Skip to main content

Ceramide-1-Phosphate and Its Role in Trafficking of Normal Stem Cells and Cancer Metastasis

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 600 Accesses

Abstract

Ceramide-1-phosphate (C1P), together with other sphingolipids, plays a crucial role in regulating several cell functions. Solid evidence has accumulated that C1P can induce proliferation of some types of cells, regulates inflammation and phagocytosis, has anti-apoptotic properties, and is a potent chemoattractant for variety of cells including stem cells and cancer cells. Unlike most studied peptide-based chemoattractants which show activity in experimental models at supraphysiological concentrations, C1P can activate cell migration within physiological concentration range. Moreover, C1P level may be upregulated in damaged tissues due to injury, ischemia, irradiation, or as a toxic effect of chemotherapy. Therefore, CIP as therapeutic target has important implication for optimizing stem cells mobilization and homing, tissue and organ regeneration, and preventing cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BM:

Bone marrow

C1P:

Ceramide-1-phosphate

CERK:

Ceramide kinase

EPC:

Endothelial progenitor cells

FGF-2:

Fibroblast growth factor-2

HSPC:

Hematopoietic stem/progenitor cell

LPA:

Lysophosphatidic acid

LPC:

Lysophosphatidylocholine

LPP:

Lipid phosphate phosphatase

MAPK:

Mitogen activated protein kinase

MCP-1:

Macrophage chemoattractant protein-1

MMP:

Metalloproteinase

MSC:

Mesenchymal stem cell

mTOR1:

Mammalian target of rapamycin 1

NF-κB:

Nuclear factor kappa B

PA:

Phosphatidic acid

PAH:

Pulmonary artery hypertension

PGE2 :

Prostaglandin E2

PI3-K:

Phosphatidylinositol 3-kinase

PLD:

Phospholipase D

S1P:

Sphingosine-1-phosphate

SDF-1:

α-Chemokine stromal-derived factor 1

SMase:

Sphingomyelinase

VSEL:

Very small embryonic-like stem cell

References

  1. Gomez-Munoz A, Duffy PA, Martin A, O’Brien L, Byun HS, Bittman R et al (1995) Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: antagonism by cell-permeable ceramides. Mol Pharmacol 47:833–839

    CAS  PubMed  Google Scholar 

  2. Gangoiti P, Granado MH, Wang SW, Kong JY, Steinbrecher UP, Gomez-Munoz A (2008) Ceramide 1-phosphate stimulates macrophage proliferation through activation of the PI3-kinase/PKB, JNK and ERK1/2 pathways. Cell Signal 20:726–736. doi:10.1016/j.cellsig.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  3. Gangoiti P, Bernacchioni C, Donati C, Cencetti F, Ouro A, Gomez-Munoz A et al (2012) Ceramide 1-phosphate stimulates proliferation of C2C12 myoblasts. Biochimie 94:597–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lim J, Kim Y, Heo J, Kim KH, Lee S, Lee SW et al (2016) Priming with ceramide-1 phosphate promotes the therapeutic effect of mesenchymal stem/stromal cells on pulmonary artery hypertension. Biochem Biophys Res Commun 473:35–41

    Article  CAS  PubMed  Google Scholar 

  5. Gao Z, Wang H, Xiao FJ, Shi XF, Zhang YK, Xu QQ et al (2016) SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells. Int J Biochem Cell Biol 74:152–160

    Article  CAS  PubMed  Google Scholar 

  6. Gomez-Munoz A, Kong JY, Salh B, Steinbrecher UP (2004) Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45:99–105

    Article  CAS  PubMed  Google Scholar 

  7. Gomez-Munoz A, Kong J, Salh B, Steinbrecher UP (2003) Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages. FEBS Lett 539:56–60

    Article  CAS  PubMed  Google Scholar 

  8. Gomez-Munoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, Gonzalez M et al (2005) Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett 579:3744–3750

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez AM, Graef AJ, LeVine DN, Cohen IR, Modiano JF, Kim JH (2015) Association of sphingosine-1-phosphate (S1P)/S1P receptor-1 pathway with cell proliferation and survival in canine hemangiosarcoma. J Vet Intern Med 29:1088–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Granado MH, Gangoiti P, Ouro A, Arana L, Gonzalez M, Trueba M et al (2009) Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. Cell Signal 21:405–412. doi:10.1016/j.cellsig.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  11. Kim C, Schneider G, Abdel-Latif A, Mierzejewska K, Sunkara M, Borkowska S et al (2013) Ceramide-1-phosphate regulates migration of multipotent stromal cells and endothelial progenitor cells—implications for tissue regeneration. Stem Cells 31:500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schneider G, Bryndza E, Abdel-Latif A, Ratajczak J, Maj M, Tarnowski M et al (2013) Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy. Mol Cancer Res 11:793–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamour NF, Subramanian P, Wijesinghe DS, Stahelin RV, Bonventre JV, Chalfant CE (2009) Ceramide 1-phosphate is required for the translocation of group IVA cytosolic phospholipase A2 and prostaglandin synthesis. J Biol Chem 284:26897–26907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A et al (2012) Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 26:106–116

    Article  CAS  PubMed  Google Scholar 

  16. Karapetyan AV, Klyachkin YM, Selim S, Sunkara M, Ziada KM, Cohen DA et al (2013) Bioactive lipids and cationic antimicrobial peptides as new potential regulators for trafficking of bone marrow-derived stem cells in patients with acute myocardial infarction. Stem Cells Dev 22:1645–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simanshu DK, Kamlekar RK, Wijesinghe DS, Zou X, Zhai X, Mishra SK et al (2013) Non-vesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids. Nature 500:463–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bajjalieh SM, Martin TF, Floor E (1989) Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that co-purifies with brain synaptic vesicles. J Biol Chem 264:14354–14360

    CAS  PubMed  Google Scholar 

  19. Kolesnick RN, Hemer MR (1990) Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem 265:18803–18808

    CAS  PubMed  Google Scholar 

  20. Graf C, Zemann B, Rovina P, Urtz N, Schanzer A, Reuschel R et al (2008) Neutropenia with impaired immune response to Streptococcus pneumoniae in ceramide kinase-deficient mice. J Immunol 180:3457–3466

    Article  CAS  PubMed  Google Scholar 

  21. Boath A, Graf C, Lidome E, Ullrich T, Nussbaumer P, Bornancin F (2008) Regulation and traffic of ceramide 1-phosphate produced by ceramide kinase: comparative analysis to glucosylceramide and sphingomyelin. J Biol Chem 283:8517–8526

    Article  CAS  PubMed  Google Scholar 

  22. Rivera IG, Ordonez M, Presa N, Gomez-Larrauri A, Simon J, Trueba M et al (2015) Sphingomyelinase D/ceramide 1-phosphate in cell survival and inflammation. Toxins (Basel) 7:1457–1466

    Article  CAS  Google Scholar 

  23. Pettus BJ, Bielawska A, Spiegel S, Roddy P, Hannun YA, Chalfant CE (2003) Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J Biol Chem 278:38206–38213

    Article  CAS  PubMed  Google Scholar 

  24. van Meeteren LA, Frederiks F, Giepmans BN, Pedrosa MF, Billington SJ, Jost BH et al (2004) Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine. J Biol Chem 279:10833–10836

    Article  PubMed  Google Scholar 

  25. Lee S, Lynch KR (2005) Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochem J 391:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lajoie DM, Zobel-Thropp PA, Kumirov VK, Bandarian V, Binford GJ, Cordes MH (2013) Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates. PLoS One 8:e72372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Graf C, Niwa S, Muller M, Kinzel B, Bornancin F (2008) Wild-type levels of ceramide and ceramide-1-phosphate in the retina of ceramide kinase-like-deficient mice. Biochem Biophys Res Commun 373:159–163

    Article  CAS  PubMed  Google Scholar 

  28. Tuson M, Marfany G, Gonzalez-Duarte R (2004) Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 74:128–138

    Article  CAS  PubMed  Google Scholar 

  29. Bornancin F, Mechtcheriakova D, Stora S, Graf C, Wlachos A, Devay P et al (2005) Characterization of a ceramide kinase-like protein. Biochim Biophys Acta 1687:31–43

    Article  CAS  PubMed  Google Scholar 

  30. Arana L, Ordonez M, Ouro A, Rivera IG, Gangoiti P, Trueba M et al (2013) Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. Am J Physiol Endocrinol Metab 304:E1213–E1226

    Article  CAS  PubMed  Google Scholar 

  31. Gijsbers S, Mannaerts GP, Himpens B, Van Veldhoven PP (1999) N-acetyl-sphingenine-1-phosphate is a potent calcium mobilizing agent. FEBS Lett 453:269–272

    Article  CAS  PubMed  Google Scholar 

  32. Colina CM, Gubbins KE (2005) Vapor-liquid and vapor-liquid-liquid equilibria of carbon dioxide/n-perfluoroalkane/n-alkane ternary mixtures. J Phys Chem B 109:2899–2910. doi:10.1021/jp046612d

    Article  CAS  PubMed  Google Scholar 

  33. Mietla JA, Wijesinghe DS, Hoeferlin LA, Shultz MD, Natarajan R, Fowler AA 3rd et al (2013) Characterization of eicosanoid synthesis in a genetic ablation model of ceramide kinase. J Lipid Res 54:1834–1847. doi:10.1194/jlr.M035683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, Rembiesa B et al (2010) Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res 51:3074–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lamour NF, Stahelin RV, Wijesinghe DS, Maceyka M, Wang E, Allegood JC et al (2007) Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis. J Lipid Res 48:1293–1304. doi:10.1194/jlr.M700083-JLR200

    Article  CAS  PubMed  Google Scholar 

  36. Pastukhov O, Schwalm S, Zangemeister-Wittke U, Fabbro D, Bornancin F, Japtok L et al (2014) The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death. Br J Pharmacol 171:5829–5844. doi:10.1111/bph.12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitra P, Maceyka M, Payne SG, Lamour N, Milstien S, Chalfant CE et al (2007) Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells. FEBS Lett 581:735–740

    Article  CAS  PubMed  Google Scholar 

  38. Pastukhov O, Schwalm S, Romer I, Zangemeister-Wittke U, Pfeilschifter J, Huwiler A (2014) Ceramide kinase contributes to proliferation but not to prostaglandin E2 formation in renal mesangial cells and fibroblasts. Cell Physiol Biochem 34:119–133

    Article  CAS  PubMed  Google Scholar 

  39. Ouro A, Arana L, Gangoiti P, Rivera IG, Ordonez M, Trueba M et al (2013) Ceramide 1-phosphate stimulates glucose uptake in macrophages. Cell Signal 25:786–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Granado MH, Gangoiti P, Ouro A, Arana L, Gomez-Munoz A (2009) Ceramide 1-phosphate inhibits serine palmitoyltransferase and blocks apoptosis in alveolar macrophages. Biochim Biophys Acta 1791:263–272

    Article  CAS  PubMed  Google Scholar 

  41. Hinkovska-Galcheva V, Boxer LA, Kindzelskii A, Hiraoka M, Abe A, Goparju S et al (2005) Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem 280:26612–26621

    Article  CAS  PubMed  Google Scholar 

  42. Mitsutake S, Kim TJ, Inagaki Y, Kato M, Yamashita T, Igarashi Y (2004) Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J Biol Chem 279:17570–17577

    Article  CAS  PubMed  Google Scholar 

  43. Ordonez M, Rivera IG, Presa N, Gomez-Munoz A (2016) Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration. Cell Signal 28:1066–1074

    Article  CAS  PubMed  Google Scholar 

  44. Ouro A, Arana L, Rivera IG, Ordonez M, Gomez-Larrauri A, Presa N et al (2014) Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration. Biochem Pharmacol 92:642–650. doi:10.1016/j.bcp.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  45. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ratajczak MZ, Serwin K, Schneider G (2013) Innate immunity derived factors as external modulators of the CXCL12-CXCR4 axis and their role in stem cell homing and mobilization. Theranostics 3:3–10. doi:10.7150/thno.4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma Q, Jones D, Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10:463–471

    Article  CAS  PubMed  Google Scholar 

  48. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305:1000–1003. doi:10.1126/science.1097071

    Article  CAS  PubMed  Google Scholar 

  49. Onai N, Zhang Y, Yoneyama H, Kitamura T, Ishikawa S, Matsushima K (2000) Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 96:2074–2080

    CAS  PubMed  Google Scholar 

  50. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24:976–985. doi:10.1038/leu.2010.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoggatt J, Singh P, Sampath J, Pelus LM (2009) Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 113:5444–5455. doi:10.1182/blood-2009-01-201335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pelus LM, Hoggatt J, Singh P (2011) Pulse exposure of haematopoietic grafts to prostaglandin E2 in vitro facilitates engraftment and recovery. Cell Prolif 44(Suppl. 1):22–29. doi:10.1111/j.1365-2184.2010.00726.x

    Article  PubMed  Google Scholar 

  53. Corallini F, Bossi F, Gonelli A, Tripodo C, Castellino G, Mollnes TE et al (2009) The soluble terminal complement complex (SC5b-9) up-regulates osteoprotegerin expression and release by endothelial cells: implications in rheumatoid arthritis. Rheumatology (Oxford) 48:293–298. doi:10.1093/rheumatology/ken495

    Article  CAS  Google Scholar 

  54. Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S et al (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66:7341–7347

    Article  CAS  PubMed  Google Scholar 

  55. Drukala J, Paczkowska E, Kucia M, Mlynska E, Krajewski A, Machalinski B et al (2006) Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Rev 8:184–194

    Article  Google Scholar 

  56. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N et al (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796:33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin DM (2011) The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differentiation 81:153–161

    Article  CAS  PubMed  Google Scholar 

  60. Wojakowski W, Kucia M, Liu R, Zuba-Surma E, Jadczyk T, Bachowski R et al (2011) Circulating very small embryonic-like stem cells in cardiovascular disease. J Cardiovasc Transl Res 4:138–144

    Article  PubMed  Google Scholar 

  61. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  63. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20:1915–1924

    Article  CAS  PubMed  Google Scholar 

  64. Hoggatt J, Pelus LM (2010) Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 24:1993–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503

    Article  CAS  PubMed  Google Scholar 

  66. Vassilakopoulou M, Psyrri A, Argiris A (2015) Targeting angiogenesis in head and neck cancer. Oral Oncol 51:409–415

    Article  CAS  PubMed  Google Scholar 

  67. Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M, Brindley DN (2011) Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 93:61–70

    Article  CAS  PubMed  Google Scholar 

  68. Rivera IG, Ordonez M, Presa N, Gangoiti P, Gomez-Larrauri A, Trueba M et al (2016) Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells. Biochem Pharmacol 102:107–119

    Article  CAS  PubMed  Google Scholar 

  69. Wijesinghe DS, Brentnall M, Mietla JA, Hoeferlin LA, Diegelmann RF, Boise LH et al (2014) Ceramide kinase is required for a normal eicosanoid response and the subsequent orderly migration of fibroblasts. J Lipid Res 55:1298–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schneider, G., Ratajczak, M.Z. (2017). Ceramide-1-Phosphate and Its Role in Trafficking of Normal Stem Cells and Cancer Metastasis. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_7

Download citation

Publish with us

Policies and ethics