M

    Google Scholar 

  60. L.C. Shen: Problems in dielectric-constant logging and possible routes to their solution, The Log Analyst 26(6), 14–25 (1985)

    Google Scholar 

  61. M. Bitter, J. Li, G. Kainer, R. Cherry, D. Torres, D. McCoy: Modern microwave formation evaluation sensor and its application in reservoir evaluation. In: Trans. SPWLA, Vol. 51 (2010), Paper B

    Google Scholar 

  62. J.D. Little, D.R. Julander, L.C. Knauer, J.T. Aultman, J.I. Hemmingway: Dielectric dispersion measurements in california heavy oil reservoirs. In: Trans. SPWLA, Vol. 51 (2010), Paper D

    Google Scholar 

  63. M.R.J. Wyllie: A quantitative analysis of the electrochemical component of the S.P. curve, JPT 1, 17–26 (1949)

    Article  CAS  Google Scholar 

  64. H.G. Doll: The SP Log: Theoretical Analysis and Principals of Interpretation, Trans. AIME 179, 146–185 (1949)

    Article  Google Scholar 

  65. T. Zhang, N.F. Hurley, W. Zhao: Numerical modeling of heterogeneous carbonates and multi-scale dynamics. In: Trans. SPWLA, Vol. 50 (2009), Paper JJJ

    Google Scholar 

  66. J. Zemanek, E.E. Green, L.J. Norton, R.L. Caldwell: Formation evaluation by inspection with the borehole televiewer, Geophysics 35(2), 245–269 (1970)

    Article  Google Scholar 

  67. J.F. Goetz, D.D. Seiler, C.S. Edmiston: Geological and borehole features described by the circumferential acoustic scanning tool. In: Trans. SPWLA, Vol. 31 (1990), Paper C

    Google Scholar 

  68. M.A. Proett, M.C. Waid, J. Heinze, M.W. Franki: Low permeability interpretation using a new wireline formation tester ‘‘Tight Zone’’ pressure transient analysis. In: Trans. SPWLA, Vol. 35 (1994), Paper III

    Google Scholar 

Download references

Acknowledgements

This chapter is based on a one-day petrophysics review I developed for Chevron Overseas Petroleum, Inc. management and updated several times since. Anyone who attempts to do such a review stands on the shoulders of everyone who has gone before. In preparing this chapter, information has been collected from several sources. While many of the graphics and tabulations are my own, many others have come from published sources, from in-house courses taught at Chevron, or from student presentations in classes taught at the University of Southern California, as well as the cited sources in the text and references. I would particularly like to express my gratitude to the Society of Petrophysicists and Well Log Analysts and the Petroleum Extension Service of the University of Texas, for permission to use graphics from their publications, as well as Baker-Atlas, Halliburton and Weatherford for permission to use some of their graphics. In many cases, these three vendors offered better examples than the graphics I originally asked to use. Finally, I appreciate the patience of Hsu Chang, the editor of this publication, for his patience while I tracked down permissions to use the third-party graphics I wanted to use to illustrate my thoughts.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hill, D.G. (2017). Formation Evaluation. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_13

Download citation

Publish with us

Policies and ethics