Advertisement

Background

  • Gökhan GülEmail author
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 414)

Abstract

This chapter provides background information for both robust and distributed detection, and this underpins the development of theory presented in subsequent chapters.

Keywords

Sensor Network Decision Rule Error Probability Fusion Center Fusion Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AVSA04]
    M. Alanyali, S. Venkatesh, O. Savas, and S. Aeron, Distributed Bayesian hypothesis testing in sensor networks, Proceedings of the American Control Conference 2004, vol. 6. pp. 5369–5374 2004.Google Scholar
  2. [CK92]
    M. Cherikh and P. B. Kantor, “Counterexamples in distributed detection,” IEEE Transactions on Information Theory, vol. 38, no. 1, pp. 162–165, 1992.CrossRefGoogle Scholar
  3. [Lev08]
    B. C. Levy, Principles of Signal Detection and Parameter Estimation, 1st ed. Springer Publishing Company, Incorporated, 2008.CrossRefGoogle Scholar
  4. [Neu28]
    J. V. Neumann, “Zur theorie der gesellschaftsspiele,” Mathematische Annalen, vol. 100, pp. 295–320, 1928.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Rud76]
    W. Rudin, Principles of Mathematical Analysis, ser. International series in pure and applied mathematics. Paris: McGraw-Hill, 1976.zbMATHGoogle Scholar
  6. [Shi49]
    M. Shiftman, “On the equality min max=max min, and the theory of games,” RAND Report, no. RM-243, 1949.Google Scholar
  7. [SZ11]
    F. Suratman and A. Zoubir, “Collaborative spectrum sensing in cognitive radio using hard decision combining with quality information,” in Statistical Signal Processing Workshop (SSP), 2011 IEEE, June 2011, pp. 377–380.Google Scholar
  8. [TVB87]
    S. Thomopoulos, R. Viswanathan, and D. Bougoulias, “Optimal decision fusion in multiple sensor systems,” Aerospace and Electronic Systems, IEEE Transactions on, vol. AES-23, no. 5, pp. 644–653, Sept 1987.Google Scholar
  9. [Tsi88]
    J. N. Tsitsiklis, “Decentralized detection by a large numb. of sensors,” Mathematics of Control, Signals, and Systems, pp. 167–182, 1988.Google Scholar
  10. [Tsi93]
    J. N. Tsitsiklis, “Decentralized detection,” in In Advances in Statistical Signal Processing. JAI Press, 1993, pp. 297–344.Google Scholar
  11. [TA85]
    J. Tsitsiklis and M. Athans, “On the complexity of decentralized decision making and detection problems,” Automatic Control, IEEE Transactions on, vol. 30, no. 5, pp. 440–446, May 1985.Google Scholar
  12. [Var96]
    P. K. Varshney, Distributed detection and data fusion, 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1996.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für Nachrichtentechnik, Fachbereich Elektro- und Informationstechnik (ETIT)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations