Skip to main content

Cognitive Computing: Where Big Data Is Driving Us

  • Chapter
  • First Online:
Handbook of Big Data Technologies

Abstract

In this chapter we will discuss the concepts and challenges to design Cognitive Systems. Cognitive Computing is the use of computational learning systems to augment cognitive capabilities in solving real world problems. Cognitive systems are designed to draw inferences from data and pursue the objectives they were given. The era of big data is the basis for innovative cognitive solutions that cannot rely on traditional systems. While traditional computers must be programmed by humans to perform specific tasks, cognitive systems will learn from their interactions with data and humans. Not only is Cognitive Computing a fundamentally new computing paradigm for tackling real world problems, exploiting enormous amounts of data using massively parallel machines, but also it engenders a new form of interaction between humans and computers. As machines start to enhance human cognition and help people make better decisions, new issues arise for research. We will address these questions for Cognitive Systems: What are the needs? Where to apply? Which are the sources of information to relying on?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Figure extract from http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/ebusiness/transform/ last visit 9th March, 2016.

  2. 2.

    http://www.offshore-technology.com/features/featureturning-the-cogs-ibms-cognitive-environments-lab-takes-on-offshore-exploration-4517222/ last visited in 9th March 2016.

  3. 3.

    https://uima.apache.org.

  4. 4.

    https://console.ng.bluemix.net/.

  5. 5.

    https://deepmind.com.

  6. 6.

    https://www.qualcomm.com/invention/cognitive-technologies/zeroth.

  7. 7.

    https://www.macstories.net/news/apple-officially-unveils-siri-voice-assistant/ visited 13th March 2016.

  8. 8.

    http://www.alexa.com/about visited 13th March 2016.

  9. 9.

    http://research.microsoft.com/en-us/news/features/cortana-041614.aspx visited 13th March 2016.

  10. 10.

    https://www.ibmchefwatson.com/ visited 13th March 2016.

  11. 11.

    http://arstechnica.com/gadgets/2016/04/how-would-you-feel-if-a-robot-asked-you-to-touch-its-buttocks/.

  12. 12.

    http://ana.blogs.com/maestros/2006/11/data_is_the_new.html.

References

  1. V. Abramova, J. Bernardino, P. Furtado, Which nosql database? a performance overview. Open J. Databases (OJDB) 1(2), 17–24 (2014)

    Google Scholar 

  2. C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns, Buildings, Construction, vol. 2 (Oxford University Press, Oxford, 1977)

    Google Scholar 

  3. S.Z. Arshad, J. Zhou, C. Bridon, F. Chen, Y. Wang, Investigating user confidence for uncertainty presentation in predictive decision making (2015)

    Google Scholar 

  4. E.R. Babbie, The Practice of Social Research, vol. 112 (Wadsworth publishing company Belmont, CA, 1998)

    Google Scholar 

  5. A. Bangor, P. Kortum, J. Miller, Determining what individual sus scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

    Google Scholar 

  6. D. Baur, S. Borin, A. Butz, Rush: repeated recommendations on mobile devices, in Proceedings of the 15th international conference on Intelligent user interfaces (ACM, 2010), pp. 91–100

    Google Scholar 

  7. I. Behoora, C.S. Tucker, Machine learning classification of design team members’ body language patterns for real time emotional state detection. Design Stud. 39, 100–127 (2015)

    Article  Google Scholar 

  8. H.R. Bernard, Social research methods: Qualitative and quantitative approaches (Sage, 2012)

    Google Scholar 

  9. A. Bernstein, F. Provost, S. Hill, Toward intelligent assistance for a data mining process: an ontology-based approach for cost-sensitive classification. IEEE Trans. Knowl. Data Eng. 17(4), 503–518 (2005)

    Article  Google Scholar 

  10. J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps (1983)

    Google Scholar 

  11. L. Blaxter, How to Research (McGraw-Hill Education, New York, 2010)

    Google Scholar 

  12. J. Brooke, Sus-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  13. A. Bryman, Social Research Methods (Oxford University Press, Great Britain, 2008)

    Google Scholar 

  14. B.G. Buchanan, E.H. Shortliffe, Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project (The Addison-Wesley Series in Artificial Intelligence) (Addison-Wesley Longman Publishing Co. Inc, Boston, MA, USA, 1984)

    Google Scholar 

  15. F. Buttussi, L. Chittaro, D. Nadalutti, Bringing mobile guides and fitness activities together: a solution based on an embodied virtual trainer, in Proceedings of the 8th conference on Human-computer interaction with mobile devices and services (ACM, 2006), pp. 29–36

    Google Scholar 

  16. S.K. Card, J.D. Mackinlay, B. Shneiderman. Readings in Information Visualization: Using Vision to Think (Morgan Kaufmann 1999)

    Google Scholar 

  17. J.M. Carroll, Five reasons for scenario-based design. Interact. Comput. 13(1), 43–60 (2000). doi:10.1016/S0953-5438(00)00023-0

    Article  Google Scholar 

  18. J.M. Carroll, HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science (Morgan Kaufmann, 2003)

    Google Scholar 

  19. A.R. Chatley, K.Dautenhahn, M.L. Walters, D.S. Syrdal, B. Christianson. Theatre as a discussion tool in human-robot interaction experiments - a pilot study, in Third International Conference on Advances in Computer-Human Interactions, ACHI ’10 (2010), pp. 73–78, scenarios theatre

    Google Scholar 

  20. J.W. Creswell Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Sage publications, 2013)

    Google Scholar 

  21. M. Daradkeh, Exploring the use of an information visualization tool for decision support under uncertainty and risk, in Proceedings of the The International Conference on Engineering & MIS (ACM, 2015), pp. 1–7

    Google Scholar 

  22. M. Dawe, Understanding mobile phone requirements for young adults with cognitive disabilities, in Proceedings of the 9th international ACM SIGACCESS conference on Computers and accessibility (ACM, 2007), pp. 179–186

    Google Scholar 

  23. E. De Kock, J. Van Biljon, M. Pretorius, Usability evaluation methods: mind the gaps, in Proceedings of the 2009 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists (ACM, 2009), pp. 122–131

    Google Scholar 

  24. P.B.C. de Miranda, R.B.C. Prudêncio, A.C.P.L.F. Carvalho, C. Soares, A hybrid meta-learning architecture for multi-objective optimization of SVM parameters. Neurocomputing 143, 27–43 (2014)

    Article  Google Scholar 

  25. N.K. Denzin, Y.S. Lincoln, Handbook of Qualitative Research (Sage Publications Inc, 1994)

    Google Scholar 

  26. F.X. Diebold, A personal perspective on the origin (s) and development of’big data’: the phenomenon, the term, and the discipline, second version (2012)

    Google Scholar 

  27. S.P. Dow, M. Mehta, B. MacIntyre, M. Mateas, Eliza meets the wizard-of-oz: blending machine and human control of embodied characters, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2010), pp. 547–556

    Google Scholar 

  28. H.B.L. Duh, G.C.B. Tan, V.H. Chen, Usability evaluation for mobile device: a comparison of laboratory and field tests, in Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services (ACM, 2006), pp. 181–186

    Google Scholar 

  29. L. Emanuel, J. Fischer, W. Ju, S. Savage, Innovations in autonomous systems: Challenges and opportunities for human-agent collaboration, in Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion (ACM, 2016), pp. 193–196

    Google Scholar 

  30. T. Erikson, H. Simon, Protocol analysis: Verbal reports as data. Technical report (MIT Press, 1985)

    Google Scholar 

  31. W. Fan, A. Bifet, Mining big data: current status, and forecast to the future. SIGKDD Explor. Newsl. 14(2), 1–5 (2013)

    Article  Google Scholar 

  32. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, Advances in knowledge discovery and data mining. Chapter From Data Mining to Knowledge Discovery: An Overview (American Association for Artificial Intelligence, Menlo Park, CA, USA, 1996), pp. 1–34

    Google Scholar 

  33. D. Ferrucci, A. Lally, Building an example application with the unstructured information management architecture. IBM Syst. J. 43(3), 455–475 (2004)

    Article  Google Scholar 

  34. D.A. Ferrucci, Introduction to this is watson. IBM J. Res. Dev. 56(3.4), 1:1–1:15 (2012)

    Article  Google Scholar 

  35. K. Forbes-Riley, D. Litman, Designing and evaluating a wizarded uncertainty-adaptive spoken dialogue tutoring system. Comput. Speech Lang. 25(1), 105–126 (2011)

    Article  Google Scholar 

  36. W. Gibson, Neuromancer: Roman. (Heyne, 1992)

    Google Scholar 

  37. B.G. Glaser, A. Strauss, Discovery of Grounded Theory (Aldine, London, 1967)

    Google Scholar 

  38. J.P. Goetz, M.D. Lecompte, Ethnography and Qualitative Design in Educational Research (Academic Press, Orlando, Fl, 1984)

    Google Scholar 

  39. R.L. Gold, Roles in sociological fieldwork. Soc. Forces 36, 217–223 (1958)

    Article  Google Scholar 

  40. J. Goodman, S. Brewster, P. Gray, Using field experiments to evaluate mobile guides, in Proceedings of HCI in Mobile Guides, workshop at Mobile HCI, vol. 2004 (Citeseer, 2004)

    Google Scholar 

  41. A. Graves, G. Wayne, I. Danihelka, Neural turing machines. CoRR. arXiv:1410.5401 (2014)

  42. T.D. Huynh, N.R. Jennings, N.R. Shadbolt, An integrated trust and reputation model for open multi-agent systems. Auton. Agents and Multi-Agent Syst. 13(2), 119–154 (2006)

    Article  Google Scholar 

  43. G. Iacucci, K. Kuutti, R. Mervi, On the move with a magic thing: role playing in concept design of mobile services and devices, in Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (ACM, 2000), pp. 193–202 347715 193-202

    Google Scholar 

  44. H.V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J.M. Patel, R. Ramakrishnan, C. Shahabi, Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)

    Article  Google Scholar 

  45. R. Jeffries, J.R. Miller, C. Wharton, K. Uyeda, User interface evaluation in the real world: a comparison of four techniques, in Proceedings of the SIGCHI conference on Human factors in computing systems (ACM, 2013), pp. 119–124

    Google Scholar 

  46. M. Jones, G. Marsden, Mobile Interaction Design (Wiley, Glasgow, 2006)

    Google Scholar 

  47. J. Joo, Adoption of semantic web from the perspective of technology innovation: a grounded theory approach. Int. J. Hum. - Comput. Stud. 69(3), 139–154 (2011)

    Article  Google Scholar 

  48. A.K. Karun, K. Chitharanjan, A review on hadoop - hdfs infrastructure extensions, in 2013 IEEE Conference on Information Communication Technologies (ICT) (2013), pp. 132–137

    Google Scholar 

  49. J.E. Kelly, S. Hamm, Smart Machines: IBM’s Watson and the Era of Cognitive Computing (Columbia University Press, New York, NY, USA, 2013)

    Book  Google Scholar 

  50. J.O. Kephart, J. Lenchner, A symbiotic cognitive computing perspective on autonomic computing, in 2015 IEEE International Conference on Autonomic Computing (ICAC) (2015), pp. 109–114

    Google Scholar 

  51. C. Lampe, B. Bauer, H. Evans, D. Robson, T. Lau, L. Takayama, Robots as cooperative partners... we hope.., in Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion (ACM, 2016), pp. 188–192

    Google Scholar 

  52. D. Laney, 3D data management: Controlling data volume, velocity, and variety (Technical report, META Group, 2001)

    Google Scholar 

  53. C. Lewis, P. G. Polson, C. Wharton, J. Rieman, Testing a walkthrough methodology for theory-based design of walk-up-and-use interfaces, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’90 (ACM, New York, NY, USA, 1990), pp. 235–242

    Google Scholar 

  54. M. Li, J. Mao, Hedonic or utilitarian? exploring the impact of communication style alignment on user’s perception of virtual health advisory services. Int. J. Inf. Manag. 35(2), 229–243 (2015)

    Article  Google Scholar 

  55. L. Liu, Q. Zhou, J. Liu, Z. Cao, Requirements cybernetics: Elicitation based on user behavioral data. J. Syst. Softw. (2015)

    Google Scholar 

  56. S. Love, Understanding Mobile Human-Computer Interaction (Elsevier, Oxford, 2005)

    Google Scholar 

  57. J. Lundberg, R. Gustavsson, Challenges and opportunities of sensor based user empowerment, in 2011 IEEE International Conference on Networking, Sensing and Control (ICNSC) (2011), pp. 463–468

    Google Scholar 

  58. J. Manson, Qualitative Researching (Sage Publications, Great Britain, 2002)

    Google Scholar 

  59. C. Marshall, G.B. Rossman, Designing Qualitative Research (Sage, 2011)

    Google Scholar 

  60. M. Matlin, Cognitive Psychology (Wiley, 2009)

    Google Scholar 

  61. M.C. McCord, J.W. Murdock, B.K. Boguraev, Deep parsing in watson. IBM J. Res. Dev. 56(3.4), 3:1–3:15 (2012)

    Article  Google Scholar 

  62. X. Meng, J.K. Bradley, B. Yavuz, E.R. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.B. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M.J. Franklin, R. Zadeh, M. Zaharia, A. Talwalkar. Mllib: Machine learning in apache spark. CoRR. arXiv:1505.06807 (2015)

  63. J. Messeter, M. Johansson, Place-specific computing: conceptual design cases from urban contexts in four countries, in Proceedings of the 7th ACM conference on Designing interactive systems (ACM, 2008), pp. 99–108

    Google Scholar 

  64. J. Mowat, Cognitive walkthroughs: where they came from, what they have become, and their application to epss design. The Herridge Group Inc (2002)

    Google Scholar 

  65. W. Naheman, J. Wei, Review of nosql databases and performance testing on hbase, in Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC) (2013), pp. 2304–2309

    Google Scholar 

  66. J. Nielsen, R. Mack, Usability Inspection Methods (Wiley, 1994)

    Google Scholar 

  67. N. O’Leary, Ogilvy & mather and big blue - a new york agency gives ibm a fresh new look. Commun. Arts Mag. 41(8), 98–107 (2000)

    Google Scholar 

  68. J. Paay, J. Kjeldskov, Understanding and modelling built environments for mobile guide interface design. Behav. Inf. Technol. 24(1), 21–35 (2005)

    Article  Google Scholar 

  69. J. Paay, J. Kjeldskov, S. Howard, B. Dave, Out on the town: a socio-physical approach to the design of a context-aware urban guide. ACM Trans. Comput.-Hum. Interact. (TOCHI) 16(2), 7 (2009)

    Article  Google Scholar 

  70. R.W. Picard, Affective Computing (MIT Press, Cambridge, MA, USA, 1997)

    Book  Google Scholar 

  71. I. Polato, R.R.A. Goldman, F. Kon, A comprehensive view of hadoop researcha systematic literature review. J. Netw. Comput. Appl. 46, 1–25 (2014)

    Google Scholar 

  72. P.G. Polson, C. Lewis, J. Rieman, C. Wharton, Cognitive walkthroughs: a method for theory-based evaluation of user interfaces. Int. J. Man-Mach. Stud. 36(5), 741–773 (1992)

    Article  Google Scholar 

  73. A. Pommeranz, J. Broekens, P. Wiggers, W.-P. Brinkman, C.M. Jonker, Designing interfaces for explicit preference elicitation: a user-centered investigation of preference representation and elicitation process. User Model. User - Adap.Interact. 22(4–5), 357 (2012)

    Article  Google Scholar 

  74. J.R. Preece, Y. Rogers, Sharp (2002): Interaction Design: Beyond Human-Computer Interaction (Wiley, Answers. com Technology, Crawfordsville, 2007)

    Google Scholar 

  75. D.G. Rees, Essential Statistics, vol. 50 (CRC Press, Boca Raton, 2000)

    MATH  Google Scholar 

  76. S.C. Reid, S.D. Kauer, P. Dudgeon, L.A. Sanci, L.A. Shrier, G.C. Patton, A mobile phone program to track young peoples experiences of mood, stress and coping. Soc. Psych. Psych. Epidemiol. 44(6), 501–507 (2009)

    Article  Google Scholar 

  77. V. Rieser, O. Lemon, S. Keizer, Natural language generation as incremental planning under uncertainty: adaptive information presentation for statistical dialogue systems. IEEE/ACM Trans. Audio, Speech Lang. Process. 22(5), 979–994 (2014)

    Article  Google Scholar 

  78. J. Robertson, S. Robertson, Volere requirements specification template. Atlantic System Guild. www.systemguild.com (2000)

  79. B. Robins, E. Ferrari, K. Dautenhahn, G. Kronreif, B. Prazak-Aram, G.-J. Gelderblom, B. Tanja, F. Caprino, E. Laudanna, P. Marti, *human-centred design methods: developing scenarios for robot assisted play informed by user panels and field trials. Int. J. Hum.-Comput. Stud. 68(12), 873–898 (2010)

    Article  Google Scholar 

  80. A.L.D. Rossi, A.C.P. de Leon, Ferreira de Carvalho, C. Soares, B.F. de Souza, Metastream: a meta-learning based method for periodic algorithm selection in time-changing data. Neurocomputing 127, 52–64 (2014)

    Google Scholar 

  81. G.B. Rossman, S.F. Rallis, Learning in the Field: An introduction to Qualitative Research (Sage, 2003)

    Google Scholar 

  82. A. Rubin, Statistics for Evidence-Based Practice and Evaluation (Cengage Learning, 2012)

    Google Scholar 

  83. S. Sagiroglu, D. Sinanc, Big data: a review, in 2013 International Conference on Collaboration Technologies and Systems (CTS) (2013), pp. 42–47

    Google Scholar 

  84. J. Sauer, A. Sonderegger, The influence of prototype fidelity and aesthetics of design in usability tests: effects on user behaviour, subjective evaluation and emotion. Appl. Ergon. 40(4), 670–677 (2009)

    Article  Google Scholar 

  85. J. Schindler, Profiling and analyzing the i/o performance of nosql dbs. SIGMETRICS Perform. Eval. Rev. 41(1), 389–390 (2013)

    Article  Google Scholar 

  86. B. Schneiderman, C. Plaisant, Designing the User Interface: Strategies for Effective Human-Computer Interaction (Pearson higher education, USA, 2010)

    Google Scholar 

  87. A.G. Shoro, T.R. Soomro, Big data analysis: apache spark perspective. Global J. Comput. Sci. Technol. 15(1) (2015)

    Google Scholar 

  88. E.H. Shortliffe, B.G. Buchanan, A model of inexact reasoning in medicine. Math. Biosci. 23, 351–379 (1975)

    Article  MathSciNet  Google Scholar 

  89. D. Sirkin, B. Mok, S. Yang, W. Ju, Oh, i love trash: personality of a robotic trash barrel, in Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion (ACM, 2016), pp. 102–105

    Google Scholar 

  90. R. Spencer, Information Visualization, vol. 1. (Springer, 2001)

    Google Scholar 

  91. A. Steinfeld, O.C. Jenkins, B. Scassellati, The oz of wizard: simulating the human for interaction research, in 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (IEEE, 2009), pp. 101–107

    Google Scholar 

  92. M. Strait, L. Vujovic, V. Floerke, M. Scheutz, H. Urry, Too much humanness for human-robot interaction: exposure to highly humanlike robots elicits aversive responding in observers, in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (ACM, 2015), pp. 3593–3602

    Google Scholar 

  93. J.R. Thomas, S. Silverman, J. Nelson, Research Methods in Physical Activity, 7E (Human Kinetics, 2015)

    Google Scholar 

  94. E.R. Tufte, Envisioning information. Optom. Vis. Sci. 68(4), 322–324 (1991)

    Article  Google Scholar 

  95. T. Tullis, B. Albert, Measuring the user experience: Collecting, Analysing, and Presenting Usability Metrics (2008)

    Google Scholar 

  96. F.B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, M. McKeon, Manyeyes: a site for visualization at internet scale. IEEE Trans. Vis. Comput. Gr. 13(6), 1121–1128 (2007)

    Article  Google Scholar 

  97. A.S. Vivacqua, A.C.B. Garcia, A. Gomes, Boo: behavior-oriented ontology to describe participant dynamics in collocated design meetings. Expert Syst. Appl. 38(2), 1139–1147 (2011). Knowledge acquisition meetings to create domain representations

    Article  Google Scholar 

  98. N. Walliman, Social Research Methods (Sage, 2006)

    Google Scholar 

  99. T. Walsh, P. Nurkka, T. Koponen, J. Varsaluoma, S. Kujala, S. Belt. Collecting cross-cultural user data with internationalized storyboard survey, in Proceedings of the 23rd Australian Computer-Human Interaction Conference (ACM, 2011), pp. 301–310

    Google Scholar 

  100. C. Ware, Information Visualization: Perception for Design (Elsevier, 2012)

    Google Scholar 

  101. F. Weber, C. Haering, R. Thomaschke, Improving the human computer dialogue with increased temporal predictability. Hum. Factors: J. Hum. Factors Ergonom. Soc. 55(5), 881–892 (2013)

    Article  Google Scholar 

  102. C.R. Wilkinson, A. De Angeli, Applying user centred and participatory design approaches to commercial product development. Des. Stud. 35(6), 614–631 (2014)

    Article  Google Scholar 

  103. D. Wixon, Qualitative research methods in design and development. Interactions 2(4), 19–26 (1995)

    Article  Google Scholar 

  104. H. Yang, Y. Li, M.X. Zhou, Understand users comprehension and preferences for composing information visualizations. ACM Trans. Comput.-Hum. Interact.(TOCHI) 21(1), 6 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Appel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Appel, A.P., Candello, H., Gandour, F.L. (2017). Cognitive Computing: Where Big Data Is Driving Us. In: Zomaya, A., Sakr, S. (eds) Handbook of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-49340-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49340-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49339-8

  • Online ISBN: 978-3-319-49340-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics