Skip to main content

Evidence-Based Multi-disciplinary Robust Optimization for Mars Microentry Probe Design

  • Chapter
  • First Online:
EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII

Part of the book series: Studies in Computational Intelligence ((SCI,volume 662))

Abstract

Atmospheric pressure on Mars is approximately 1 % of that on Earth and varies about 15 % during the year due to condensation and sublimation of its primarily CO\(_2\) atmosphere. Impacts of the uncertainties during the entry are difficult to be modeled. The situation becomes more complex when uncertainties are from different disciplines. In this work, a robust multi-disciplinary optimization method for Mars microentry probe design under epistemic uncertainties is presented. Objectives of the evidence-based robust design are set to minimize the interior temperature of thermal protection systems (TPS) and maximize its belief value under uncertainties. A population-based multi-objective estimation of distribution algorithm (MOEDA) is designed for searching the robust Pareto set. Candidate solutions are adaptively clustered into groups. In each group, principal component analysis (PCA) technique is performed to estimate population distribution, sample and reproduce individuals. Non-dominated individuals are sorted and selected through the NSGA-II-like selection procedure. Adaptive sampling and binary branching techniques are employed for computing the evidence belief functions. PCA dimensionality reduction technique is implemented for identifying and removing uncertain boxes with little contribution of the beliefs. With variable fidelity model management, analytical aerodynamic model is used first to initialize the optimization searching direction. Artificial neural network (ANN) surrogate model is used for reducing the computational cost. When the optimization goes close to the optima, more data from the high accuracy model are put into the aerodynamic database, making the optimization procedure converge on optima quickly while keeping high-level accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, H., Renaud, J.E., Preston, E.L., Padmanabhan, D.: Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab. Eng. Syst. Saf. 85(1), 281–294 (2004)

    Google Scholar 

  2. Amar, A.J., Blackwell, B.F., Edwards, J.R.: One-dimensional ablation using a full newton’s method and finite control volume procedure. J. Thermophys. Heat Transf. 22(1), 71–82 (2008)

    Article  Google Scholar 

  3. Anderson, J.D.: Hypersonic and High Temperature Gas Dynamics. AIAA (2000)

    Google Scholar 

  4. Balesdent, M., Bérend, N., Dépincé, P.: Stagewise multidisciplinary design optimization formulation for optimal design of expendable launch vehicles. J. Spacecr. Rocket 49(4), 720–730 (2012)

    Article  Google Scholar 

  5. Cheng, Q.S., Bandler, J.W., Koziel, S.: Combining coarse and fine models for optimal design. IEEE Microw. Mag. 9(1), 79–88 (2008)

    Article  Google Scholar 

  6. Croisard, N., Vasile, M., Kemble, S., Radice, G.: Preliminary space mission design under uncertainty. Acta Astronaut. 66(5), 654–664 (2010)

    Article  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Deb, K., Gupta, S., Daum, D., Branke, J., Mall, A.K., Padmanabhan, D.: Reliability-based optimization using evolutionary algorithms. IEEE Trans. Evol. Comput. 13(5), 1054–1074 (2009)

    Article  Google Scholar 

  9. Desai, P.N., Knocke, P.C.: Mars exploration rovers entry, descent, and landing trajectory analysis. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 16–19 (2004)

    Google Scholar 

  10. Dufresne, S., Johnson, C., Mavris, D.N.: Variable fidelity conceptual design environment for revolutionary unmanned aerial vehicles. J. Aircr. 45(4), 1405–1418 (2008)

    Article  Google Scholar 

  11. Emmerich, M., Naujoks, B.: Metamodel-assisted multiobjective optimization with implicit constraints and its application in airfoil design. In: International Conference & Advanced Course ERCOFTAC, Athens, Greece (2004)

    Google Scholar 

  12. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Sci. 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hankey, W.L.: Re-entry Aerodynamics. AIAA (1988)

    Google Scholar 

  14. Hartleib, G.: Tpsx materials properties database. NASA, http://tpsx. arc. nasa. gov

    Google Scholar 

  15. Huang, C.H., Galuski, J., Bloebaum, C.L.: Multi-objective pareto concurrent subspace optimization for multidisciplinary design. AIAA J. 45(8), 1894–1906 (2007)

    Article  Google Scholar 

  16. Koziel, S., Ogurtsov, S.: Robust multi-fidelity simulation-driven design optimization of microwave structures. In: Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International, pp. 201–204. IEEE (2010)

    Google Scholar 

  17. Lantoine, G., Russell, R.P.: A hybrid differential dynamic programming algorithm for robust low-thrust optimization. In: AAS/AIAA Astrodynamics Specialist Conference and Exhibit (2008)

    Google Scholar 

  18. Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty. In: Evolutionary Multi-Criterion Optimization, pp. 413–427. Springer, New York (2005)

    Google Scholar 

  19. Mitcheltree, R., DiFulvio, M., Horvath, T., Braun, R.: Aerothermal heating predictions for mars microprobe. AIAA Paper (98-0170) (1998)

    Google Scholar 

  20. Mueller, J.B., Larsson, R.: Collision avoidance maneuver planning with robust optimization. In: International ESA Conference on Guidance, Navigation and Control Systems, Tralee, County Kerry, Ireland (2008)

    Google Scholar 

  21. Nguyen, N.V., Choi, S.M., Kim, W.S., Lee, J.W., Kim, S., Neufeld, D., Byun, Y.H.: Multidisciplinary unmanned combat air vehicle system design using multi-fidelity model. Aerospace Science and Technology (2012)

    Google Scholar 

  22. Oberkampf, W., Helton, J.C.: Investigation of evidence theory for engineering applications. In: Non-Deterministic Approaches Forum, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 2002–1569 (2002)

    Google Scholar 

  23. Ravanbakhsh, A., Mortazavi, M., Roshanian, J.: Multidisciplinary design optimization approach to conceptual design of a leo earth observation microsatellite. In: proceeding of AIAA SpaceOps2008 Conference (2008)

    Google Scholar 

  24. Roncoli, R.B., Ludwinski, J.M.: Mission design overview for the mars exploration rover mission. In: 2002 Astrodynamics Specialist Conference (2002)

    Google Scholar 

  25. Roshanian, J., Jodei, J., Mirshams, M., Ebrahimi, R., Mirzaee, M.: Multi-level of fidelity multi-disciplinary design optimization of small, solid-propellant launch vehicles. Trans. Jpn. Soc. Aeronaut. Space Sci. 53(180), 73–83 (2010)

    Article  Google Scholar 

  26. Saleh, J.H., Mark, G., Jordan, N.C.: Flexibility: a multi-disciplinary literature review and a research agenda for designing flexible engineering systems. J. Eng. Des. 20(3), 307–323 (2009)

    Article  Google Scholar 

  27. Vasile, M.: Robust mission design through evidence theory and multiagent collaborative search. Ann. New York Acad. Sci. 1065(1), 152–173 (2005)

    Article  Google Scholar 

  28. Vasile, M., Minisci, E., Wijnands, Q.: Approximated computation of belief functions for robust design optimization. In: 14th AAA on-Deterministic Approaches Conference (2012) arXiv:1207.3442

  29. Vinh, N.X., Busemann, A., Culp, R.D.: Hypersonic and Planetary Entry Flight Mechanics. NASA STI/Recon Technical Report A 81, 16,245 (1980)

    Google Scholar 

  30. Zhang, Q., Zhou, A., Jin, Y.: Rm-meda: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans. Evol. Comput. 12(1), 41–63 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hou, L., Cai, Y., Li, J. (2017). Evidence-Based Multi-disciplinary Robust Optimization for Mars Microentry Probe Design. In: Emmerich, M., Deutz, A., Schütze, O., Legrand, P., Tantar, E., Tantar, AA. (eds) EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII. Studies in Computational Intelligence, vol 662. Springer, Cham. https://doi.org/10.1007/978-3-319-49325-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49325-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49324-4

  • Online ISBN: 978-3-319-49325-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics