Advertisement

Wireless Data Communication

  • Gürkan YılmazEmail author
  • Catherine Dehollain
Chapter
  • 972 Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

Risk factors associated with the transcutaneous wires employed for data transmission can be reduced by means of wireless data communication between external base station and the implant unit. It is worth noting that bidirectional communication is indispensable for the majority of the neural monitoring applications. For the sake of definition used throughout this book, transferring data from the external base station to the implant is called downlink, while data transmission in the reverse direction is called uplink communication. Downlink communication is commonly utilized to reprogram the implant chip. Possible benefits of using a configurable implant chip can be enlisted as choosing the recording channels, modification of sampling parameters, and parameters associated with data compression or signal processing. Uplink communication, on the other hand, carries the processed information acquired by the MEAs. Moreover, it may contain additional information related to power feedback to ensure maximum power transfer efficiency all the time. Note that the number of recording channels directly affects the power demand of the implant; therefore, the transmitted power should be arranged accordingly to minimize power dissipation in the implant. Possible schemes to realize bidirectional communication is to use a half-duplex communication on a single channel with the help of a multiplexing method or to realize full-duplex communication. Considering the current requirements of the neural implant applications, half-duplex communication which allows communication in only one direction instantaneously is sufficient. However, this does not imply that power and data transfer should be performed at a single frequency. Depending on the data rate requirements, for instance in the case of multi-unit activity recording, a second frequency could be utilized to increase the data rate and allow full-duplex communication.

Keywords

Modulator Demodulator Transmitter Receiver Loop antenna Capacitive detuning Quality factor VCO 

References

  1. 1.
    G. Wang, W. Liu, M. Sivaprakasam, G.A. Kendir, Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans. Circ. Syst. I Regular Pap. 52, 2109–2117 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Karimi, A.M. Sodagar, M.E. Mofrad, P. Amiri, Auxiliary-carrier load-shift keying for reverse data telemetry from biomedical implants, in 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS) (2012), pp. 220–223Google Scholar
  3. 3.
    Z. Tang, B. Smith, J.H. Schild, P.H. Peckham, Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 42(5), 524–528 (1995)CrossRefGoogle Scholar
  4. 4.
    S. Sonkusale, Z. Luo, A complete data and power telemetry system utilizing bpsk and lsk signaling for biomedical implants, in 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008. EMBS 2008 (2008), pp. 3216–3219Google Scholar
  5. 5.
    G. Yilmaz, C. Dehollain, Capacitive detuning optimization for wireless uplink communication in neural implants, in 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI) (2013), pp. 45–50Google Scholar
  6. 6.
    G. Yilmaz, O. Atasoy, C. Dehollain, Wireless energy and data transfer for in-vivo epileptic focus localization. Sensors J. IEEE 13(11), 4172–4179 (2013). NovCrossRefGoogle Scholar
  7. 7.
    A. Tekin, M.R. Yuce, W, Liu. Integrated vco design for mics transceivers, in Custom Integrated Circuits Conference, 2006. CICC’06. IEEE (2006), pp. 765–768Google Scholar
  8. 8.
    F. Goodarzy, E. Skafidas, A fully integrated 200 x00b5;w, 40pj/b wireless transmitter for implanted medical devices and neural prostheses, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013), pp. 3246–3249Google Scholar
  9. 9.
    J.L. Bohorquez, A.P. Chandrakasan, J.L. Dawson, A 350 \(\mu \)w cmos msk transmitter and 400 \(\mu \)w ook super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circ. 44(4), 1248–1259 (2009). AprilCrossRefGoogle Scholar
  10. 10.
    M. Anis, M. Ortmanns, N. Wehn, Fully integrated uwb impulse transmitter and 402-to-405mhz super-regenerative receiver for medical implant devices, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010), pp. 1213–1215Google Scholar
  11. 11.
    G. Yilmaz, C. Dehollain, Single frequency wireless power transfer and full-duplex communication system for intracranial epilepsy monitoring, in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (2014)Google Scholar
  12. 12.
    G. Yilmaz, C. Dehollain, An implantable system for intracranial neural recording applications, in Biomedical Circuits and Systems Conference, 2014. BioCAS 2014. IEEE (2014)Google Scholar
  13. 13.
    G. Yilmaz, C. Dehollain, Wireless energy and data transfer for neural recording and stimulation applications, in 2013 9th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2013), pp. 209–212Google Scholar
  14. 14.
    S. Mandal, R. Sarpeshkar, Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circ. Syst. 2(4), 301–315 (2008)CrossRefGoogle Scholar
  15. 15.
    P.V. Nikitin, K.V.S. Rao, Theory and measurement of backscattering from rfid tags. IEEE Antennas Propag. Mag. 48(6), 212–218 (2006)CrossRefGoogle Scholar
  16. 16.
    K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. (Wiley, New York, 2003)CrossRefGoogle Scholar
  17. 17.
    J. Pandey, B.P. Otis, A sub-100 \(\mu \)w mics/ism band transmitter based on injection-locking and frequency multiplication. IEEE J. Solid-State Circ. 46(5), 1049–1058 (2011)CrossRefGoogle Scholar
  18. 18.
    C. Sauer, M. Stanacevic, G. Cauwenberghs, N. Thakor, Power harvesting and telemetry in cmos for implanted devices, in 2004 IEEE International Workshop on Biomedical Circuits and Systems (2004), pp. S1/8–S1–4Google Scholar
  19. 19.
    P. Vaillancourt, A Djemouai, J.-F. Harvey, and M. Sawan. Em radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1997, vol. 6 (1997), pp. 2499–2502Google Scholar
  20. 20.
    G. Yilmaz, C. Dehollain, Single frequency wireless power transfer and full-duplex communication system for intracranial epilepsy monitoring. Microelectron. J. 45, 1595–1602 (2014)CrossRefGoogle Scholar
  21. 21.
    C.-C. Wang, C.-L. Chen, R.-C. Kuo, D. Shmilovitz, Self-sampled all-mos ask demodulator for lower ism band applications. IEEE Trans. Circ. Syst. II Express Briefs 57(4), 265–269 (2010)CrossRefGoogle Scholar
  22. 22.
    I.M. Filanovsky, H. Baltes, Cmos schmitt trigger design. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 41(1), 46–49 (1994)CrossRefGoogle Scholar
  23. 23.
    G. Yilmaz, O. Atasoy, C. Dehollain, Wireless data and power transmission aiming intracranial epilepsy monitoring, vol. 8765 (2013), pp. 87650D–87650D–8Google Scholar
  24. 24.
    J. Kim, K. Pedrotti, 202pj/bit area-efficient ask demodulator for high-density visual prostheses. Electron. Lett. 48(9), 477–479 (2012)CrossRefGoogle Scholar
  25. 25.
    B. Chi, J. Yao, P. Chiang, Z. Wang, A fast-settling wideband-if ask baseband circuit for a wireless endoscope capsule. IEEE Trans. Circ. Syst. II Express Briefs 56(4), 275–279 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    C.-C. Wang, T.-J. Lee, Y.-T. Hsiao, U. Fat Chio, C.-C. Huang, J.-J.J. Chin, Y.-H. Hsueh, A multiparameter implantable microstimulator soc. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(12), 1399–1402 (2005)CrossRefGoogle Scholar
  27. 27.
    C.-S.A. Gong, M.-T. Shiue, K.-W. Yao, T.-Y. Chen, Y. Chang, C.-H. Su, A truly low-cost high-efficiency ask demodulator based on self-sampling scheme for bioimplantable applications. IEEE Trans. Circ. Syst. I Regular Pap. 55(6), 1464–1477 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    T.-J. Lee, C.-L. Lee, Y.-J. Ciou, C.-C. Huang, C.-C. Wang, All-mos ask demodulator for low-frequency applications. IEEE Trans. Circ. Syst. II Express Briefs 55(5), 474–478 (2008)CrossRefGoogle Scholar
  29. 29.
    Y. Yueh-Hua, Y.-J. Lee, Y.-H. Li, C.-H. Kuo, C.-H. Li, Y.-J. Hsieh, C.-T. Liu, Y.-J.E. Chen, An ltps tft demodulator for rfid tags embeddable on panel displays. IEEE Trans. Microw. Theory Techn. 57(5), 1356–1361 (2009)CrossRefGoogle Scholar
  30. 30.
    B. Chi, J. Yao, S. Han, X. Xie, G. Li, Z. Wang, Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications. IEEE Trans. Biomed. Eng. 54(7), 1291–1299 (2007)CrossRefGoogle Scholar
  31. 31.
    C.-H. Hsu, S.-B. Tseng, Y.-J. Hsieh, C.-C. Wang, One-time-implantable spinal cord stimulation system prototype. IEEE Trans. Biomed. Circ. Syst. 5(5), 490–498 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Hajimiri, T.H. Lee, Design issues in cmos differential lc oscillators. IEEE J. Solid-State Circ. 34(5), 717–724 (1999)CrossRefGoogle Scholar
  33. 33.
    K. Fujimoto, J.R. James, Mobile Antenna Systems Handbook (Artech House, Norwood, 2001)Google Scholar
  34. 34.
    Electrically Small. Basic principles of electrically small antennas by gary breed editorial director (2007)Google Scholar
  35. 35.
    G.S. Smith, Proximity effect in systems of parallel conductors. J. Appl. Phys. 43(5), 2196–2203 (1972)CrossRefGoogle Scholar
  36. 36.
    G.S. Smith, Radiation efficiency of electrically small multiturn loop antennas. IEEE Trans. Antennas Propag. 20(5), 656–657 (1972)CrossRefGoogle Scholar
  37. 37.
    J.-T. Schantz, T.-C. Lim, C. Ning, S.H. Teoh, K.C. Tan, S.C. Wang, D.W. Hutmacher, Cranioplasty after trephination using a novel biodegradable burr hole cover: technical case report. Neurosurgery, 58(1 Suppl):ONS–E176; discussion ONS–E176, February 2006Google Scholar
  38. 38.
    P.D. Bradley, An ultra low power, high performance medical implant communication system (mics) transceiver for implantable devices, in Biomedical Circuits and Systems Conference, 2006. BioCAS 2006. IEEE (2006), pp. 158–161Google Scholar
  39. 39.
    J. Bae, N. Cho, H.-J. Yoo, A 490uw fully mics compatible fsk transceiver for implantable devices, in 2009 Symposium on VLSI Circuits (2009), pp. 36–37Google Scholar
  40. 40.
    J.L. Bohorquez, A.P. Chandrakasan, J.L. Dawson, A 350 \(\mu \) w cmos msk transmitter and 400 \(\mu \) w ook super-regenerative receiver for medical implant communications. IEEE J. Solid-State Circ. 44(4), 1248–1259 (2009)CrossRefGoogle Scholar
  41. 41.
    S. Rai, J. Holleman, J.N. Pandey, F. Zhang, B. Otis, A 500 \(\mu \)w neural tag with 2 \(\mu \) vrms afe and frequency-multiplying mics/ism fsk transmitter, in IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009 (2009), pp. 212–213, 213aGoogle Scholar
  42. 42.
    K.-C. Liao, P.-S. Huang, W.-H. Chiu, T.-H. Lin, A 400-mhz/900-mhz/2.4-ghz multi-band fsk transmitter in 0.18- \(\mu \)m cmos, in IEEE Asian Solid-State Circuits Conference, 2009. A-SSCC 2009 (2009), pp. 353–356Google Scholar
  43. 43.
    Analog Devices, Inc. Low cost, dc to 500 mhz, 92 db logarithmic amplifier, http://www.analog.com/static/imported-files/data_sheets/AD8307.pdf
  44. 44.
    Mini-Circuits. Coaxial frequency mixer, http://217.34.103.131/pdfs/ZX05-10L.pdf
  45. 45.
    Analog Devices, Inc. Rail-to-rail, very fast, 2.5 v to 5.5 v, single-supply ttl/cmos comparators, http://www.analog.com/static/imported-files/data_sheets/ADCMP600_601_602.pdf

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.EPFL RFIC Research GroupLausanneSwitzerland

Personalised recommendations