Skip to main content

Lysophosphatidic Acid (LPA) Signaling in Neurogenesis

  • Chapter
  • First Online:
Lipidomics of Stem Cells

Abstract

LPA is a bioactive phospholipid with a plethora of roles in the developing and adult nervous system. LPA signaling mediates many processes in the brain including survival, development and function of neural progenitor cells, astrocytes, oligodendrocytes, and microglia. The intricate spatiotemporal pattern of LPA metabolism and receptor expression are critical for normal CNS development; altered LPA signaling underlies fetal lethality, neurodevelopmental deficits, and is associated with neuropsychiatric impairments and cognitive decline. Fetal hypoxic and hemorrhagic injuries are major causes for neurodevelopmental defects and these injury mechanisms are linked to changes in LPA signaling during critical periods of corticogenesis. This chapter will focus on the role of LPA in neurogenesis of the developing brain and the contribution of aberrant LPA signaling and metabolism in the pathogenesis of neurodevelopmental diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

Serotonin

ATX:

Autotaxin

Ca2+ :

Calcium

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DAG:

Diacylglycerol

E:

Embryonic day

EDG:

Endothelial differentiation gene

EGF:

Epidermal growth factor

Enpp2:

Epidermal growth factor receptor phosphodiesterase family member 2

FABP:

Fatty acid binding protein

GPAT:

Glycerophosphate acyltransferase

GPCR:

G protein-coupled receptor

GRK2:

G protein-coupled receptor kinase 2

HIF-1α:

Hypoxia inducible factor-1 alpha

IZ:

Intermediate zone

LCAT:

Lecithin cholesterol acyltransferase

LP:

Lysophospholipids

LPA:

Lysophosphatidic acid

LPA1–6 :

Lysophosphatidic acid GPCR 1–6

LPAAT:

Lysophosphatidic acid acyltransferase

LPAR1–6:

Human Lysophosphatidic acid GPCR genes 1–6

Lpar1–6:

Mouse Lysophosphatidic acid GPCR genes 1–6

LPC:

Lysophosphatidylcholine

LPP:

Lipid phosphate phosphatases

MAG:

Monoacylglycerol

MAP:

Microtubule-associated protein

NGF:

Nerve growth factor

NPC:

Neuroprogenitor cell

P2Y:

Purinergic family genes

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PCD:

Programmed cell death

PHH:

Post-hemorrhagic hydrocephalus

PL:

Phospholipids

PLA1:

Phospholipase A1

PLC:

Phospholipase-C

PS:

Phosphatidylserine

PSA-NCAM:

Polysialylated neural cell adhesion protein

PS-PLA1:

Phosphatidylserine-specific phospholipase A1

S1P:

Sphingosine-1-phosphate

SOX2:

Sex determining region Y-box 2

sPLA2:

Secretory phospholipase A2

SVZ:

Subventricular zone

TrkA:

Tyrosine kinase receptor type 1

VEGF:

Vascular endothelial growth factor

VZ:

Ventricular zone

References

  1. Hecht JH, Weiner JA, Post SR, Chun J (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 135(4):1071–1083

    Article  CAS  PubMed  Google Scholar 

  2. Kihara Y, Mizuno H, Chun J (2015) Lysophospholipid receptors in drug discovery. Exp Cell Res 333(2):171–177

    Article  CAS  PubMed  Google Scholar 

  3. Lyncha KR, Macdonald TL (2001) Structure activity relationships of lysophospholipid mediators. Prostaglandins Other Lipid Mediat 64(1–4):33–45

    Article  Google Scholar 

  4. Lyncha KR, Macdonald TL (2002) Structure-activity relationships of lysophosphatidic acid analogs. Biochim Biophys Acta 1582(1–3):289–294

    Article  Google Scholar 

  5. Sugiura T, Nakane S, Kishimoto S, Waku K, Yoshioka Y, Tokumura A et al (1999) Occurrence of lysophosphatidic acid and its alkyl ether-linked analog in rat brain and comparison of their biological activities toward cultured neural cells. Biochim Biophys Acta 1440(2–3):194–204

    Article  CAS  PubMed  Google Scholar 

  6. Yung YC, Stoddard NC, Mirendil H, Chun J (2015) Lysophosphatidic acid signaling in the nervous system. Neuron 85(4):669–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steiner MR, Urso JR, Klein J, Steiner SM (2002) Multiple astrocyte responses to lysophosphatidic acids. Biochim Biophys Acta 1582(1–3):154–160

    Article  CAS  PubMed  Google Scholar 

  8. Choi JW, Herr DR, Noguchi K, Yung YC, Lee C-W, Mutoh T et al (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50:157–186

    Article  CAS  PubMed  Google Scholar 

  9. Yung YC, Stoddard NC, Chun J (2014) LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 55(7):1192–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu J, Oda SK, Shotts K, Donovan EE, Strauch P, Pujanauski LM et al (2014) Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response. J Immunol 193(1):85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma L, Nagai J, Chun J, Ueda H (2013) An LPA species (18:1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model. Mol Pain 9(1):29

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan LC, Peters W, Xu Y, Chun J, Farese RV, Cases S (2007) LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA). J Leukoc Biol 82(5):1193–1200

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi K, Takahashi M, Nishida W, Yoshida K, Ohkawa Y, Kitabatake A et al (2001) Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids. Circ Res 89(3):251–258

    Article  CAS  PubMed  Google Scholar 

  14. Aoki J (2004) Mechanisms of lysophosphatidic acid production. Semin Cell Dev Biol 15(5):477–489

    Article  CAS  PubMed  Google Scholar 

  15. Baker DL, Desiderio DM, Miller DD, Tolley B, Tigyi GJ (2001) Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal Biochem 292(2):287–295

    Article  CAS  PubMed  Google Scholar 

  16. Hosogaya S, Yatomi Y, Nakamura K, Ohkawa R, Okubo S, Yokota H et al (2008) Measurement of plasma lysophosphatidic acid concentration in healthy subjects: strong correlation with lysophospholipase D activity. Ann Clin Biochem 45(Pt 4):364–368

    Article  CAS  PubMed  Google Scholar 

  17. Das AK, Hajra AK (1989) Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 24(4):329–333

    Article  CAS  PubMed  Google Scholar 

  18. Triebl A, Trötzmüller M, Eberl A, Hanel P, Hartler J, Köfeler HC (2014) Quantitation of phosphatidic acid and lysophosphatidic acid molecular species using hydrophilic interaction liquid chromatography coupled to electrospray ionization high resolution mass spectrometry. J Chromatogr A 1347:104–110

    Article  CAS  PubMed  Google Scholar 

  19. Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH (1993) The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 291(Pt 3):677–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siess W, Zangl KJ, Essler M, Bauer M, Brandl R, Corrinth C et al (1999) Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A 96(12):6931–6936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, Kitayama J et al (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 281(25):17492–17500

    Article  CAS  PubMed  Google Scholar 

  22. Fukushima N, Weiner JA, Kaushal D, Contos JJAA, Rehen SK, Kingsbury MA et al (2002) Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol Cell Neurosci 20(2):271–282

    Article  CAS  PubMed  Google Scholar 

  23. Ishii I, Contos JJ, Fukushima N, Chun J (2000) Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol 58(5):895–902

    CAS  PubMed  Google Scholar 

  24. Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 1781(9):513–518

    Article  CAS  PubMed  Google Scholar 

  25. Underwood KW, Song C, Kriz RW, Chang XJ, Knopf JL, Lin L-L (1998) A novel calcium-independent phospholipase A2, cPLA2-, that is prenylated and contains homology to cPLA2. J Biol Chem 273(34):21926–21932

    Article  CAS  PubMed  Google Scholar 

  26. Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K et al (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277(42):39436–39442

    Article  CAS  PubMed  Google Scholar 

  27. Tokumura A, Kanaya Y, Kitahara M, Miyake M, Yoshioka Y, Fukuzawa K (2002) Increased formation of lysophosphatidic acids by lysophospholipase D in serum of hypercholesterolemic rabbits. J Lipid Res 43(2):307–315

    CAS  PubMed  Google Scholar 

  28. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K et al (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158(2):227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pagès C, Simon M-FF, Valet P, Saulnier-Blache JS (2001) Lysophosphatidic acid synthesis and release. Prostaglandins Other Lipid Mediat 64(1–4):1–10

    Article  PubMed  Google Scholar 

  30. Lee H, Goetzl EJ, An S (2000) Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am J Physiol Cell Physiol 278(3):C612–C618

    CAS  PubMed  Google Scholar 

  31. Panetti TS, Chen H, Misenheimer TM, Getzler SB, Mosher DF (1997) Endothelial cell mitogenesis induced by LPA: inhibition by thrombospondin-1 and thrombospondin-2. J Lab Clin Med 129(2):208–216

    Article  CAS  PubMed  Google Scholar 

  32. Wu WT, Chen C-N, Lin CI, Chen JH, Lee H (2005) Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells. Endocrinology 146(8):3387–3400

    Article  CAS  PubMed  Google Scholar 

  33. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradère JP et al (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26(13):5015–5022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M et al (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281(35):25822–25830

    Article  CAS  PubMed  Google Scholar 

  35. Fotopoulou S, Oikonomou N, Grigorieva E, Nikitopoulou I, Paparountas T, Thanassopoulou A et al (2010) ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol 339(2):451–464

    Article  CAS  PubMed  Google Scholar 

  36. Fukushima N, Weiner JA, Chun J (2000) Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol 228(1):6–18

    Article  CAS  PubMed  Google Scholar 

  37. Bektas M, Payne SG, Liu H, Goparaju S, Milstien S, Spiegel S (2005) A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells. J Cell Biol 169(5):801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gendaszewska-Darmach E (2008) Lysophosphatidic acids, cyclic phosphatidic acids and autotaxin as promising targets in therapies of cancer and other diseases. Acta Biochim Pol 55(2):227–240

    CAS  PubMed  Google Scholar 

  39. Mishra RS, Carnevale KA, Cathcart MK (2008) iPLA2beta: front and center in human monocyte chemotaxis to MCP-1. J Exp Med 205(2):347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carnevale KA, Cathcart MK (2001) Calcium-independent phospholipase A(2) is required for human monocyte chemotaxis to monocyte chemoattractant protein 1. J Immunol 167(6):3414–3421

    Article  CAS  PubMed  Google Scholar 

  41. Weiner JA, Hecht JH, Chun J (1998) Lysophosphatidic acid receptor gene vzg-1/lp(A)1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398(4):587–598

    Article  CAS  PubMed  Google Scholar 

  42. Contos JJ, Chun J (2001) The mouse lpA3/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern. Gene 267(2):243–253

    Article  CAS  PubMed  Google Scholar 

  43. Moolenaar WH (1999) Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res 253(1):230–238

    Article  CAS  PubMed  Google Scholar 

  44. Guo Z, Liliom K, Fischer DJ, Bathurst IC, Tomei LD, Kiefer MC et al (1996) Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc Natl Acad Sci U S A 93(25):14367–14372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi JW, Chun J (2013) Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta 1831(1):20–32

    Article  CAS  PubMed  Google Scholar 

  46. Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci U S A 97(24):13384–13389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fukushima N, Kimura Y, Chun J (1998) A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci U S A 95(11):6151–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Svetlov SI, Ignatova TN, Wang KKW, Hayes RL, English D, Kukekov VG (2004) Lysophosphatidic acid induces clonal generation of mouse neurospheres via proliferation of Sca-1- and AC133-positive neural progenitors. Stem Cells Dev 13(6):685–693

    Article  CAS  PubMed  Google Scholar 

  49. Aoki J, Taira A, Takanezawa Y, Kishi Y, Hama K, Kishimoto T et al (2011) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. J Neurosci 21(1):595–604

    Google Scholar 

  50. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y et al (2011) Proc Natl Acad Sci U S A 21(1):595–604

    Google Scholar 

  51. Dusaulcy R, Daviaud D, Pradère JP, Grès S, Valet P, Saulnier-Blache JS (2009) Altered food consumption in mice lacking lysophosphatidic acid receptor-1. J Physiol Biochem 65(4):345–350

    Article  CAS  PubMed  Google Scholar 

  52. Halder SK, Yano R, Chun J, Ueda H (2013) Involvement of LPA(1) receptor signaling in cerebral ischemia-induced neuropathic pain. Neuroscience 235:10–15

    Article  CAS  PubMed  Google Scholar 

  53. Xie W, Uchida H, Nagai J, Ueda M, Chun J, Ueda H (2010) Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain. J Neurochem 113(4):1002–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weiner JA, Fukushima N, Contos JJA, Scherer SS, Chun J (2001) Regulation of Schwann cell morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J Neurosci 21(18):7069–7078

    CAS  PubMed  Google Scholar 

  55. Yung YC, Mutoh T, Lin M-EE, Noguchi K, Rivera RR, Choi JW et al (2011) Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 3(99):99ra87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Estivill-Torrus G (2008) Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 18(4):938–950

    Article  PubMed  Google Scholar 

  57. Matas-Rico E, García-Diaz B, Llebrez-Zayas P, López-Barroso D, Santín L, Pedraza C et al (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 39(3):342–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Harrison SM, Reavill C, Brown G, Brown JT, Cluderay JE, Crook B et al (2003) LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Mol Cell Neurosci 24(4):1170–1179

    Article  CAS  PubMed  Google Scholar 

  59. Miller WE, Lefkowitz RJ (2001) Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol 13(2):139–145

    Article  CAS  PubMed  Google Scholar 

  60. Moughal NA, Waters C, Sambi B, Pyne S, Pyne NJ (2004) Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cell Signal 16(1):127–136

    Article  CAS  PubMed  Google Scholar 

  61. Rakhit S, Pyne S, Pyne NJ (2001) Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells: role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing. Mol Pharmacol 60(1):63–70

    CAS  PubMed  Google Scholar 

  62. Moughal NA, Waters CM, Valentine WJ, Connell M, Richardson JC, Tigyi G et al (2006) Protean agonism of the lysophosphatidic acid receptor-1 with Ki16425 reduces nerve growth factor-induced neurite outgrowth in pheochromocytoma 12 cells. J Neurochem 98(6):1920–1929

    Article  CAS  PubMed  Google Scholar 

  63. Beer MS, Stanton JA, Salim K, Rigby M, Heavens RP, Smith D et al (2000) EDG receptors as a therapeutic target in the nervous system. Ann N Y Acad Sci 905:118–131

    Article  CAS  PubMed  Google Scholar 

  64. Savitz SI, Dhallu MS, Malhotra S, Mammis A, Ocava LC, Rosenbaum PS et al (2006) EDG receptors as a potential therapeutic target in retinal ischemia-reperfusion injury. Brain Res 1118(1):168–175

    Article  CAS  PubMed  Google Scholar 

  65. Yan H, Lu D, Rivkees SA (2003) Lysophosphatidic acid regulates the proliferation and migration of olfactory ensheathing cells in vitro. Glia 44(1):26–36

    Article  PubMed  Google Scholar 

  66. Zhang Y, Chen Y-CM, Krummel MF, Rosen SD (2012) Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J Immunol 189(8):3914–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kihara Y, Maceyka M, Spiegel S, Chun J (2014) Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 171(15):3575–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kingsbury MA, Rehen SK, Contos JJA, Higgins CM, Chun J (2003) Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 6(12):1292–1299

    Article  CAS  PubMed  Google Scholar 

  69. Kuriyama S, Theveneau E, Benedetto A, Parsons M, Tanaka M, Charras G et al (2014) In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. J Cell Biol 206(1):113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S et al (2002) Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 22(19):6921–6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Contos JJ, Ishii I, Chun J (2000) Lysophosphatidic acid receptors. Mol Pharmacol 58:1188–1196

    CAS  PubMed  Google Scholar 

  72. Hama K, Bandoh K, Kakehi Y, Aoki J, Arai H (2002) Lysophosphatidic acid (LPA) receptors are activated differentially by biological fluids: possible role of LPA-binding proteins in activation of LPA receptors. FEBS Lett 523(1–3):187–192

    Article  CAS  PubMed  Google Scholar 

  73. Hama K, Aoki J, Inoue A, Endo T, Amano T, Motoki R et al (2007) Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biol Reprod 77(6):954–959

    Article  CAS  PubMed  Google Scholar 

  74. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K et al (1999) Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem 274(39):27776–27785

    Article  CAS  PubMed  Google Scholar 

  75. Im DS, Heise CE, Harding MA, George SR, O’Dowd BF, Theodorescu D et al (2000) Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol 57(4):753–759

    CAS  PubMed  Google Scholar 

  76. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J et al (2008) Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev Dyn 237(11):3280–3294

    Article  CAS  PubMed  Google Scholar 

  77. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK et al (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435(7038):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lai S-L, Yao W-L, Tsao K-C, Houben AJS, Albers HMHG, Ovaa H et al (2012) Autotaxin/Lpar3 signaling regulates Kupffer’s vesicle formation and left-right asymmetry in zebrafish. Development 139(23):4439–4448

    Article  CAS  PubMed  Google Scholar 

  79. Lee C-WW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281(33):23589–23597

    Article  CAS  PubMed  Google Scholar 

  80. Lee C-W, Rivera R, Dubin AE, Chun J (2007) LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem 282(7):4310–4317

    Article  CAS  PubMed  Google Scholar 

  81. Sumida H, Noguchi K, Kihara Y, Abe M, Yanagida K, Hamano F et al (2010) LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 116(23):5060–5070

    Article  CAS  PubMed  Google Scholar 

  82. Lee Z, Cheng C-T, Zhang H, Subler MA, Wu J, Mukherjee A et al (2008) Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell 19(12):5435–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee KJ, Kim SJ, Kim SW, Choi SH, Shin YC, Park SH et al (2006) Chronic mild stress decreases survival, but not proliferation, of new-born cells in adult rat hippocampus. Exp Mol Med 38(1):44–54

    Article  CAS  PubMed  Google Scholar 

  84. Lin M-E, Rivera RR, Chun J (2012) Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain. J Biol Chem 287(21):17608–17617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oda SK, Strauch P, Fujiwara Y, Al-Shami A, Oravecz T, Tigyi G et al (2013) Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. Cancer Immunol Res 1(4):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y et al (2009) Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem 284(26):17731–17741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee M, Choi S, Halldén G, Yo SJ, Schichnes D, Aponte GW (2009) P2Y5 is a G(alpha)i, G(alpha)12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion. Am J Physiol Gastrointest Liver Physiol 297(4):G641–G654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park R, Moon UY, Park JY, Hughes LJ, Johnson RL, Cho S-H et al (2016) Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun 7:10329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cechin SR, Dunkley PR, Rodnight R (2005) Signal transduction mechanisms involved in the proliferation of C6 glioma cells induced by lysophosphatidic acid. Neurochem Res 30(5):603–611

    Article  CAS  PubMed  Google Scholar 

  90. Sayas CL (1999) The neurite retraction induced by lysophosphatidic acid increases Alzheimer’s disease-like Tau phosphorylation. J Biol Chem 274(52):37046–37052

    Article  CAS  PubMed  Google Scholar 

  91. Sun Y, Kim N-H, Yang H, Kim S-H, Huh S-O (2011) Lysophosphatidic acid induces neurite retraction in differentiated neuroblastoma cells via GSK-3β activation. Mol Cells 31(5):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Castilla-Ortega E, Sánchez-López J, Hoyo-Becerra C, Matas-Rico E, Zambrana-Infantes E, Chun J et al (2010) Exploratory, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiol Learn Mem 94(1):73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Santin LJ, Bilbao A, Pedraza C, Matas-Rico E, López-Barroso D, Castilla-Ortega E et al (2009) Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain Behav 8(8):772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin M-E, Herr DR, Chun J (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91(3–4):130–138

    Article  CAS  PubMed  Google Scholar 

  95. Fujita R, Kiguchi N, Ueda H (2007) LPA-mediated demyelination in ex vivo culture of dorsal root. Neurochem Int 50(2):351–355

    Article  CAS  PubMed  Google Scholar 

  96. Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10(7):712–718

    Article  CAS  PubMed  Google Scholar 

  97. Yano R, Ma L, Nagai J, Ueda H (2013) Interleukin-1β plays key roles in LPA-induced amplification of LPA production in neuropathic pain model. Cell Mol Neurobiol 33(8):1033–1041

    Article  CAS  PubMed  Google Scholar 

  98. Lee S-J, No YR, Dang DT, Dang LH, Yang VW, Shim H et al (2013) Regulation of hypoxia-inducible factor 1α (HIF-1α) by lysophosphatidic acid is dependent on interplay between p53 and Krüppel-like factor 5. J Biol Chem 288(35):25244–25253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Herr KJ, Herr DR, Lee C-W, Noguchi K, Chun J (2011) Stereotyped fetal brain disorganization is induced by hypoxia and requires lysophosphatidic acid receptor 1 (LPA1) signaling. Proc Natl Acad Sci U S A 108(37):15444–15449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409(6821):714–720

    Article  CAS  PubMed  Google Scholar 

  101. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15(5):300–312

    Article  CAS  PubMed  Google Scholar 

  102. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N (2009) Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 3:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Yang Y, Higashimori H, Morel L (2013) Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders. J Neurodev Disord 5(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  104. Dubin AE, Bahnson T, Weiner JA, Fukushima N, Chun J (1999) Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and L-glutamate in early, presumptive cortical neuroblasts. J Neurosci 19(4):1371–1381

    CAS  PubMed  Google Scholar 

  105. Dubin AE, Herr DR, Chun J (2010) Diversity of lysophosphatidic acid receptor-mediated intracellular calcium signaling in early cortical neurogenesis. J Neurosci 30(21):7300–7309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Postma FR, Jalink K, Hengeveld T, Offermanns S, Moolenaar WH (2001) Gα13 mediates activation of a depolarizing chloride current that accompanies RhoA activation in both neuronal and nonneuronal cells. Curr Biol 11(2):121–124

    Article  CAS  PubMed  Google Scholar 

  107. Apáti Á, Pászty K, Erdei Z, Szebényi K, Homolya L, Sarkadi B (2012) Calcium signaling in pluripotent stem cells. Mol Cell Endocrinol 353(1–2):57–67

    Article  PubMed  CAS  Google Scholar 

  108. Schilling T, Stock C, Schwab A, Eder C (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 19(6):1469–1474

    Article  PubMed  Google Scholar 

  109. García-García E, Pino-Barrio MJ, López-Medina L, Martínez-Serrano A (2012) Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors. Mol Biol Cell 23(7):1167–1180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43(5):647–661

    Article  CAS  PubMed  Google Scholar 

  111. Young SZ, Taylor MM, Wu S, Ikeda-Matsuo Y, Kubera C, Bordey A (2012) NKCC1 knockdown decreases neuron production through GABA(A)-regulated neural progenitor proliferation and delays dendrite development. J Neurosci 32(39):13630–13638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cui H-LL, Qiao J-TT (2006) Promotive action of lysophosphatidic acid on proliferation of rat embryonic neural stem cells and their differentiation to cholinergic neurons in vitro. Sheng Li Xue Bao 58(6):547–555

    CAS  PubMed  Google Scholar 

  113. Hurst JH, Mumaw J, Machacek DW, Sturkie C, Callihan P, Stice SL et al (2008) Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology. BMC Neurosci 9(1):118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Dottori M, Leung J, Turnley AM, Pébay A (2008) Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells 26(5):1146–1154

    Article  CAS  PubMed  Google Scholar 

  115. Pitson SM, Pébay A (2009) Regulation of stem cell pluripotency and neural differentiation by lysophospholipids. Neurosignals 17(4):242–254

    Article  CAS  PubMed  Google Scholar 

  116. Mirendil H, Thomas EA, De Loera C, Okada K, Inomata Y, Chun J (2015) LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Transl Psychiatry 5(4):e541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weiner JA, Chun J (1999) Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc Natl Acad Sci U S A 96(9):5233–5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun Y, Nam J-S, Han D-H, Kim N-H, Choi H-K, Lee JK et al (2010) Lysophosphatidic acid induces upregulation of Mcl-1 and protects apoptosis in a PTX-dependent manner in H19-7 cells. Cell Signal 22(3):484–494

    Article  CAS  PubMed  Google Scholar 

  119. Blaschke AJ, Weiner JA, Chun J (1998) Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system. J Comp Neurol 396(1):39–50

    Article  CAS  PubMed  Google Scholar 

  120. Blaschke AJ, Staley K, Chun J (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122(4):1165–1174

    CAS  PubMed  Google Scholar 

  121. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn A-P et al (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105(9):3581–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hayes NL, Nowakowski RS (2000) Exploiting the dynamics of S-phase tracers in developing brain: interkinetic nuclear migration for cells entering versus leaving the S-phase. Dev Neurosci 22(1–2):44–55

    Article  CAS  PubMed  Google Scholar 

  123. Pébay A, Bonder CS, Pitson SM (2007) Stem cell regulation by lysophospholipids. Prostaglandins Other Lipid Mediat 84(3–4):83–97

    Article  PubMed  CAS  Google Scholar 

  124. Halstead JR, Savaskan NE, van den Bout I, Van Horck F, Hajdo-Milasinovic A, Snell M, et al (2010) Rac controls PIP5K localisation and PtdIns(4,5)P2 synthesis, which modulates vinculin localisation and neurite dynamics. J Cell Sci 123(Pt 20):3535–3546

    Google Scholar 

  125. Campbell DS, Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37(6):939–952

    Article  CAS  PubMed  Google Scholar 

  126. Spohr TCLS, Dezonne RS, Rehen SK, FCA G (2014) LPA-primed astrocytes induce axonal outgrowth of cortical progenitors by activating PKA signaling pathways and modulating extracellular matrix proteins. Front Cell Neurosci 8:296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Spohr TCLS, Dezonne RS, Rehen SK, FCA G (2011) Astrocytes treated by lysophosphatidic acid induce axonal outgrowth of cortical progenitors through extracellular matrix protein and epidermal growth factor signaling pathway. J Neurochem 119(1):113–123

    Article  CAS  Google Scholar 

  128. Bräuer AU, Savaskan NE, Kühn H, Prehn S, Ninnemann O, Nitsch R (2003) A new phospholipid phosphatase, PRG-1, is involved in axon growth and regenerative sprouting. Nat Neurosci 6(6):572–578

    Article  PubMed  CAS  Google Scholar 

  129. Spohr TCS, Choi JW, Gardell SE, Herr DR, Rehen SK et al (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 283(12):7470–7479

    Article  PubMed  CAS  Google Scholar 

  130. Kolevzon A, Gross R, Reichenberg A (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 161(4):326–333

    Article  PubMed  Google Scholar 

  131. Durfee SM, Kim FM, Benson CB (2001) Postnatal outcome of fetuses with the prenatal diagnosis of asymmetric hydrocephalus. J Ultrasound Med 20(3):263–268

    Article  CAS  PubMed  Google Scholar 

  132. Fukumizu M, Takashima S, Becker LE (1995) Neonatal posthemorrhagic hydrocephalus: neuropathologic and immunohistochemical studies. Pediatr Neurol 13(3):230–234

    Article  CAS  PubMed  Google Scholar 

  133. Corcoran A, O’Connor JJ (2013) Hypoxia-inducible factor signalling mechanisms in the central nervous system. Acta Physiol (Oxf) 208(4):298–310

    Article  CAS  Google Scholar 

  134. Nyakas C, Buwalda B, Luiten PG (1996) Hypoxia and brain development. Prog Neurobiol 49(1):1–51

    Article  CAS  PubMed  Google Scholar 

  135. Lin C-I, Chen C-N, Huang M-T, Lee S-J, Lin C-H, Chang C-C et al (2008) Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell Signal 20(10):1804–1814

    Article  CAS  PubMed  Google Scholar 

  136. Boksa P (2008) Maternal infection during pregnancy and schizophrenia. J Psychiatry Neurosci 33(3):183–185

    PubMed  PubMed Central  Google Scholar 

  137. Beaulieu J-M, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  CAS  PubMed  Google Scholar 

  138. Beaulieu J-M, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC et al (2008) Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A 105(4):1333–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shano S, Moriyama R, Chun J, Fukushima N (2008) Lysophosphatidic acid stimulates astrocyte proliferation through LPA1. Neurochem Int 52(1–2):216–220

    Article  CAS  PubMed  Google Scholar 

  140. Roberts C, Winter P, Shilliam CS, Hughes ZA, Langmead C, Maycox PR et al (2005) Neurochemical changes in LPA1 receptor deficient mice—a putative model of schizophrenia. Neurochem Res 30(3):371–377

    Article  CAS  PubMed  Google Scholar 

  141. Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodríguez De Fonseca F, Estivill-Torrús G et al (2011) Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA1 receptor knockout mice. PLoS One 6(9):e25522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hassanein SMA, Moharram H, Monib AM, Ramy ARMRA, Ghany WA (2008) Perinatal ventriculomegaly. J Pediatric Neurol 6:293–307

    Google Scholar 

  143. Allenby PA, Gould NS, Thomas C (1985) Congenital posthemorrhagic hydrocephalus: report of a case. Fetal Pediatr Pathol 4(3–4):303–308

    Article  CAS  Google Scholar 

  144. Morales DM, Holubkov R, Inder TE, Ahn HC, Mercer D, Rao R et al (2015) Cerebrospinal fluid levels of amyloid precursor protein are associated with ventricular size in post-hemorrhagic hydrocephalus of prematurity. PLoS One 10(3):e0115045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. McAllister JP (2012) Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med 17(5):285–294

    Article  PubMed  Google Scholar 

  146. McMullen AB, Baidwan GS, McCarthy KD (2012) Morphological and behavioral changes in the pathogenesis of a novel mouse model of communicating hydrocephalus. PLoS One 7(1):e30159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bolen AL, Naren AP, Yarlagadda S, Beranova-Giorgianni S, Chen L, Norman D et al (2011) The phospholipase A1 activity of lysophospholipase A-I links platelet activation to LPA production during blood coagulation. J Lipid Res 52(5):958–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lam S-J, Kumar S (2014) Evolution of fetal ventricular dilatation in relation to severity at first presentation. J Clin Ultrasound 42(4):193–198

    Article  PubMed  Google Scholar 

  149. Graham E, Duhl A, Ural S, Allen M, Blakemore K, Witter F (2001) The degree of antenatal ventriculomegaly is related to pediatric neurological morbidity. J Matern Fetal Med 10(4):258–263

    Article  CAS  PubMed  Google Scholar 

  150. Gezer C, Ekin A, Ozeren M, Taner CE, Ozer O, Koc A et al (2014) Chromosome abnormality incidence in fetuses with cerebral ventriculomegaly. J Obstet Gynaecol 34(5):387–391

    Article  CAS  PubMed  Google Scholar 

  151. Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, McConnell MJ et al (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23(32):10454–10462

    CAS  PubMed  Google Scholar 

  152. Dudenhausen JW (2014) Practical obstetrics. De Gruyter, Berlin, 511 p

    Book  Google Scholar 

  153. Terry M, Calhoun BC, Walker W, Apodaca C, Martin L, Pierce B et al (2000) Aneuploidy and isolated mild ventriculomegaly. Attributable risk for isolated fetal marker. Fetal Diagn Ther 15(6):331–334

    Article  CAS  PubMed  Google Scholar 

  154. Sonek J, Croom C (2014) Second trimester ultrasound markers of fetal aneuploidy. Clin Obstet Gynecol 57(1):159–181

    Article  PubMed  Google Scholar 

  155. Zhang J, Williams MA, Rigamonti D (2006) Genetics of human hydrocephalus. J Neurol 253(10):1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nomura ML, Barini R, De Andrade KC, Milanez H, Simoni RZ, Peralta CFA et al (2010) Congenital hydrocephalus: gestational and neonatal outcomes. Arch Gynecol Obstet. 282(6):607–611

    Article  PubMed  Google Scholar 

  157. Vergani P, Locatelli A, Strobelt N, Cavallone M, Ceruti P, Paterlini G et al (1998) Clinical outcome of mild fetal ventriculomegaly. Am J Obstet Gynecol 178(2):218–222

    Article  CAS  PubMed  Google Scholar 

  158. Páez P, Bátiz L-F, Roales-Buján R, Rodríguez-Pérez L-M, Rodríguez S, Jiménez AJ et al (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66(12):1082–1092

    Article  PubMed  Google Scholar 

  159. Miller JM, Kumar R, McAllister JP, Krause GS (2006) Gene expression analysis of the development of congenital hydrocephalus in the H-Tx rat. Brain Res 1075(1):36–47

    Article  CAS  PubMed  Google Scholar 

  160. Kaushal D, Contos JJA, Treuner K, Yang AH, Kingsbury MA, Rehen SK et al (2003) Alteration of gene expression by chromosome loss in the postnatal mouse brain. J Neurosci 23(13):5599–5606

    CAS  PubMed  Google Scholar 

  161. Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J (2001) Chromosomal variation in neurons of the developing and adult mammalian nervous system. Proc Natl Acad Sci U S A 98(23):13361–13366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC, Barral S et al (2012) Aneuploid cells are differentially susceptible to caspase-mediated death during embryonic cerebral cortical development. J Neurosci 32(46):16213–16222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. McConnell MJ, Kaushal D, Yang AH, Kingsbury MA, Rehen SK, Treuner K et al (2004) Failed clearance of aneuploid embryonic neural progenitor cells leads to excess aneuploidy in the Atm-deficient but not the Trp53-deficient adult cerebral cortex. J Neurosci 24(37):8090–8096

    Article  CAS  PubMed  Google Scholar 

  164. Li J, Xu M, Zhou H, Ma J, Potter H (1997) Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell 90(5):917–927

    Article  CAS  PubMed  Google Scholar 

  165. Geller LN, Potter H (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis 6(3):167–179

    Article  CAS  PubMed  Google Scholar 

  166. Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY (2001) Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain Dev 23(Suppl 1):S186–S190

    Article  PubMed  Google Scholar 

  167. Rolig RL, McKinnon PJ (2000) Linking DNA damage and neurodegeneration. Trends Neurosci 23(9):417–424

    Article  CAS  PubMed  Google Scholar 

  168. Lewis KE, Lubetsky MJ, Wenger SL, Steele MW (1995) Chromosomal abnormalities in a psychiatric population. Am J Med Genet 60(1):53–54

    Article  CAS  PubMed  Google Scholar 

  169. Konstantareas MM, Homatidis S (1999) Chromosomal abnormalities in a series of children with autistic disorder. J Autism Dev Disord 29(4):275–285

    Article  CAS  PubMed  Google Scholar 

  170. Oliveira G, Matoso E, Vicente A, Ribeiro P, Marques C, Ataíde A et al (2003) Partial tetrasomy of chromosome 3q and mosaicism in a child with autism. J Autism Dev Disord 33(2):177–185

    Article  PubMed  Google Scholar 

  171. Kim IH, Carlson BR, Heindel CC, Kim H, Soderling SH (2012) Disruption of wave-associated Rac GTPase-activating protein (Wrp) leads to abnormal adult neural progenitor migration associated with hydrocephalus. J Biol Chem 287(46):39263–39274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Waltereit R, Leimer U, von Bohlen Und Halbach O, Panke J, Hölter SM, Garrett L et al (2012) Srgap3/ mice present a neurodevelopmental disorder with schizophrenia-related intermediate phenotypes. FASEB J 26(11):4418–4428

    Article  CAS  PubMed  Google Scholar 

  173. Abouhamed M, Grobe K, San IVLC, Thelen S, Honnert U, Balda MS et al (2009) Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol Biol Cell 20(24):5074–5085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Carter CS, Vogel TW, Zhang Q, Seo S, Swiderski RE, Moninger TO et al (2012) Abnormal development of NG2+PDGFR-α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 18(12):1797–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yokota Y, Eom T-Y, Stanco A, Kim W-Y, Rao S, Snider WD et al (2010) Cdc42 and Gsk3 modulate the dynamics of radial glial growth, inter-radial glial interactions and polarity in the developing cerebral cortex. Development 137(23):4101–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hwang M, Peddibhotla S, McHenry P, Chang P, Yochum Z, Park KU et al (2012) P190B RhoGAP regulates chromosome segregation in cancer cells. Cancers (Basel) 4(2):475–489

    Article  CAS  Google Scholar 

  177. Ye X, Ishii I, Kingsbury MA, Chun J (2002) Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta 1585(2–3):108–113

    Article  CAS  PubMed  Google Scholar 

  178. Kingsbury MA, Rehen SK, Ye X, Chun J (2004) Genetics and cell biology of lysophosphatidic acid receptor-mediated signaling during cortical neurogenesis. J Cell Biochem 92(5):1004–1012

    Article  CAS  PubMed  Google Scholar 

  179. Potapova TA, Zhu J, Li R (2013) Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev 32(3–4):377–389

    Article  PubMed  Google Scholar 

  180. Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santín L, Pedraza C, De Diego I et al (2008) Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 18(4):938–950

    Article  PubMed  Google Scholar 

  181. Yamane M, Furuta D, Fukushima N (2010) Lysophosphatidic acid influences initial neuronal polarity establishment. Neurosci Lett 480(2):154–157

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerold Chun M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

McDonald, W.S., Chun, J. (2017). Lysophosphatidic Acid (LPA) Signaling in Neurogenesis. In: Pébay, A., Wong, R. (eds) Lipidomics of Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-49343-5_4

Download citation

Publish with us

Policies and ethics