Wireless Power Transfer

  • Gürkan YılmazEmail author
  • Catherine Dehollain
Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter introduces the fundamentals of wireless power transfer with an emphasis on implant powering . Firstly, an overview of implant powering solutions is introduced, and then, the decision of using wireless power transfer is justified. Next, among possible wireless power transfer methods, it is explained that why magnetic coupling befits the best for the target application and its specifications. In this book, a recent inductive link topology which employs 4 coils at resonance is employed in order to realize magnetic coupling . This approach has brought two main advantages: higher power transfer efficiency and less dependence of power transfer efficiency on load impedance. Detailed explanation of the 4-coil resonant inductive link is followed by the design of electronic circuits utilized to create a reliable power supply in the implant. This unit consists of an active half-wave rectifier and a low drop-out voltage regulator .


Rectifier Regulator Magnetic coupling Inductive link Coil design Implant powering Resonant PSRR Efficiency Coupling coefficient 


  1. 1.
    Massachusetts General Hospital, Brain electrodes for epilepsy surgery,
  2. 2.
    K. Murakawa, M. Kobayashi, O. Nakamura, S. Kawata, A wireless near-infrared energy system for medical implants. IEEE Eng. Med. Biol. Mag. 18(6), 70–72 (1999)CrossRefGoogle Scholar
  3. 3.
    K. Goto, T. Nakagawa, O. Nakamura, S. Kawata, An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng. 48(7), 830–833 (2001)Google Scholar
  4. 4.
    S.-N. Suzuki, T. Katane, H. Saotome, O. Saito, Electric power-generating system using magnetic coupling for deeply implanted medical electronic devices. IEEE Trans. Magn. 38(5), 3006–3008 (2002)Google Scholar
  5. 5.
    A.P. Sample, D.J. Yeager, P.S. Powledge, J.R. Smith, Design of a passively-powered, programmable sensing platform for UHF RFID systems, in IEEE International Conference on RFID, 2007 (2007), pp. 149–156Google Scholar
  6. 6.
    M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, S. Yamamoto, Micro thermoelectric modules and their application to wristwatches as an energy source, in Eighteenth International Conference on Thermoelectrics, 1999 (1999), pp. 301–307Google Scholar
  7. 7.
    R. Venkatasubramanian, C. Watkins, D. Stokes, J. Posthill, C. Caylor, Energy harvesting for electronics with thermoelectric devices using nanoscale materials, in IEEE International Electron Devices Meeting, 2007. IEDM 2007 (2007), pp. 367–370Google Scholar
  8. 8.
    M. Strasser, R. Aigner, C. Lauterbach, T.F. Sturm, M. Franosh, G. Wachutka, Micromachined CMOS thermoelectric generators as on-chip power supply, in 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 2003, vol. 1 (2003), pp. 45–48Google Scholar
  9. 9.
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486 (2008)CrossRefGoogle Scholar
  10. 10.
    P.P. Mercier, A.C. Lysaght, S. Bandyopadhyay, A.P. Chandrakasan, K.M. Stankovic, Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30(12), 1240–1243 (2012)Google Scholar
  11. 11.
    E.Y. Chow, C.-L. Yang, Y. Ouyang, A.L. Chlebowski, P.P. Irazoqui, W.J. Chappell, Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans. Antennas Propaga. 59(6), 2379–2387 (2011)Google Scholar
  12. 12.
    J.S. Ho, S. Kim, A.S.Y. Poon, Midfield wireless powering for implantable systems. Proc. IEEE 101(6), 1369–1378 (2013)Google Scholar
  13. 13.
    G. Yilmaz, O. Atasoy, C. Dehollain, Wireless energy and data transfer for in-vivo epileptic focus localization. IEEE Sens. J. 13(11), 4172–4179 (2013)CrossRefGoogle Scholar
  14. 14.
    C. Sauer, M. Stanacevic, G. Cauwenberghs, N. Thakor, Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circuits Syst. I: Regular Papers 52(12), 2605–2613 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Catrysse, B. Hermans, R. Puers, An inductive power system with integrated bi-directional data-transmission. Sens. Actuators A: Phys. 115(23), 221– 29 (2004) (The 17th European Conference on Solid-State Transducers)Google Scholar
  16. 16.
    F. Mazzilli, P.E. Thoppay, V. Praplan, C. Dehollain, Ultrasound energy harvesting system for deep implanted-medical-devices (IMDS), in 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (2012), pp. 2865–2868Google Scholar
  17. 17.
    K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T.I. Kamins, L. Galambos, R. Smith, J.S. Harris, A. Sher, D. Palanker, Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6(12), 872–872 (2012)Google Scholar
  18. 18.
    P. Vaillancourt, A Djemouai, J.-F. Harvey, M. Sawan, EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1997, vol. 6 (1997), pp. 2499–2502Google Scholar
  19. 19.
    E.G. Kilinc, F. Maloberti, C. Dehollain, Short-range remote powering for long-term implanted sensor systems in freely moving small animals, in SENSORS, 2013 IEEE (2013), pp. 1–4Google Scholar
  20. 20.
    K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. (Wiley, New York, 2003)CrossRefGoogle Scholar
  21. 21.
    A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Solja, Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86 (2007)Google Scholar
  22. 22.
    M. Kiani, U.-M. Jow, M. Ghovanloo, Design and optimization of a 3-coil inductive link for efficient wireless power transmission. IEEE Trans. Biomed. Circuits Syst. 5(6), 579–591 (2011)Google Scholar
  23. 23.
    K.M. Silay, C. Dehollain, M. Declercq, Improvement of power efficiency of inductive links for implantable devices, in Research in Microelectronics and Electronics, 2008. PRIME 2008. Ph.D. (2008), pp. 229–232Google Scholar
  24. 24.
    K.M. Silay, D. Dondi, L. Larcher, M. Declercq, L. Benini, Y. Leblebici, C. Dehollain, Load optimization of an inductive power link for remote powering of biomedical implants, in IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009 (2009), pp. 533–536Google Scholar
  25. 25.
    R.R. Harrison, Designing efficient inductive power links for implantable devices, in IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007 (2007), pp. 2080–2083Google Scholar
  26. 26.
    M. Ghovanloo, S. Atluri, A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers. IEEE Trans. Circuits Syst. I: Regular Papers 54(10), 2211–2221 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Kim, H. Kim, K.D. Pedrotti, Power-efficient inductive link optimization for implantable systems, in 2011 IEEE Radio and Wireless Symposium (RWS) (2011), pp. 418–421Google Scholar
  28. 28.
    U.-M. Jow, M. Ghovanloo, Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circuits Syst. 1(3), 193–202 (2007)Google Scholar
  29. 29.
    A.K. RamRakhyani, S. Mirabbasi, M. Chiao, Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 5(1), 48–63 (2011)Google Scholar
  30. 30.
    A.P. Sample, D.A Meyer, J.R. Smith, Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011)Google Scholar
  31. 31.
    G. Yilmaz, C. Dehollain, An efficient wireless power link for implanted biomedical devices via resonant inductive coupling, in 2012 IEEE Radio and Wireless Symposium (RWS) (2012), pp. 235–238Google Scholar
  32. 32.
    K.M. Silay, Remotely Powered Wireless Cortical Implants for Brain-Machine Interfaces. Ph.D. thesis, EPFLGoogle Scholar
  33. 33.
    S.S. Mohan, M. del Mar Hershenson, S.P. Boyd, T.H. Lee, Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits 34(10), 1419–1424 (1999)Google Scholar
  34. 34.
    G. Yilmaz, O. Atasoy, C. Dehollain, Wireless Data and Power Transmission Aiming Intracranial Epilepsy Monitoring, vol. 8765. (2013), pp. 87650D–87650D–8Google Scholar
  35. 35.
    G. Yilmaz, C. Dehollain, Single frequency wireless power transfer and full-duplex communication system for intracranial epilepsy monitoring. Microelectron. J. 45(12), 1595–1602 (2014)CrossRefGoogle Scholar
  36. 36.
    G. Yilmaz, C. Dehollain, A wireless power link for neural recording systems, in 2012 8th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2012), pp. 1–4Google Scholar
  37. 37.
    K.M. Silay, C. Dehollain, M. Declercq, Inductive power link for a wireless cortical implant with two-body packaging. IEEE Sens. J. 11(11), 2825–2833 (2011)CrossRefGoogle Scholar
  38. 38.
    P. Favrat, P. Deval, M.J. Declercq, A high-efficiency CMOS voltage doubler. IEEE J. Solid-State Circuits 33(3), 410–416 (1998)CrossRefGoogle Scholar
  39. 39.
    C.-L. Chen, K.-H. Chen, S.I. Liu, Efficiency-enhanced cmos rectifier for wireless telemetry. Electron. Lett. 43(18), 976–978 (2007)CrossRefGoogle Scholar
  40. 40.
    H. Chung, A. Radecki, N. Miura, H. Ishikuro, T. Kuroda. A 0.025–0.45 w 60 with 5-bit dual-frequency feedforward control for non-contact memory cards. IEEE J. Solid-State Circuits 47(10), 2496–2504 (2012)Google Scholar
  41. 41.
    Y.-H. Lam, W.-H. Ki, C.Y. Tsui, Integrated low-loss cmos active rectifier for wirelessly powered devices. IEEE Trans. Circuits Syst. II: Express Briefs 53(12), 1378–1382 (2006)Google Scholar
  42. 42.
    S. Guo, H. Lee, An efficiency-enhanced cmos rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants. IEEE J. Solid-State Circuits 44(6), 1796–1804 (2009)CrossRefGoogle Scholar
  43. 43.
    H.-M. Lee, M. Ghovanloo, An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans. Circuits Syst. I: Regular Papers 58(8), 1749–1760 (2011)Google Scholar
  44. 44.
    H.-K. Cha, W.-T. Park, M. Je, A cmos rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications. IEEE Trans. Circuits Syst. II: Express Briefs 59(7), 409–413 (2012)CrossRefGoogle Scholar
  45. 45.
    S.S. Hashemi, M. Sawan, Y. Savaria, A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. IEEE Trans. Biomed. Circuits Syst. 6(4), 326–335 (2012)CrossRefGoogle Scholar
  46. 46.
    Y. Lu, W.-H. Ki, A 13.56 MHZ CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems. IEEE Trans. Biomed. Circuits Systems 8(3), 334–344 (2014)Google Scholar
  47. 47.
    K.M. Silay, C. Dehollain, M. Declercq, Numerical analysis of temperature elevation in the head due to power dissipation in a cortical implant, in 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008. EMBS 2008 (2008), pp. 951–956Google Scholar
  48. 48.
    A.M. Sodagar, K. Najafi, Extremely-wide-range supply-independent CMOS voltage references for telemetry-powering applications. Analog Integr. Circuits Signal Process. 46(3), 253–261 (2006)Google Scholar
  49. 49.
    F. Silveira, D. Flandre, P.G.A. Jespers, A gm/id based methodology for the design of cmos analog circuits and its application to the synthesis of a silicon-on-insulator micropower ota. IEEE J. Solid-State Circuits 31(9), 1314–1319 (1996)CrossRefGoogle Scholar
  50. 50.
    A. Ayed, H. Ghariani, M. Samet, Design and optimization of CMOS OTA with GMID methodology using EKV model for RF frequency synthesizer application, in 12th IEEE International Conference on Electronics, Circuits and Systems, 2005. ICECS 2005 (2005), pp. 1–5Google Scholar
  51. 51.
    C.C. Enz, F. Krummenacher, E.A. Vittoz, An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr Circuits Signal Process 8(1), 83–114 (1995)CrossRefGoogle Scholar
  52. 52.
    J. Guo, K. Nang Leung, A 6- \(\upmu \)w chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology. IEEE J. Solid-State Circuits 45(9), 1896–1905 (2010)Google Scholar
  53. 53.
    P. Hazucha, T. Karnik, B.A. Bloechel, C. Parsons, D. Finan, S. Borkar, Area-efficient linear regulator with ultra-fast load regulation. IEEE J. Solid-State Circuits 40(4), 933–940 (2005)CrossRefGoogle Scholar
  54. 54.
    R.J. Milliken, J. Silva-Martinez, E. Sanchez-Sinencio, Full on-chip CMOS low-dropout voltage regulator. IEEE Trans. Circuits Syst. I: Regular Papers 54(9), 1879–1890 (2007)CrossRefGoogle Scholar
  55. 55.
    E.N.Y. Ho, P.K.T. Mok, A capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application. IEEE Trans. Circuits Syst. II: Express Briefs 57(2), 80–84 (2010)CrossRefGoogle Scholar
  56. 56.
    P.Y. Or, K.N. Leung, An output-capacitorless low-dropout regulator with direct voltage-spike detection. IEEE J. Solid-State Circuits 45(2), 458–466 (2010)Google Scholar
  57. 57.
    Y.-S. Hwang, M.-S. Lin, B.-H. Hwang, J.-J. Chen. A 0.35 \(\times \) 03bc;m CMOS sub-1v low-quiescent-current low-dropout regulator, in IEEE Asian Solid-State Circuits Conference, 2008. A-SSCC ’08 (2008), pp. 153–156Google Scholar
  58. 58.
    C.-M. Chen, C.-C. Hung, A fast self-reacting capacitor-less low-dropout regulator, in 2011 Proceedings of the ESSCIRC (ESSCIRC) (2011), pp. 375–378Google Scholar
  59. 59.
    S.S. Chong, P.K. Chan, A 0.9-/spl mu/a quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS. IEEE Trans. Circuits Syst. I: Regular Papers 60(4), 1072–1081 (2013)Google Scholar
  60. 60.
    G. Yilmaz, C. Dehollain, Wireless energy and data transfer for neural recording and stimulation applications, in 2013 9th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2013), pp. 209–212Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.EPFL RFIC Research GroupLausanneSwitzerland

Personalised recommendations