Acne Therapy

  • Gerd Plewig
  • Bodo Melnik
  • WenChieh Chen


This chapter provides a unifying model for acne therapy on the basis of transcriptomic regulation. Evidence from the literature will be presented that treatment-induced overexpression of the transcription factor p53, known as the guardian of the genome, is the critical effector of anti-acne therapies, which controls IGF-1 and androgen signaling, sebocyte homeostasis, and sebum production.



Adherence to our treatment recommendations will not ensure successful treatment in every situation. Our opinion for the treatment of acne should not be interpreted as setting a standard of care, but reflects our clinical and scientific experience in the pathogenesis and treatment of acne. The ultimate choice of specific therapies must be made by the physician in light of any circumstances presented by the individual patient and possible variations in the course of the disease. It is not the intention of this chapter to repeat acne treatment recommendations easily accessible such as European and US acne treatment guidelines.


Guidelines and Recent Reviews

  1. Gollnick HP, Bettoli V, Lambert J, et al. A consensus-based practical and daily guide for the treatment of acne patients. J Eur Acad Dermatol Venereol. 2016;30:1480–90.PubMedGoogle Scholar
  2. Moradi Tuchayi S, Makrantonaki E, Ganceviciene R, et al. Acne vulgaris. Nat Rev Dis Primers. 2015;1:15029.PubMedGoogle Scholar
  3. Sacchidanand SA, Lahiri K, Godse K, et al. Synchronizing pharmacotherapy in acne with review of clinical care. Indian J Dermatol. 2017;62:341–57.PubMedPubMedCentralGoogle Scholar
  4. Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74:945–973.e3.PubMedGoogle Scholar

p53 Reviews

  1. Alimirah F, Panchanathan R, Chen J, et al. Expression of androgen receptor is negatively regulated by p53. Neoplasia. 2007a;9:1152–9.PubMedPubMedCentralGoogle Scholar
  2. Ashur-Fabian O, Har-Zahav A, Shaish A, et al. apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle. 2010;9:3761–70.PubMedGoogle Scholar
  3. Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal. 2011;15:1679–90.PubMedPubMedCentralGoogle Scholar
  4. Feng Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol. 2010;2:a001057.PubMedPubMedCentralGoogle Scholar
  5. Feng Z, Hu W, de Stanchina E, et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 2007;67:3043–53.PubMedGoogle Scholar
  6. Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36:3943–56.PubMedPubMedCentralGoogle Scholar
  7. Flöter J, Kaymak I, Schulze A. Regulation of metabolic activity by p53. Metabolites. 2017;7. pii: E21.Google Scholar
  8. Goldstein I, Ezra O, Rivlin N, et al. p53, a novel regulator of lipid metabolism pathways. J Hepatol. 2012;56:656–62.PubMedGoogle Scholar
  9. Liu J, Zhang C, Zhao Y, Feng Z. MicroRNA control of p53. J Cell Biochem. 2017;118:7–14.PubMedGoogle Scholar
  10. Melnik BC. p53: key conductor of all anti-acne therapies. J Transl Med. 2017a;15:195.PubMedPubMedCentralGoogle Scholar
  11. Mrass P, Rendl M, Mildner M, et al. Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: a possible explanation for tumor preventive action of retinoids. Cancer Res. 2004;64:6542–8.PubMedGoogle Scholar
  12. Pappas K, Xu J, Zairis S, et al. p53 maintains baseline expression of multiple tumor suppressor genes. Mol Cancer Res. 2017;15:1051–62.PubMedPubMedCentralGoogle Scholar
  13. Wei CL, Wu Q, Vega VB, et al. A global map of p53 transcription-factor binding sites in the human genome. Cell. 2006;124:207–19.PubMedGoogle Scholar

Topical Retinoids

  1. Curtin JC, Dragnev KH, Sekula D, et al. Retinoic acid activates p53 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p53 transactivation function. Oncogene. 2001;20:2559–69.PubMedGoogle Scholar
  2. Humphries JD, Parry EJ, Watson RE, et al. All-trans retinoic acid compromises desmosome expression in human epidermis. Br J Dermatol. 1988;139:577–84.Google Scholar
  3. Kligman AM, Fulton JE Jr, Plewig G. Topical vitamin A acid in acne vulgaris. Arch Dermatol. 1969;99:469–76.PubMedGoogle Scholar
  4. Lee DD, Stojadinovic O, Krzyzanowska A, et al. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J Cell Physiol. 2009;220:427–39.PubMedPubMedCentralGoogle Scholar
  5. Maeda T. An electron microscopic study of experimentally-induced comedo and effects of vitamin A acid on comedo formation. J Dermatol. 1991;18:397–407.PubMedGoogle Scholar
  6. Plewig G, Wagner A, Nikolowski J, Landthaler M. Effects of two retinoids in animal experiments and after clinical application in acne patients: 13-cis-retinoic acid Ro 4-3780 and aromatic retinoid Ro 10-9359. In: Orfanos CE, et al., editors. Retinoids. Berlin: Springer; 1981.Google Scholar
  7. Regen F, Hildebrand M, Le Bret N, et al. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action? Exp Dermatol. 2015;24:473–6.PubMedGoogle Scholar
  8. Zheng P, Gendimenico GJ, Mezick JA, Kligman AM. Topical all-trans retinoic acid rapidly corrects the follicular abnormalities of the rhino mouse. An ultrastructural study. Acta Derm Venereol. 1993;73:97–101.PubMedGoogle Scholar
  9. Zuliani T, Khammari A, Chaussy H, et al. Ex vivo demonstration of a synergistic effect of Adapalene and benzoyl peroxide on inflammatory acne lesions. Exp Dermatol. 2011;20:850–3.PubMedGoogle Scholar

Benzoyl Peroxide and Hydrogen Peroxide

  1. Kircik LH. The role of benzoyl peroxide in the new treatment paradigm for acne. J Drugs Dermatol. 2013;12:s73–6.PubMedGoogle Scholar
  2. Muizzuddin N, Schnittger S, Maher W, et al. Enzymatically generated hydrogen peroxide reduces the number of acne lesions in acne vulgaris. J Cosmet Sci. 2013;64:1–8.PubMedGoogle Scholar
  3. Veraldi S, Micali G, Berardesca E, et al. Results of a multicenter, randomized, controlled trial of a hydrogen peroxide-based kit versus a benzoyl peroxide-based kit in mild-to-moderate acne. J Clin Aesthet Dermatol. 2016;9:50–4.PubMedPubMedCentralGoogle Scholar

Azelaic Acid

  1. Detmar M, Mayer-da-Silva A, Stadler R, Orfanos CE. Effects of azelaic acid on proliferation and ultrastructure of mouse keratinocytes in vitro. J Invest Dermatol. 1989;93:70–4.PubMedGoogle Scholar
  2. Mayer-da-Silva A, Gollnick H, Detmar M, et al. Effects of azelaic acid on sebaceous gland, sebum excretion rate and keratinization pattern in human skin. An in vivo and in vitro study. Acta Derm Venereol Suppl (Stockh). 1989;143:20–30.Google Scholar
  3. Passi S, Picardo M, Nazzaro-Porro M, et al. Antimitochondrial effect of saturated medium chain length (C8-C13) dicarboxylic acids. Biochem Pharmacol. 1984;33:103–8.PubMedGoogle Scholar
  4. Schulte BC, Wu W, Rosen T. Azelaic acid: evidence-based update on mechanism of action and clinical application. J Drugs Dermatol. 2015;14:964–8.PubMedGoogle Scholar

Topical Dapsone

  1. Al-Salama ZT, Deeks ED. Dapsone 7.5% gel: a review in acne vulgaris. Am J Clin Dermatol. 2017;18:139–45.PubMedGoogle Scholar
  2. Stein Gold LF, Jarratt MT, Bucko AD, et al. Efficacy and safety of once-daily dapsone gel, 7.5% for treatment of adolescents and adults with acne vulgaris: first of two identically designed, large, multicenter, randomized, vehicle-controlled trials. J Drugs Dermatol. 2016;15:553–61.PubMedGoogle Scholar
  3. Stotland M, Shalita AR, Kissling RF. Dapsone 5% gel: a review of its efficacy and safety in the treatment of acne vulgaris. Am J Clin Dermatol. 2009;10:221–7.PubMedGoogle Scholar
  4. Swartzentruber GS, Yanta JH, Pizon AF. Methemoglobinemia as a complication of topical dapsone. N Engl J Med. 2015;372:491–2.PubMedGoogle Scholar
  5. Wozel G, Blasum C. Dapsone in dermatology and beyond. Arch Dermatol Res. 2014;306:103–24.PubMedGoogle Scholar

Topical Olumacostat Glasaretil

  1. Bissonnette R, Poulin Y, Drew J, et al. Olumacostat glasaretil, a novel topical sebum inhibitor, in the treatment of acne vulgaris: a phase IIa, multicenter, randomized, vehicle-controlled study. J Am Acad Dermatol. 2017;76:33–9.PubMedGoogle Scholar
  2. Hunt DW, Winters GC, Brownsey RW, et al. Inhibition of sebum production with the acetyl coenzyme A carboxylase inhibitor olumacostat glasaretil. J Invest Dermatol. 2017;137:1415–23.PubMedGoogle Scholar
  3. Melnik BC. Olumacostat glasaretil, a promising topical sebum-suppressing agent that affects all major pathogenic factors of acne vulgaris. J Invest Dermatol. 2017b;137:1405–8.PubMedGoogle Scholar

Systemic Therapy

    Systemic Antibiotics

    1. Bienenfeld A, Nagler AR, Orlow SJ. Oral antibacterial therapy for acne vulgaris: an evidence-based review. Am J Clin Dermatol. 2017;18:469–90.PubMedGoogle Scholar
    2. Coenye T, Peeters E, Nelis HJ. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res Microbiol. 2007;158:386–92.PubMedPubMedCentralGoogle Scholar
    3. Del Rosso JQ. Topical and oral antibiotics for acne vulgaris. Semin Cutan Med Surg. 2016;35:57–61.PubMedGoogle Scholar
    4. Dessinioti C, Katsambas A. Propionibacterium acnes and antimicrobial resistance in acne. Clin Dermatol. 2017;35:163–7.PubMedGoogle Scholar
    5. Dreno B, Thiboutot D, Gollnick H, et al. Antibiotic stewardship in dermatology: limiting antibiotic use in acne. Eur J Dermatol. 2014;24:330–4.PubMedGoogle Scholar
    6. Farrah G, Tan E. The use of oral antibiotics in treating acne vulgaris: a new approach. Dermatol Ther. 2016;29:377–84.PubMedGoogle Scholar
    7. Giannopoulos L, Papaparaskevas J, Refene E, et al. MLST typing of antimicrobial-resistant Propionibacterium acnes isolates from patients with moderate to severe acne vulgaris. Anaerobe. 2015;31:50–4.PubMedGoogle Scholar
    8. Jahns AC, Eilers H, Alexeyev OA. Transcriptomic analysis of Propionibacterium acnes biofilms in vitro. Anaerobe. 2016;42:111–8.PubMedPubMedCentralGoogle Scholar
    9. Nast A, Rosumeck S, Dressler C, et al. Antibiotic resistance in acne. Lancet Infect Dis. 2016;16:775–7.PubMedGoogle Scholar
    10. Ross JI, Snelling AM, Eady EA, et al. Three-dimensional distribution of Propionibacterium acnes biofilms in human skin. Exp Dermatol. 2014;23:687–9.Google Scholar
    11. Schafer F, Fich F, Lam M, et al. Antimicrobial susceptibility and genetic characteristics of Propionibacterium acnes isolated from patients with acne. Int J Dermatol. 2013;52:418–25.PubMedGoogle Scholar
    12. Sinha M, Sadhasivam S, Bhattacharyya A, et al. Antibiotic-resistant acne: getting under the skin. Semin Cutan Med Surg. 2016;35:62–7.PubMedGoogle Scholar
    13. Sinnott SJ, Bhate K, Margolis DJ, Langan SM. Antibiotics and acne: an emerging iceberg of antibiotic resistance? Br J Dermatol. 2016;175:1127–8.PubMedGoogle Scholar
    14. Webster GF, McGinley KJ, Leyden JJ. Inhibition of lipase production in Propionibacterium acnes by sub-minimal-inhibitory concentrations of tetracycline and erythromycin. Br J Dermatol. 1981;104:453–7.PubMedGoogle Scholar

    Tetracyclines and Macrolides

    1. Dunston CR, Griffiths HR, Lambert PA, et al. Proteomic analysis of the anti-inflammatory action of minocycline. Proteomics. 2011;11:42–51.PubMedGoogle Scholar
    2. Hellmann-Regen J, Herzog I, Fischer N, et al. Do tetracyclines and erythromycin exert anti-acne effects by inhibition of P450-mediated degradation of retinoic acid? Exp Dermatol. 2014;23:290–3.PubMedGoogle Scholar
    3. Moore A, Ling M, Bucko A, et al. Efficacy and safety of subantimicrobial dose, modified-release doxycycline 40 mg versus doxycycline 100 mg versus placebo for the treatment of inflammatory lesions in moderate and severe acne: a randomized, double-blinded, controlled study. J Drugs Dermatol. 2015;14:581–6.PubMedGoogle Scholar
    4. Nakase K, Nakaminami H, Takenaka Y, et al. Propionibacterium acnes is developing gradual increase in resistance to oral tetracyclines. J Med Microbiol. 2017;66:8–12.PubMedGoogle Scholar
    5. Perret LJ, Tait CP. Non-antibiotic properties of tetracyclines and their clinical application in dermatology. Australas J Dermatol. 2014;55:111–8.PubMedGoogle Scholar

    Systemic Isotretinoin

    1. Bellemère G, Von Stetten O, Oddos T. Retinoic acid increases aquaporin 3 expression in normal human skin. J Invest Dermatol. 2008;128:542–8.PubMedGoogle Scholar
    2. Borovaya A, Dombrowski Y, Zwicker S, et al. Isotretinoin therapy changes the expression of antimicrobial peptides in acne vulgaris. Arch Dermatol Res. 2014;306:689–700.PubMedGoogle Scholar
    3. Boudou P, Chivot M, Vexiau P, et al. Evidence for decreased androgen 5 alpha-reduction in skin and liver of men with severe acne after 13-cis-retinoic acid treatment. J Clin Endocrinol Metab. 1994;78:1064–9.PubMedGoogle Scholar
    4. Boudou P, Soliman H, Chivot M, et al. Effect of oral isotretinoin treatment on skin androgen receptor levels in male acneic patients. J Clin Endocrinol Metab. 1995;80:1158–61.PubMedGoogle Scholar
    5. Bremner JD, Shearer KD, McCaffery PJ. Retinoic acid and affective disorders: the evidence for an association. J Clin Psychiatry. 2012;73:37–50.PubMedGoogle Scholar
    6. Choudhary V, Olala LO, Kagha K, et al. Regulation of the glycerol transporter, aquaporin-3, by histone deacetylase-3 and p53 in keratinocytes. J Invest Dermatol. 2017;137:1935–44.PubMedGoogle Scholar
    7. Chroni E, Monastirli A, Tsambaos D. Neuromuscular adverse effects associated with systemic retinoid dermatotherapy: monitoring and treatment algorithm for clinicians. Drug Saf. 2010;33:25–34.PubMedGoogle Scholar
    8. Ding J, Kam WR, Dieckow J, Sullivan DA. The influence of 13-cis retinoic acid on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2013;54:4341–50.PubMedPubMedCentralGoogle Scholar
    9. Dispenza MC, Wolpert EB, Gilliland KL, et al. Systemic isotretinoin therapy normalizes exaggerated TLR-2-mediated innate immune responses in acne patients. J Invest Dermatol. 2012;132:2198–205.PubMedPubMedCentralGoogle Scholar
    10. Dong XC, Copps KD, Guo S, et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 2008;8:65–76.PubMedPubMedCentralGoogle Scholar
    11. Exton LS, Cheung ST, Brain AG, et al. Compliance with national guidelines on isotretinoin: where are we 2 years since the last audit? Results of the National Isotretinoin Re-Audit 2014. Clin Exp Dermatol. 2017;42:381–9.PubMedGoogle Scholar
    12. Fishman RA. Polar bear liver, vitamin A, aquaporins, and pseudotumor cerebri. Ann Neurol. 2002;52:531–3.PubMedGoogle Scholar
    13. Foitzik K, Spexard T, Nakamura M, et al. Towards dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of transforming growth factor-beta2 in the dermal papilla. J Invest Dermatol. 2005;124:1119–26.PubMedGoogle Scholar
    14. Griffin JN, Pinali D, Olds K, et al. 13-Cis-retinoic acid decreases hypothalamic cell number in vitro. Neurosci Res. 2010;68:185–90.PubMedGoogle Scholar
    15. Gudas LJ, Wagner JA. Retinoids regulate stem cell differentiation. J Cell Physiol. 2010;226:322–30.Google Scholar
    16. Hansen TJ, Lucking S, Miller JJ, et al. Standardized laboratory monitoring with use of isotretinoin in acne. J Am Acad Dermatol. 2016;75:323–8.PubMedGoogle Scholar
    17. Heilgemeir GP, Braun-Falco O, Plewig G, Sund M. Einfluß der 13-cis-Retinsäure auf das Haarwachstum. Hautarzt. 1982;33:533–6.PubMedGoogle Scholar
    18. Horton R, Pasupuletti V, Antonipillai I. Androgen induction of steroid 5 alpha-reductase may be mediated via insulin-like growth factor-I. Endocrinology. 1993;133:447–51.PubMedGoogle Scholar
    19. Hu P, Wang Y, Liu J, et al. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus. 2016;26:911–23.PubMedGoogle Scholar
    20. Karadag AS, Ertugrul DT, Tutal E, et al. Short-term isotretinoin treatment decreases insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels: does isotretinoin affect growth hormone physiology? Br J Dermatol. 2010;162:798–802.PubMedGoogle Scholar
    21. Karadag AS, Ertugrul DT, Tutal E, et al. Isotretinoin influences pituitary hormone levels in acne patients. Acta Derm Venereol. 2011;91:31–4.PubMedGoogle Scholar
    22. Karadag AS, Ertugrul DT, Bilgili SG, et al. Immunoregulatory effects of isotretinoin in patients with acne. Br J Dermatol. 2012;167:433–5.PubMedGoogle Scholar
    23. Kelhälä HL, Fyhrquist N, Palatsi R, et al. Isotretinoin treatment reduces acne lesions but not directly lesional acne inflammation. Exp Dermatol. 2016;25:477–8.PubMedGoogle Scholar
    24. Kim J, Nakasaki M, Todorova D, et al. p53 induces skin aging by depleting Blimp1+ sebaceous gland cells. Cell Death Dis. 2014;5:e1141.PubMedPubMedCentralGoogle Scholar
    25. Kim H, Moon SY, Sohn MY, et al. Insulin-like growth factor-1 increases the expression of inflammatory biomarkers and sebum production in cultured sebocytes. Ann Dermatol. 2017;29:20–5.PubMedPubMedCentralGoogle Scholar
    26. Kmieć ML, Pajor A, Broniarczyk-Dyła G. Evaluation of biophysical skin parameters and assessment of hair growth in patients with acne treated with isotretinoin. Postepy Dermatol Allergol. 2013;30:343–9.Google Scholar
    27. Landthaler M, Kummermehr J, Wagner A, Plewig G. Inhibitory effects of 13-cis-retinoic acid on human sebaceous glands. Arch Dermatol Res. 1980;269:297–309.PubMedGoogle Scholar
    28. Leachman SA, Insogna KL, Katz L, et al. Bone densities in patients receiving isotretinoin for cystic acne. Arch Dermatol. 1999;135:961–5.PubMedGoogle Scholar
    29. Lee SY, Jamal MM, Nguyen ET, et al. Does exposure to isotretinoin increase the risk for the development of inflammatory bowel disease? A meta-analysis. Eur J Gastroenterol Hepatol. 2016;28:210–6.PubMedGoogle Scholar
    30. Lee YH, Scharnitz TP, Muscat J, et al. Laboratory monitoring during isotretinoin therapy for acne: a systematic review and meta-analysis. JAMA Dermatol. 2016;152:35–44.PubMedGoogle Scholar
    31. Leyden JJ, James WD. Staphylococcus aureus infection as a complication of isotretinoin therapy. Arch Dermatol. 1987;123:606–8.PubMedGoogle Scholar
    32. Liu A, Yang DJ, Gerhardstein PC, et al. Relapse of acne following isotretinoin treatment: a retrospective study of 405 patients. J Drugs Dermatol. 2008;7:963–6.PubMedGoogle Scholar
    33. Ludot M, Mouchabac S, Ferreri F. Inter-relationships between isotretinoin treatment and psychiatric disorders: depression, bipolar disorder, anxiety, psychosis and suicide risks. World J Psychiatry. 2015;5:222–7.PubMedPubMedCentralGoogle Scholar
    34. Madke B, Prasad K, Kar S. Isotretinoin-induced night blindness. Indian J Dermatol. 2015;60:424.PubMedPubMedCentralGoogle Scholar
    35. Melnik BC. Pro-inflammatory sebocyte growth and survival signalling in acne vulgaris are reversed by pro-apoptotic isotretinoin signalling. Exp Dermatol. 2016;25:676–7.PubMedGoogle Scholar
    36. Melnik BC. Apoptosis may explain the pharmacological mode of action and adverse effects of isotretinoin, including teratogenicity. Acta Derm Venereol. 2017c;97:173–81.PubMedGoogle Scholar
    37. Melnik BC. The TRAIL to acne pathogenesis: let’s focus on death pathways. Exp Dermatol. 2017d;26:270–2.PubMedGoogle Scholar
    38. Melnik BC. Overexpression of p53 explains isotretinoin’s teratogenicity. Exp Dermatol. 2018;27:91–3.PubMedGoogle Scholar
    39. Melnik BC, Bros U, Plewig G. Evaluation of the atherogenic risk of isotretinoin-induced and etretinate-induced alterations of lipoprotein cholesterol metabolism. J Invest Dermatol. 1987;88:39s–43s.PubMedGoogle Scholar
    40. Melnik B, Kinner T, Plewig G. Influence of oral isotretinoin treatment on the composition of comedonal lipids. Implications for comedogenesis in acne vulgaris. Arch Dermatol Res. 1988;280:97–102.PubMedGoogle Scholar
    41. Menendez D, Shatz M, Resnick MA. Interactions between the tumor suppressor p53 and immune responses. Curr Opin Oncol. 2013;25:85–92.PubMedGoogle Scholar
    42. Mesiano S, Katz SL, Lee JY, et al. Insulin-like growth factors augment steroid production and expression of steroidogenic enzymes in human fetal adrenal cortical cells: implications for adrenal androgen regulation. J Clin Endocrinol Metab. 1997;82:1390–6.PubMedGoogle Scholar
    43. Moy A, McNamara NA, Lin MC. Effects of isotretinoin on Meibomian glands. Optom Vis Sci. 2015;92:925–30.PubMedGoogle Scholar
    44. Nelson AM, Gilliland KL, Cong Z, Thiboutot DM. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol. 2006;126:2178–89.PubMedGoogle Scholar
    45. Nelson AM, Zhao W, Gilliland KL, et al. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J Clin Invest. 2008;118:1468–78.PubMedPubMedCentralGoogle Scholar
    46. Nelson AM, Cong Z, Gilliland KL, Thiboutot DM. TRAIL contributes to the apoptotic effect of 13-cis retinoic acid in human sebaceous gland cells. Br J Dermatol. 2011;165:526–33.PubMedPubMedCentralGoogle Scholar
    47. Opel D, Kramer ON, Chevalier M, et al. Not every patient needs triglyceride check, but all can get pancreatitis: a systematic review and clinical characterization of isotretinoin associated pancreatitis. Br J Dermatol. 2017;177:960–6.PubMedGoogle Scholar
    48. Peck GL, Olsen TG, Yoder FW, et al. Prolonged remissions of cystic and conglobate acne with 13-cis-retinoic acid. N Engl J Med. 1979;300:329–33.PubMedGoogle Scholar
    49. Plewig G, Wagner A. Anti-inflammatory effects of 13-cis-retinoic acid. An in vivo study. Arch Dermatol Res. 1981;270:89–94.PubMedGoogle Scholar
    50. Plewig G, Fulton JE, Kligman AM. Cellular dynamics of comedo formation in acne vulgaris. Arch Dermatol Forsch. 1971;242:12–29.PubMedPubMedCentralGoogle Scholar
    51. Plewig G, Dressel H, Pfleger M, et al. Low dose isotretinoin combined with tretinoin is effective to correct abnormalities of acne. J Dtsch Dermatol Ges. 2004;2:31–45.PubMedGoogle Scholar
    52. Rashtak S, Khaleghi S, Pittelkow MR, et al. Isotretinoin exposure and risk of inflammatory bowel disease. JAMA Dermatol. 2014;150:1322–6.PubMedGoogle Scholar
    53. Ross AC, Zolfaghari R. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu Rev Nutr. 2011;31:65–87.PubMedPubMedCentralGoogle Scholar
    54. Ryan-Kewley AE, Williams DR, Hepburn N, Dixon RA. Non-antibiotic isotretinoin treatment differentially controls Propionibacterium acnes on skin of acne patients. Front Microbiol. 2017;8:1381.PubMedPubMedCentralGoogle Scholar
    55. Shalita AR. Mucocutaneous and systemic toxicity of retinoids: monitoring and management. Dermatologica. 1987;175:151–7.PubMedGoogle Scholar
    56. Shin J, Cheetham TC, Wong L, et al. The impact of the iPLEDGE program on isotretinoin fetal exposure in an integrated health care system. J Am Acad Dermatol. 2011;65:1117–25.PubMedGoogle Scholar
    57. Tsukada M, Schröder M, Roos TC, et al. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. J Invest Dermatol. 2000;115:321–7.PubMedGoogle Scholar
    58. Vallerand IA, Lewinson RT, Farris MS, et al. Efficacy and adverse events of oral isotretinoin for acne: a systematic review. Br J Dermatol. 2018;178:76–85.PubMedGoogle Scholar
    59. Volodko N, Salla M, Eksteen B, et al. TP53 codon 72 Arg/Arg polymorphism is associated with a higher risk for inflammatory bowel disease development. World J Gastroenterol. 2015;21:10358–66.PubMedPubMedCentralGoogle Scholar
    60. Wiegand UW, Chou RC. Pharmacokinetics of oral isotretinoin. J Am Acad Dermatol. 1998;39:S8–S12.PubMedGoogle Scholar
    61. Xing F, Liao W, Jiang P, et al. Effect of retinoic acid on aquaporin 3 expression in keratinocytes. Genet Mol Res. 2016;15:15016951.PubMedGoogle Scholar
    62. Yan J, Jiang J, Lim CA, et al. BLIMP1 regulates cell growth through repression of p53 transcription. Proc Natl Acad Sci U S A. 2007;104:1841–6.PubMedPubMedCentralGoogle Scholar
    63. Zheng X, Chen X. Aquaporin 3, a glycerol and water transporter, is regulated by p73 of the p53 family. FEBS Lett. 2001;489:4–7.PubMedGoogle Scholar


    1. Fabbrocini G, Izzo R, Faggiano A, et al. Low glycaemic diet and metformin therapy: a new approach in male subjects with acne resistant to common treatments. Clin Exp Dermatol. 2016;41:38–42.PubMedGoogle Scholar
    2. Harborne L, Fleming R, Lyall H, Sattar N, Norman J. Metformin or antiandrogen in the treatment of hirsutism in polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:4116–23.PubMedGoogle Scholar
    3. Lee JK, Smith AD. Metformin as an adjunct therapy for the treatment of moderate to severe acne vulgaris. Dermatol Online J. 2017;23(11). pii: 13030/qt53m2q13s.Google Scholar
    4. Melnik BC, Schmitz G. Metformin: an inhibitor of mTORC1 signaling. J Endocrinol Diabetes Obes. 2014;2:1029.Google Scholar
    5. Melnik BC, John SM, Plewig G. Acne: risk indicator for increased body mass index and insulin resistance. Acta Derm Venereol. 2013;93:644–9.PubMedGoogle Scholar
    6. Nestler JE. Metformin for the treatment of the polycystic ovary syndrome. N Engl J Med. 2008;358:47–54.PubMedGoogle Scholar
    7. Shafiee MN, Malik DA, Yunos RI, et al. The effect of metformin on endometrial tumor-regulatory genes and systemic metabolic parameters in polycystic ovarian syndrome - a proof-of-concept study. Gynecol Endocrinol. 2015;31:286–90.PubMedGoogle Scholar

    Hormonal Antiandrogenic Therapies

    1. Alimirah F, Panchanathan R, Chen J, et al. Expression of androgen receptor is negatively regulated by p53. Neoplasia. 2007b;9:1152–9.PubMedPubMedCentralGoogle Scholar
    2. Bettoli V, Zauli S, Virgili A. Is hormonal treatment still an option in acne today? Br J Dermatol. 2015;172 Suppl 1:37–46.PubMedGoogle Scholar
    3. Cottle DL, Kretzschmar K, Schweiger PJ, et al. c-MYC-induced sebaceous gland differentiation is controlled by an androgen receptor/p53 axis. Cell Rep. 2013;3:427–41.PubMedPubMedCentralGoogle Scholar
    4. Husein-ElAhmed H. Management of acne vulgaris with hormonal therapies in adult female patients. Dermatol Ther. 2015a;28:166–72.PubMedGoogle Scholar
    5. Ju Q, Tao T, Hu T, et al. Sex hormones and acne. Clin Dermatol. 2017a;35:130–7.Google Scholar
    6. Lizneva D, Gavrilova-Jordan L, Walker W, Azziz R. Androgen excess: Investigations and management. Best Pract Res Clin Obstet Gynaecol. 2016;37:98–118.PubMedGoogle Scholar
    7. Rosignoli C, Nicolas JC, Jomard A, et al. Involvement of the SREBP pathway in the mode of action of androgens in sebaceous glands in vivo. Exp Dermatol. 2003;12:480–9.Google Scholar
    8. Sen A, Prizant H, Light A, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci U S A. 2014;111:3008–13.PubMedPubMedCentralGoogle Scholar

    Combination Oral Contraceptive Pills

    1. Archer JS, Archer DF. Oral contraceptive efficacy and antibiotic interaction: a myth debunked. J Am Acad Dermatol. 2002;46:917–23.PubMedGoogle Scholar
    2. Arowojolu AO, Gallo MF, Lopez LM, Grimes DA. Combined oral contraceptive pills for treatment of acne. Cochrane Database Syst Rev. 2012;(7):CD004425.Google Scholar
    3. George R, Clarke S, Thiboutot D. Hormonal therapy for acne. Semin Cutan Med Surg. 2008;27:188–96.PubMedGoogle Scholar
    4. Hammerstein J, Meckies J, Leo-Rossberg I, et al. Use of cyproterone acetate (CPA) in the treatment of acne, hirsutism and virilism. J Steroid Biochem. 1975;6:827–36.PubMedGoogle Scholar
    5. Hammerstein J, Lachnit-Fixson U, Neumann F, Plewig G, editors. Androgensierungserscheinungen bei der Frau. Akne, Seborrhö, androgenetische Alopezie und Hirsutismus. Amsterdam: Excerpta Medica; 1979.Google Scholar
    6. Harper JC. Should dermatologists prescribe hormonal contraceptives for acne? Dermatol Ther. 2009;22:452–7.PubMedGoogle Scholar
    7. Jaisamrarn U, Chaovisitsaree S, Angsuwathana S, et al. A comparison of multiphasic oral contraceptives containing norgestimate or desogestrel in acne treatment: a randomized trial. Contraception. 2014;90:535–41.PubMedGoogle Scholar
    8. Koltun W, Maloney JM, Marr J, et al. Treatment of moderate acne vulgaris using a combined oral contraceptive containing ethinylestradiol 20 mug plus drospirenone 3 mg administered in a 24/4 regimen: a pooled analysis. Eur J Obstet Gynecol Reprod Biol. 2011;155:171–5.PubMedGoogle Scholar
    9. Palli MB, Reyes-Habito CM, Lima XT, et al. A single-center, randomized double-blind, parallel-group study to examine the safety and efficacy of 3mg drospirenone/0.02 mg ethinyl estradiol compared with placebo in the treatment of moderate truncal acne vulgaris. J Drugs Dermatol. 2013;12:633–7.PubMedGoogle Scholar
    10. WHO Collaborative Study of Cardiovascular Disease and Steroid Hormone Contraception. Acute myocardial infarction and combined oral contraceptives: results of an international multicentre case-control study. Lancet. 1997;349:1202–9.Google Scholar

    Cyproterone Acetate

    1. Bitzer J, Römer T, Lopes da Silva Filho A. The use of cyproterone acetate/ethinyl estradiol in hyperandrogenic skin symptoms - a review. Eur J Contracept Reprod Health Care. 2017;22:172–82.PubMedGoogle Scholar
    2. Chen L, Wolff DW, Xie Y, et al. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5. BMC Cancer. 2017;17:179.PubMedPubMedCentralGoogle Scholar
    3. Fritsch M, Orfanos CE, Zouboulis CC. Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol. 2001;116:793–800.Google Scholar
    4. Stewart ME, Greenwood R, Cunliffe WJ, et al. Effect of cyproterone acetate-ethinyl estradiol treatment on the proportions of linoleic and sebaleic acids in various skin surface lipid classes. Arch Dermatol Res. 1986;278:481–5.PubMedGoogle Scholar


    1. Charny JW, Choi JK, James WD. Spironolactone for the treatment of acne in women, a retrospective study of 110 patients. Int J Womens Dermatol. 2017;3:111–5.PubMedPubMedCentralGoogle Scholar
    2. Grandhi R, Alikhan A. Spironolactone for the treatment of acne: a 4-year retrospective study. Dermatology. 2017;233:141–4.PubMedGoogle Scholar
    3. Ju Q, Tao T, Hu T, et al. Sex hormones and acne. Clin Dermatol. 2017;35:130–7.Google Scholar
    4. Krunic A, Ciurea A, Scheman A. Efficacy and tolerance of acne treatment using both spironolactone and a combined contraceptive containing drospirenone. J Am Acad Dermatol. 2008;58:60–2.PubMedGoogle Scholar
    5. Layton AM, Eady EA, Whitehouse H, et al. Oral spironolactone for acne vulgaris in adult females: a hybrid systematic review. Am J Clin Dermatol. 2017;18:169–91.PubMedPubMedCentralGoogle Scholar


    1. Husein-ElAhmed H. Management of acne vulgaris with hormonal therapies in adult female patients. Dermatol Ther. 2015b;28:166–72.PubMedGoogle Scholar
    2. Katsambas AD, Dessinioti C. Hormonal therapy for acne: why not as first line therapy? facts and controversies. Clin Dermatol. 2010;28:17–23.PubMedGoogle Scholar


    1. Allison MA, Dunn CL, Person DA. Acne fulminans treated with isotretinoin and “pulse” corticosteroids. Pediatr Dermatol. 1997;14:39–42.PubMedGoogle Scholar
    2. Greywal T, Zaenglein AL, Baldwin HE, et al. Evidence-based recommendations for the management of acne fulminans and its variants. J Am Acad Dermatol. 2017;77:109–17.PubMedGoogle Scholar
    3. Lages RB, Bona SH, Silva FV, et al. Acne fulminans successfully treated with prednisone and dapsone. An Bras Dermatol. 2012;87:612–4.PubMedGoogle Scholar
    4. Reisch N. Substitution therapy in adult patients with congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab. 2015;29:33–45.PubMedGoogle Scholar


    1. Brandt S. The clinical effects of zinc as a topical or oral agent on the clinical response and pathophysiologic mechanisms of acne: a systematic review of the literature. J Drugs Dermatol. 2013;12:542–5.PubMedGoogle Scholar
    2. Puca R, Nardinocchi L, Porru M, et al. Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle. 2011;10:1679–89.PubMedGoogle Scholar
    3. Verma KC, Saini AS, Dhamija SK. Oral zinc sulphate therapy in acne vulgaris: a double-blind trial. Acta Derm Venereol. 1980;60:337–40.PubMedGoogle Scholar

    Chemical Peeling

    1. Al-Talib H, Al-Khateeb A, Hameed A, Murugaiah C. Efficacy and safety of superficial chemical peeling in treatment of active acne vulgaris. An Bras Dermatol. 2017;92:212–6.PubMedPubMedCentralGoogle Scholar
    2. Bae BG, Park CO, Shin H, et al. Salicylic acid peels versus Jessner’s solution for acne vulgaris: a comparative study. Dermatol Surg. 2013;39:248–53.PubMedGoogle Scholar
    3. Garg VK, Sinha S, Sarkar R. Glycolic acid peels versus salicylic-mandelic acid peels in active acne vulgaris and post-acne scarring and hyperpigmentation: a comparative study. Dermatol Surg. 2009;35:59–65.PubMedGoogle Scholar
    4. Handog EB, Datuin MS, Singzon IA. Chemical peels for acne and acne scars in Asians: evidence based review. J Cutan Aesthet Surg. 2012;5:239–46.PubMedPubMedCentralGoogle Scholar

    Photodynamic Therapy

    1. Boen M, Brownell J, Patel P, et al. The role of photodynamic therapy in acne: an evidence-based review. Am J Clin Dermatol. 2017;18:311–21.PubMedGoogle Scholar
    2. Chang M, Ma X, Ouyang T, et al. Potential molecular mechanisms involved in 5-aminolevulinic acid-based photodynamic therapy against human hypertrophic scars. Plast Reconstr Surg. 2015;136:715–27.PubMedGoogle Scholar
    3. Kwon HH, Moon KR, Park SY, et al. Daylight photodynamic therapy with 1.5% 3-butenyl 5-aminolevulinate gel as a convenient, effective and safe therapy in acne treatment: a double-blind randomized controlled trial. J Dermatol. 2016;43:515–21.PubMedGoogle Scholar
    4. Megna M, Fabbrocini G, Marasca C, et al. Photodynamic therapy and skin appendage disorders: a review. Skin Appendage Disord. 2016;2:166–76.PubMedPubMedCentralGoogle Scholar

    Light Therapy

    1. Barbaric J, Abbott R, Posadzki P, et al. Light therapies for acne: abridged Cochrane systematic review including GRADE assessments. Br J Dermatol. 2018;178:61–75.PubMedGoogle Scholar
    2. Paithankar DY, Sakamoto FH, Farinelli WA, et al. Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles. J Invest Dermatol. 2015;135:1727–34.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerd Plewig
    • 1
  • Bodo Melnik
    • 2
  • WenChieh Chen
    • 3
  1. 1.Department of Dermatology and AllergyLudwig-Maximilian-University MunichMunichGermany
  2. 2.Department of Dermatology, Environmental Medicine and Health TheoryUniversity of OsnabrückOsnabrückGermany
  3. 3.Department of Dermatology and AllergyTechnical University of MunichMunichGermany

Personalised recommendations