Skip to main content

Lysophosphatidic Acid Signalling Enhances Glioma Stem Cell Properties

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 611 Accesses

Abstract

Glioblastoma multiforme (GBM) is a heterogeneous and malignant brain tumour with poor survival. Current survival with maximal treatment is only 15 months from diagnosis. These aggressive tumours recur after initial therapy due to their infiltrative nature. GBM recurrence and heterogeneity may also be due to GSC. The EGFR pathway and its downstream PI3K signalling are often dysregulated in GBM and have been shown to be involved in cell proliferation, survival, and migration. Complex interactions within and between signalling pathways exist. Lysophosphatidic acid (LPA) signalling components have been shown to be dysregulated in GBM. LPA signalling has been reported to interact with EGFR/PI3K signalling and has been shown to stimulate migration and invasion. Interactions between LPA and PI3K signalling may help explain treatment resistance to PI3K inhibitors and future studies investigating the combined use of EGFR/PI3K and LPA inhibitors may be promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATX:

Autotaxin

BBB:

Blood–brain barrier

BTSC:

Brain tumour stem cell

CSC:

Cancer stem cell

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

GBM:

Glioblastoma multiforme

GFAP:

Glial fibrillary acidic protein

GSC:

Glioma stem cell

LPA:

Lysophosphatidic acid

LPAR:

LPA receptor

LPC:

Lysophosphatidylcholine

LPL:

Lysophospholipid

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloprotease

mTOR:

Mammalian target of rapamycin

NSC:

Neural stem cell

PI3K:

Phosphoinositide 3-kinase

PTEN:

Phosphatase tensin homologue

RMS:

Rostral migratory stream

S1P:

Sphingosine 1-phosphate

SVZ:

Subventricular zone

TMZ:

Temozolomide

References

  1. Medical Research Council Brain Tumor Working Party (2001) Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council trial. J Clin Oncol 19(2):509–518

    Article  Google Scholar 

  2. Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23(43):7267–7273. doi:10.1038/sj.onc.1207946

    Article  CAS  PubMed  Google Scholar 

  3. Quinn JA, Phase II (2002) Trial of carmustine plus O6-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol 20(9):2277–2283. doi:10.1200/JCO.2002.09.084

    Article  CAS  PubMed  Google Scholar 

  4. Colen CB, Allcut E (2012) Quality of life and outcomes in glioblastoma management. Neurosurg Clin N Am 23(3):507–513. doi:10.1016/j.nec.2012.04.010

    Article  PubMed  Google Scholar 

  5. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4):1001–1020

    CAS  PubMed  Google Scholar 

  6. Heimans JJ, Taphoorn MJB (2002) Impact of brain tumour treatment on quality of life. J Neurol 249(8):955–960. doi:10.1007/s00415-002-0839-5

    Article  PubMed  Google Scholar 

  7. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  8. Quesenberry P, Levitt L (1979) Hematopoietic stem cells. N Engl J Med 301(14):755–761. doi:10.1056/NEJM197910043011404

    Article  CAS  PubMed  Google Scholar 

  9. Lewis JP, Trobaugh FE (1964) Hæmatopoietic stem cells. Nature 204(4958):589–590. doi:10.1038/204589a0

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841. doi:10.1038/nature02041

    Article  CAS  PubMed  Google Scholar 

  11. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  12. Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183. doi:10.1073/pnas.2036535100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Australian Institute of Health and Welfare (2013) Cancer in Australia: actual incidence data from 1991 to 2009 and mortality data from 1991 to 2010 with projections to 2012. Asia Pac J Clin Oncol 9(3):199–213. doi:10.1111/ajco.12127

    Article  Google Scholar 

  14. Dobes M, Shadbolt B, Khurana VG et al (2011) A multicenter study of primary brain tumor incidence in Australia (2000–2008). Neuro Oncol 13(7):783–790. doi:10.1093/neuonc/nor052

    Article  PubMed  PubMed Central  Google Scholar 

  15. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021. doi:10.1158/0008-5472.CAN-04-1364

    Article  CAS  PubMed  Google Scholar 

  16. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988. doi:10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi:10.1038/nrc2499

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57(6):751–758

    Article  PubMed  Google Scholar 

  19. Kohler BA, Ward E, McCarthy BJ et al (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. JNCI J Natl Cancer Inst 103(9):714–736. doi:10.1093/jnci/djr077

    Article  PubMed  Google Scholar 

  20. Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97(26):14720–14725. doi:10.1073/pnas.97.26.14720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buckner JC, Brown PD, O’Neill BP, Meyer FB, Wetmore CJ, Uhm JH (2007) Central nervous system tumors. Mayo Clin Proc 82(10):1271–1286. doi:10.4065/82.10.1271

    Article  PubMed  Google Scholar 

  22. Seri B, Alvarez-Buylla A (2002) Neural stem cells and the regulation of neurogenesis in the adult hippocampus. Clin Neurosci Res 2(1):11–16. doi:10.1016/S1566-2772(02)00004-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nogueira AB, Sogayar MC, Colquhoun A et al (2014) Existence of a potential neurogenic system in the adult human brain. J Transl Med 12:75. doi:10.1186/1479-5876-12-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22(3):612–613

    CAS  PubMed  Google Scholar 

  25. Ostrom QT, Barnholtz-Sloan JS (2011) Current state of our knowledge on brain tumor epidemiology. Curr Neurol Neurosci Rep 11(3):329–335. doi:10.1007/s11910-011-0189-8

    Article  PubMed  Google Scholar 

  26. Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172(1):1–16. doi:10.1006/exnr.2001.7768

    Article  CAS  PubMed  Google Scholar 

  27. Alvarez-Buylla A, Garcı́a-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634

    CAS  PubMed  Google Scholar 

  28. Cummings DM, Snyder JS, Brewer M, Cameron HA, Belluscio L (2014) Adult neurogenesis is necessary to refine and maintain circuit specificity. J Neurosci 34(41):13801–13810. doi:10.1523/JNEUROSCI.2463-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sonego M, Oberoi M, Stoddart J et al (2015) Drebrin regulates neuroblast migration in the postnatal mammalian brain. PLoS One 10(5):e0126478. doi:10.1371/journal.pone.0126478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Heng YHE, Zhou B, Harris L, et al (2014) NFIX regulates proliferation and migration within the murine SVZ neurogenic niche. Cereb Cortex. doi:10.1093/cercor/bhu253

    Google Scholar 

  31. Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243–1249. doi:10.1126/science.1136281

    Article  CAS  PubMed  Google Scholar 

  32. Kreth FW, Berlis A, Spiropoulou V, Faist M (1999) The role of tumor resection in the treatment of glioblastoma multiforme in adults. Cancer

    Google Scholar 

  33. Dirks PB (2010) Brain tumor stem cells: the cancer stem cell hypothesis writ large. Mol Oncol 4(5):420–430. doi:10.1016/j.molonc.2010.08.001

    Article  PubMed  Google Scholar 

  34. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  CAS  PubMed  Google Scholar 

  35. Wittko IM, Schanzer A, Kuzmichev A et al (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29(27):8704–8714. doi:10.1523/JNEUROSCI.5527-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52(4):371–379

    Article  CAS  PubMed  Google Scholar 

  37. Chaichana K, McGirt M, Frazier J et al (2008) Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neurooncol 89(2):219–224

    Article  PubMed  Google Scholar 

  38. Barami K, Sloan AE, Rojiani A, Schell MJ, Staller A, Brem S (2009) Relationship of gliomas to the ventricular walls. J Clin Neurosci 16(2):195–201. doi:10.1016/j.jocn.2008.03.006

    Article  PubMed  Google Scholar 

  39. Mcgirt MJ, Chaichana KL, Gathinji M et al (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110(1):156–162. doi:10.3171/2008.4.17536

    Article  PubMed  Google Scholar 

  40. Stummer W, Reulen H-J, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–576. doi:10.1227/01.neu.0000317304.31579.17

    Article  PubMed  Google Scholar 

  41. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764. doi:10.1227/01.neu.0000318159.21731.cf

    Article  PubMed  Google Scholar 

  42. Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8. doi:10.3171/2010.9.JNS101437

    Article  PubMed  Google Scholar 

  43. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101(50):17528–17532. doi:10.1073/pnas.0407893101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lassman AB, Holland EC (2005) Glioblastoma multiforme—past, present, and future. US Oncol Rev 1(1):109–111

    Google Scholar 

  45. Singh SR (2013) Cancer stem cells: recent developments and future prospects. Cancer Lett 338(1):1–2. doi:10.1016/j.canlet.2013.03.036

    Article  CAS  PubMed  Google Scholar 

  46. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    Article  CAS  PubMed  Google Scholar 

  47. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337. doi:10.1038/nature12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fulda S (2013) Regulation of apoptosis pathways in cancer stem cells. Cancer Lett 338(1):168–173. doi:10.1016/j.canlet.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  49. Friedmann-Morvinski D, Bushong EA, Ke E et al (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338(6110):1080–1084. doi:10.1126/science.1226929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Groszer M, Erickson R, Scripture-Adams DD et al (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294(5549):2186–2189. doi:10.1126/science.1065518

    Article  CAS  PubMed  Google Scholar 

  51. Zheng H, Ying H, Yan H et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455(7216):1129–1133. doi:10.1038/nature07443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kendall SE, Najbauer J, Johnston HF et al (2008) Neural stem cell targeting of glioma is dependent on phosphoinositide 3-Kinase signaling. Stem Cells 26(6):1575–1586. doi:10.1634/stemcells.2007-0887

    Article  CAS  PubMed  Google Scholar 

  53. Alcantara Llaguno S, Chen J, Kwon C-H et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15(1):45–56. doi:10.1016/j.ccr.2008.12.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chen R, Nishimura MC, Bumbaca SM et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17(4):362–375. doi:10.1016/j.ccr.2009.12.049

    Article  CAS  PubMed  Google Scholar 

  55. McCullough AK, Dodson ML, Lloyd RS (1999) Initiation of base excision repair: glycosylase mechanisms and structures. Annu Rev Biochem 68:255–285. doi:10.1146/annurev.biochem.68.1.255

    Article  CAS  PubMed  Google Scholar 

  56. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296. doi:10.1016/j.ccr.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Walker MD, Strike TA, Sheline GE (1979) An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 5(10):1725–1731

    Article  CAS  PubMed  Google Scholar 

  58. Zhang M, Song T, Yang L et al (2008) Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res 27:85. doi:10.1186/1756-9966-27-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zeppernick F, Ahmadi R, Campos B et al (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14(1):123–129. doi:10.1158/1078-0432.CCR-07-0932

    Article  CAS  PubMed  Google Scholar 

  60. Choi JW, Lee C-W, Chun J (2008) Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim Biophys Acta 1781(9):531–539. doi:10.1016/j.bbalip.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moolenaar WH (2002) Lysophospholipids in the limelight: autotaxin takes center stage. J Cell Biol 158(2):197–199. doi:10.1083/jcb.200206094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Umezu-Goto M, Kishi Y, Taira A et al (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158(2):227–233. doi:10.1083/jcb.200204026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tokumura A, Majima E, Kariya Y et al (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277(42):39436–39442. doi:10.1074/jbc.M205623200

    Article  CAS  PubMed  Google Scholar 

  64. Meyer zu Heringdorf D, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768(4):923–940. doi:10.1016/j.bbamem.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  65. Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354. doi:10.1146/annurev.biochem.73.011303.073731

    Article  CAS  PubMed  Google Scholar 

  66. van Meeteren LA, Ruurs P, Christodoulou E et al (2005) Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 280(22):21155–21161. doi:10.1074/jbc.M413183200

    Article  PubMed  CAS  Google Scholar 

  67. Baker DL, Morrison P, Miller B et al (2002) Plasma lysophosphatidic acid concentration and ovarian cancer. JAMA 287(23):3081–3082

    Article  PubMed  Google Scholar 

  68. Das AK, Hajra AK (1989) Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 24(4):329–333

    Article  CAS  PubMed  Google Scholar 

  69. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH (2010) International union of basic and clinical pharmacology. LXXVIII Lysophospholipid Receptor Nomenclature Pharmacological Reviews 62(4):579–587. doi:10.1124/pr.110.003111

    CAS  PubMed  Google Scholar 

  70. Yanagida K, Ishii S (2011) Non-Edg family LPA receptors: the cutting edge of LPA research. J Biochem 150(3):223–232. doi:10.1093/jb/mvr087

    Article  CAS  PubMed  Google Scholar 

  71. Anliker B, Lysophospholipid G (2004) Protein-coupled receptors. J Biol Chem 279(20):20555–20558. doi:10.1074/jbc.R400013200

    Article  CAS  PubMed  Google Scholar 

  72. Goldshmit Y, Munro K, Leong SY, Pébay A, Turnley AM (2010) LPA receptor expression in the central nervous system in health and following injury. Cell Tissue Res 341(1):23–32. doi:10.1007/s00441-010-0977-5

    Article  CAS  PubMed  Google Scholar 

  73. Chan LC, Peters W, Xu Y, Chun J, Farese RV, Cases S (2007) LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA). J Leukoc Biol 82(5):1193–1200. doi:10.1189/jlb.0407221

    Article  CAS  PubMed  Google Scholar 

  74. Lin C-I, Chen C-N, Lin P-W, Chang K-J, Hsieh F-J, Lee H (2007) Lysophosphatidic acid regulates inflammation-related genes in human endothelial cells through LPA1 and LPA3. Biochem Biophys Res Commun 363(4):1001–1008. doi:10.1016/j.bbrc.2007.09.081

    Article  CAS  PubMed  Google Scholar 

  75. Lee Z, Cheng C-T, Zhang H et al (2008) Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell 19(12):5435–5445. doi:10.1091/mbc.E08-03-0316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pope WB, Young JR, Ellingson BM (2011) Advances in MRI assessment of gliomas and response to anti-VEGF therapy. Curr Neurol Neurosci Rep 11(3):336–344. doi:10.1007/s11910-011-0179-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stracke ML, Krutzsch HC, Unsworth EJ et al (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267(4):2524–2529

    CAS  PubMed  Google Scholar 

  78. Narayana A, Gruber D, Kunnakkat S et al (2012) A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg 116(2):341–345. doi:10.3171/2011.9.JNS11656

    Article  CAS  PubMed  Google Scholar 

  79. Spasic M, Chow F, Tu C, Nagasawa DT, Yang I (2012) Molecular characteristics and pathways of Avastin for the treatment of glioblastoma multiforme. Neurosurg Clin N Am 23(3):417–427. doi:10.1016/j.nec.2012.05.002

    Article  PubMed  Google Scholar 

  80. Prenzel N, Zwick E, Daub H et al (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764):884–888. doi:10.1038/47260

    CAS  PubMed  Google Scholar 

  81. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565):557–560. doi:10.1038/379557a0

    Article  CAS  PubMed  Google Scholar 

  82. Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16(23):7032–7044. doi:10.1093/emboj/16.23.7032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Keller JN, Steiner MR, Holtsberg FW, Mattson MP, Steiner SM (1997) Lysophosphatidic acid-induced proliferation-related signals in astrocytes. J Neurochem 69(3):1073–1084

    Article  CAS  PubMed  Google Scholar 

  84. Ng W, Pébay A, Drummond K, Burgess A, Kaye AH, Morokoff A (2014) Complexities of lysophospholipid signalling in glioblastoma. J Clin Neurosci 21(6):893–898. doi:10.1016/j.jocn.2014.02.013

    Article  PubMed  Google Scholar 

  85. Liao Y, Mu G, Zhang L, Zhou W, Zhang J, Yu H (2013) Lysophosphatidic acid stimulates activation of focal adhesion kinase and paxillin and promotes cell motility, via LPA1–3, in human pancreatic cancer. Dig Dis Sci 58(12):3524–3533. doi:10.1007/s10620-013-2878-4

    Article  CAS  PubMed  Google Scholar 

  86. Korkina O, Dong Z, Marullo A, Warshaw G, Symons M, Ruggieri R (2013) The MLK-related kinase (MRK) is a novel RhoC effector that mediates lysophosphatidic acid (LPA)-stimulated tumor cell invasion. J Biol Chem 288(8):5364–5373. doi:10.1074/jbc.M112.414060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leve F, Marcondes TGC, Bastos LGR, Rabello SV, Tanaka MN, Morgado-Díaz JA (2011) Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA–Rock and Src–FAK signalling in colon cancer cells. Eur J Pharmacol 671(1–3):7–17. doi:10.1016/j.ejphar.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  88. Xu X, Yang G, Zhang H, Prestwich GD (2009) Evaluating dual activity LPA receptor pan-antagonist/autotaxin inhibitors as anti-cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediat 89(3–4):140–146. doi:10.1016/j.prostaglandins.2009.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sengupta S, Kim KS, Berk MP et al (2006) Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene 26(20):2894–2901. doi:10.1038/sj.onc.1210093

    Article  PubMed  CAS  Google Scholar 

  90. Shah BH, Neithardt A, Chu DB, Shah FB, Catt KJ (2006) Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J Cell Physiol 206(1):47–57. doi:10.1002/jcp.20423

    Article  CAS  PubMed  Google Scholar 

  91. Bian D, Mahanivong C, Yu J et al (2005) The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25(15):2234–2244. doi:10.1038/sj.onc.1209261

    Article  CAS  Google Scholar 

  92. Manning TJ, Parker JC, Sontheimer H (2000) Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45(3):185–199. doi:10.1002/(SICI)1097-0169(200003)45:3<185::AID-CM2>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  93. Tabuchi S, Kume K, Aihara M, Shimizu T (2000) Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Neurochem Res 25(5):573–582

    Article  CAS  PubMed  Google Scholar 

  94. Alves TR, Lima FRS, Kahn SA et al (2011) Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci 89(15–16):532–539. doi:10.1016/j.lfs.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  95. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59(8):1169–1180. doi:10.1002/glia.21136

    Article  PubMed  Google Scholar 

  96. Schneider SW, Ludwig T, Tatenhorst L et al (2004) Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol 107(3):272–276. doi:10.1007/s00401-003-0810-2

    Article  PubMed  Google Scholar 

  97. Rascher G, Fischmann A, Kröger S, Duffner F, Grote E-H, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104(1):85–91. doi:10.1007/s00401-002-0524-x

    Article  CAS  PubMed  Google Scholar 

  98. Coomberl BL, Stewart PA, Hayakawa K, Farrell CL, Del Maestros RF (1987) Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood-brain barrier defect. J Neurooncol 5(4):299–307. doi:10.1007/BF00148386

    Article  Google Scholar 

  99. Huang M-C, Lee H-Y, Yeh C-C, Kong Y, Zaloudek CJ, Goetzl EJ (2004) Induction of protein growth factor systems in the ovaries of transgenic mice overexpressing human type 2 lysophosphatidic acid G protein-coupled receptor (LPA2). Oncogene 23(1):122–129. doi:10.1038/sj.onc.1206986

    Article  CAS  PubMed  Google Scholar 

  100. E S, Lai Y-J, Tsukahara R et al (2009) Lysophosphatidic acid 2 receptor-mediated supramolecular complex formation regulates its antiapoptotic effect. J Biol Chem 284(21):14558–14571. doi:10.1074/jbc.M900185200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shano S, Moriyama R, Chun J, Fukushima N (2008) Lysophosphatidic acid stimulates astrocyte proliferation through LPA1. Neurochem Int 52(1–2):216–220. doi:10.1016/j.neuint.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  102. Matas-Rico E, García-Diaz B, Llebrez-Zayas P et al (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 39(3):342–355. doi:10.1016/j.mcn.2008.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zeng W, Zhang Z (2007) Lysophosphatidic acid induces astrocyte proliferation in hippocampus slices partially through activating extracellular signal-regulated kinases. Res Chem Intermed 33(6):567–577. doi:10.1163/156856707782565859

    Article  CAS  Google Scholar 

  104. Sorensen SD, Nicole O, Peavy RD et al (2003) Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol Pharmacol 64(5):1199–1209. doi:10.1124/mol.64.5.1199

    Article  CAS  PubMed  Google Scholar 

  105. Weiner JA, Hecht JH, Chun J (1998) Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398(4):587–598

    Article  CAS  PubMed  Google Scholar 

  106. Spohr TCS, de Sampaio E, Spohr TC, Choi JW et al (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 283(12):7470–7479. doi:10.1074/jbc.M707758200

    Article  PubMed  CAS  Google Scholar 

  107. Cui H-L, Qiao J-T (2007) Effect of lysophosphatidic acid on differentiation of embryonic neural stem cells into neuroglial cells in rats in vitro. Sheng Li Xue Bao 59(6):759–764

    CAS  PubMed  Google Scholar 

  108. Fukushima N, Shano S, Moriyama R, Chun J (2007) Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway. Neurochem Int 50(2):302–307. doi:10.1016/j.neuint.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  109. Dottori M, Leung J, Turnley AM, Pébay A (2008) Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells 26(5):1146–1154. doi:10.1634/stemcells.2007-1118

    Article  CAS  PubMed  Google Scholar 

  110. Kishi Y, Okudaira S, Tanaka M et al (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 281(25):17492–17500. doi:10.1074/jbc.M601803200

    Article  CAS  PubMed  Google Scholar 

  111. van Meeteren LA, Ruurs P, Stortelers C et al (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26(13):5015–5022. doi:10.1128/MCB.02419-05

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Tanaka M, Okudaira S, Kishi Y et al (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281(35):25822–25830. doi:10.1074/jbc.M605142200

    Article  CAS  PubMed  Google Scholar 

  113. Savaskan NE, Rocha L, Kotter MR et al (2006) Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cell Mol Life Sci 64(2):230–243. doi:10.1007/s00018-006-6412-0

    Article  CAS  Google Scholar 

  114. Fuentealba LC, Rompani SB, Parraguez JI et al (2015) Embryonic origin of postnatal neural stem cells. Cell 161(7):1644–1655. doi:10.1016/j.cell.2015.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32(1):149–184. doi:10.1146/annurev.neuro.051508.135600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134. doi:10.1038/nn1144

    Article  CAS  PubMed  Google Scholar 

  117. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716. doi:10.1016/S0092-8674(00)80783-7

    Article  CAS  PubMed  Google Scholar 

  118. Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69(6):745–749. doi:10.1002/jnr.10378

    Article  CAS  PubMed  Google Scholar 

  119. Sottoriva A, Spiteri I, Piccirillo SGM et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110(10):4009–4014. doi:10.1073/pnas.1219747110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ozawa T, Riester M, Cheng Y-K et al (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26(2):288–300. doi:10.1016/j.ccr.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Aldape KD, Ballman K, Furth A et al (2004) Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol 63(7):700–707

    Article  CAS  PubMed  Google Scholar 

  122. Fernandes H, Cohen S, Bishayee S (2001) Glycosylation-induced conformational modification positively regulates receptor-receptor association: a study with an aberrant epidermal growth factor receptor (EGFRvIII/DeltaEGFR) expressed in cancer cells. J Biol Chem 276(7):5375–5383. doi:10.1074/jbc.M005599200

    Article  CAS  PubMed  Google Scholar 

  123. Gan HK, Kaye AH, Luwor RB (2009) The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 16(6):748–754. doi:10.1016/j.jocn.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  124. Omidfar K, Shirvani Z (2012) Single domain antibodies: a new concept for epidermal growth factor receptor and EGFRvIII targeting. DNA Cell Biol 31(6):1015–1026. doi:10.1089/dna.2011.1529

    Article  CAS  PubMed  Google Scholar 

  125. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2012(1):98–110. doi:10.1016/j.ccr.2009.12.020

    Article  CAS  Google Scholar 

  126. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. doi:10.1038/nature07385

    Article  CAS  Google Scholar 

  127. Lino MM, Merlo A (2010) PI3Kinase signaling in glioblastoma. J Neurooncol 103(3):417–427. doi:10.1007/s11060-010-0442-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pelloski CE, Ballman KV, Furth AF et al (2007) Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 25(16):2288–2294. doi:10.1200/JCO.2006.08.0705

    Article  CAS  PubMed  Google Scholar 

  129. Prados MD, Chang SM, Butowski N et al (2008) Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 27(4):579–584. doi:10.1200/JCO.2008.18.9639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Szerlip NJ, Pedraza A, Chakravarty D et al (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109(8):3041–3046. doi:10.1073/pnas.1114033109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  132. Preusser M, Gelpi E, Rottenfusser A et al (2008) Epithelial growth factor receptor inhibitors for treatment of recurrent or progressive high grade glioma: an exploratory study. J Neurooncol 89(2):211–218. doi:10.1007/s11060-008-9608-3

    Article  CAS  PubMed  Google Scholar 

  133. Stupp R, Mason WP, Van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  134. Mellinghoff IK, Wang MY, Vivanco I et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024. doi:10.1056/NEJMoa051918

    Article  CAS  PubMed  Google Scholar 

  135. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. doi:10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  136. Camara-Quintana JQ, Nitta RT, Li G (2012) Pathology: commonly monitored glioblastoma markers: EFGR, EGFRvIII, PTEN, and MGMT. Neurosurg Clin N Am 23(2):237–246. doi:10.1016/j.nec.2012.01.011

    Article  PubMed  Google Scholar 

  137. Hegi ME, Liu L, Herman JG et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199. doi:10.1200/JCO.2007.11.5964

    Article  CAS  PubMed  Google Scholar 

  138. Brown PD, Krishnan S, Sarkaria JN et al (2008) Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: north central cancer treatment group study N0177. J Clin Oncol 26(34):5603–5609. doi:10.1200/JCO.2008.18.0612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Raizer JJ, Abrey LE, Lassman AB et al (2010) A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 12(1):95–103. doi:10.1093/neuonc/nop015

    Article  CAS  PubMed  Google Scholar 

  140. Huse JT, Phillips HS, Brennan CW (2011) Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia 59(8):1190–1199. doi:10.1002/glia.21165

    Article  PubMed  Google Scholar 

  141. Nabors LB, Fink KL, Mikkelsen T et al (2015) Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study. Neuro Oncol 17(5):708–717. doi:10.1093/neuonc/nou356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stupp R, Hegi ME, Gorlia T et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1100–1108. doi:10.1016/S1470-2045(14)70379-1

    Article  CAS  PubMed  Google Scholar 

  143. Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708. doi:10.1056/NEJMoa1308573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 95(26):15587–15591. doi:10.1073/pnas.95.26.15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Myers MP, Pass I, Batty IH et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci U S A 95(23):13513–13518. doi:10.1073/pnas.95.23.13513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96(8):4240–4245. doi:10.1073/pnas.96.8.4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9(4):125–128

    Article  CAS  PubMed  Google Scholar 

  148. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273(22):13375–13378. doi:10.1074/jbc.273.22.13375

    Article  CAS  PubMed  Google Scholar 

  149. Ming M, He Y-Y (2012) PTEN in DNA damage repair. Cancer Lett 319(2):125–129. doi:10.1016/j.canlet.2012.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wen PY, Lee EQ, Reardon DA, Ligon KL, Alfred Yung WK (2012) Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro Oncol 14(7):819–829. doi:10.1093/neuonc/nos117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bambury RM, Teo MY, Power DG et al (2013) The association of pre-treatment neutrophil to lymphocyte ratio with overall survival in patients with glioblastoma multiforme. Cell Cycle 114(10):1221–1224. doi:10.1007/s11060-013-1164-9

    Google Scholar 

  152. Berenjeno IM, Guillermet-Guibert J, Pearce W, Gray A, Fleming S, Vanhaesebroeck B (2012) Both p110α and p110β isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. Biochem J 442(1):151–159. doi:10.1042/BJ20111741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wei Y, Jiang Y, Zou F et al (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 110(17):6829–6834. doi:10.1073/pnas.1217002110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241. doi:10.1016/S0092-8674(00)80405-5

    Article  CAS  PubMed  Google Scholar 

  156. Sekulić A, Hudson CC, Homme JL et al (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60(13):3504–3513

    PubMed  Google Scholar 

  157. Zhong H, Chiles K, Feldser D et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545

    CAS  PubMed  Google Scholar 

  158. Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4(9):658–665. doi:10.1038/ncb840

    Article  CAS  PubMed  Google Scholar 

  159. Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-κB by the Akt/PKB kinase. Curr Biol 9(11):601–S601. doi:10.1016/S0960-9822(99)80265-6

    Article  CAS  PubMed  Google Scholar 

  160. Davies MA, Koul D, Dhesi H et al (1999) Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res 59(11):2551–2556

    CAS  PubMed  Google Scholar 

  161. Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114(Pt 16):2903–2910

    CAS  PubMed  Google Scholar 

  162. Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2(10):760–768. doi:10.1038/35096067

    Article  CAS  PubMed  Google Scholar 

  163. Koul D, Shen R, Bergh S et al (2006) Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol Cancer Ther 5(3):637–644. doi:10.1158/1535-7163.MCT-05-0453

    Article  CAS  PubMed  Google Scholar 

  164. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11(1–2):32–50. doi:10.1016/j.drup.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  165. Gil del Alcazar CR, Hardebeck MC, Mukherjee B et al (2013) Inhibition of DNA double-strand break repair by the dual PI3K/mTOR inhibitor NVP-BEZ235 as a strategy for radiosensitization of glioblastoma. Clin Cancer Res 20(5):1235–1248. doi:10.1158/1078-0432.CCR-13-1607

    Article  PubMed  CAS  Google Scholar 

  166. Ping Y-F, Yao X-H, Jiang J-Y et al (2011) The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol 224(3):344–354. doi:10.1002/path.2908

    Article  CAS  PubMed  Google Scholar 

  167. Gallia GL, Tyler BM, Hann CL et al (2009) Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol Cancer Ther 8(2):386–393. doi:10.1158/1535-7163.MCT-08-0680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sunayama J, Matsuda K-I, Sato A et al (2010) Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells 28(11):1930–1939. doi:10.1002/stem.521

    Article  CAS  PubMed  Google Scholar 

  169. Chen JS, Zhou LJ, Entin-Meer M et al (2008) Characterization of structurally distinct, isoform-selective phosphoinositide 3′-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther 7(4):841–850. doi:10.1158/1535-7163.MCT-07-0393

    Article  CAS  PubMed  Google Scholar 

  170. Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S (2008) Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 68(15):6271–6280. doi:10.1158/0008-5472.CAN-07-6769

    Article  CAS  PubMed  Google Scholar 

  171. Yart A, Roche S, Wetzker R et al (2002) A function for phosphoinositide 3-kinase beta lipid products in coupling beta gamma to Ras activation in response to lysophosphatidic acid. J Biol Chem 277(24):21167–21178. doi:10.1074/jbc.M110411200

    Article  CAS  PubMed  Google Scholar 

  172. Lopez-Ilasaca M (1997) Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 275(5298):394–397. doi:10.1126/science.275.5298.394

    Article  CAS  PubMed  Google Scholar 

  173. Hernández M, Barrero MJ, Crespo MS, Nieto ML (2000) Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem 75(4):1575–1582

    Article  PubMed  Google Scholar 

  174. Gschwind A, Prenzel N, Ullrich A (2002) Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res 62(21):6329–6336

    CAS  PubMed  Google Scholar 

  175. Kim EK, Yun SJ, Do KH et al (2008) Lysophosphatidic acid induces cell migration through the selective activation of Akt1. Exp Mol Med 40(4):445. doi:10.3858/emm.2008.40.4.445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lee HY, Bae GU, Jung ID et al (2002) Autotaxin promotes motility via G protein-coupled phosphoinositide 3-kinase gamma in human melanoma cells. FEBS Lett 515(1–3):137–140

    Article  CAS  PubMed  Google Scholar 

  177. Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A (2001) Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20(13):1594–1600. doi:10.1038/sj.onc.1204192

    Article  CAS  PubMed  Google Scholar 

  178. Pullen NA, Anand M, Cooper PS, Fillmore HL (2011) Matrix metalloproteinase-1 expression enhances tumorigenicity as well as tumor-related angiogenesis and is inversely associated with TIMP-4 expression in a model of glioblastoma. J Neurooncol 106(3):461–471. doi:10.1007/s11060-011-0691-5

    Article  PubMed  CAS  Google Scholar 

  179. Buccione R, Caldieri G, Ayala I (2009) Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 28(1–2):137–149. doi:10.1007/s10555-008-9176-1

    Article  PubMed  Google Scholar 

  180. Poincloux R, Lizarraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122(17):3015–3024. doi:10.1242/jcs.034561

    Article  CAS  PubMed  Google Scholar 

  181. Clark ES, Whigham AS, Yarbrough WG, Weaver AM (2007) Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res 67(9):4227–4235. doi:10.1158/0008-5472.CAN-06-3928

    Article  CAS  PubMed  Google Scholar 

  182. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC (2006) Dynamic interactions of cortactin and membrane Type 1 Matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 66(6):3034–3043. doi:10.1158/0008-5472.CAN-05-2177

    Article  CAS  PubMed  Google Scholar 

  183. Kelly T, Yan Y, Osborne RL et al (1998) Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis 16(6):501–512. doi:10.1023/A:1006538200886

    Article  CAS  PubMed  Google Scholar 

  184. Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM (2010) Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res 70(11):4634–4643. doi:10.1158/0008-5472.CAN-09-3813

    Article  CAS  PubMed  Google Scholar 

  185. Hoelzinger DB, Nakada M, Demuth T, Rosensteel T, Reavie LB, Berens ME (2007) Autotaxin: a secreted autocrine/paracrine factor that promotes glioma invasion. J Neurooncol 86(3):297–309. doi:10.1007/s11060-007-9480-6

    Article  PubMed  CAS  Google Scholar 

  186. Schleicher SM, Thotala DK, Linkous AG et al (2011) Autotaxin and LPA receptors represent potential molecular targets for the radiosensitization of murine glioma through effects on tumor vasculature. PLoS One 6(7):e22182. doi:10.1371/journal.pone.0022182.g007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Clair T, Lee HY, Liotta LA, Stracke ML (1997) Autotaxin is an exoenzyme possessing 5’-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem 272(2):996–1001

    Article  CAS  PubMed  Google Scholar 

  188. Seasholtz TM, Radeff-Huang J, Sagi SA et al (2004) Rho-mediated cytoskeletal rearrangement in response to LPA is functionally antagonized by Rac1 and PIP2. J Neurochem 91(2):501–512. doi:10.1111/j.1471-4159.2004.02749.x

    Article  CAS  PubMed  Google Scholar 

  189. Khalil BD, El-Sibai M (2012) Rho GTPases in primary brain tumor malignancy and invasion. J Neurooncol 108(3):333–339. doi:10.1007/s11060-012-0866-8

    Article  CAS  PubMed  Google Scholar 

  190. Jongsma M, Matas-Rico E, Rzadkowski A, Jalink K, Moolenaar WH (2011) LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS One 6(12):e29260. doi:10.1371/journal.pone.0029260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. JNCI J Natl Cancer Inst 99(21):1583–1593. doi:10.1093/jnci/djm187

    Article  CAS  PubMed  Google Scholar 

  192. Yang SY, Lee J, Park CG et al (2002) Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin Exp Metastasis 19(7):603–608

    Article  CAS  PubMed  Google Scholar 

  193. Boucharaba A, Serre C-M, Guglielmi J, Bordet J-C, Clézardin P, Peyruchaud O (2006) The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci U S A 103(25):9643–9648. doi:10.1073/pnas.0600979103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Prestwich GD, Gajewiak J, Zhang H, Xu X, Yang G, Serban M (2008) Phosphatase-resistant analogues of lysophosphatidic acid: agonists promote healing, antagonists and autotaxin inhibitors treat cancer. Biochim Biophys Acta 1781(9):588–594. doi:10.1016/j.bbalip.2008.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ng, W. (2017). Lysophosphatidic Acid Signalling Enhances Glioma Stem Cell Properties. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_9

Download citation

Publish with us

Policies and ethics