Acne-Associated Syndromes

  • Gerd Plewig
  • Bodo Melnik
  • WenChieh Chen


Acne vulgaris can be considered as an inflammasomopathy of the sebaceous follicle, which is associated with increased seboglandular production of interleukin-1α (IL-1α) and IL-β1. Sebocytes have been demonstrated to actively contribute to certain inflammatory processes in the skin by recruitment of immune cells into the skin and by skewing T-cell differentiation toward Th17 cells. Increased expression of IL-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in cultured sebocytes has been observed after treatment with insulin-like growth factor-1 (IGF-1). IL-1β mRNA and the active processed form of IL-1β are abundant in inflammatory acne lesions. P. acnes strains of acne patients have been shown to activate the NLRP3 inflammasome and induce a Th17 cell response in vitro. Acne vulgaris is associated with an increased prevalence of insulin resistance in certain groups of patients. NLRP3 inflammasome activation with enhanced IL-1β secretion promotes insulin resistance.


Inflammasome, Interleukin-1 Family, and Autoinflammatory Skin Diseases

  1. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998;94:557–72.Google Scholar
  2. Beer HD, Contassot E, French LE. The inflammasomes in autoinflammatory diseases with skin involvement. J Invest Dermatol. 2014;134:1805–10.PubMedGoogle Scholar
  3. Braun-Falco M, Ruzicka T. Hautbeteiligung bei autoinflammatorischen Syndromen. J Dtsch Dermatol Ges. 2011;9:232–46.PubMedGoogle Scholar
  4. Chen W, Obermayer-Pietsch B, Hong JB, et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol. 2011;25:637–46.PubMedGoogle Scholar
  5. de Torre-Minguela C, Mesa Del Castillo P, Pelegrín P. The NLRP3 and pyrin inflammasomes: implications in the pathophysiology of autoinflammatory diseases. Front Immunol. 2017;8:43.PubMedPubMedCentralGoogle Scholar
  6. Dessinioti C, Katsambas A. Difficult and rare forms of acne. Clin Dermatol. 2017;35:138–46.PubMedGoogle Scholar
  7. Ding J, Kam WR, Dieckow J, Sullivan DA. The influence of 13-cis retinoic acid on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2013;54:4341–50.PubMedPubMedCentralGoogle Scholar
  8. Fenini G, Contassot E, French LE. Potential of IL-1, IL-18 and inflammasome inhibition for the treatment of inflammatory skin diseases. Front Pharmacol. 2017;8:278.PubMedPubMedCentralGoogle Scholar
  9. Hong JB, Prucha H, Melnik B, et al. Seltene Akne-assoziierte Syndrome und deren Bedeutung für das Verständnis der Pathogenese der Akne. Hautarzt. 2013;64:274–9.PubMedGoogle Scholar
  10. Jager J, Grémeaux T, Cormont M, et al. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology. 2007;148:241–51.PubMedGoogle Scholar
  11. Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65:223–44.PubMedPubMedCentralGoogle Scholar
  12. Kim H, Moon SY, Sohn MY, Lee WJ. Insulin-like growth factor-1 increases the expression of inflammatory biomarkers and sebum production in cultured sebocytes. Ann Dermatol. 2017;29:20–5.PubMedPubMedCentralGoogle Scholar
  13. Kistowska M, Gehrke S, Jankovic D, et al. IL-1β drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J Invest Dermatol. 2014;134:677–85.PubMedPubMedCentralGoogle Scholar
  14. Kwak A, Lee Y, Kim H, Kim S. Intracellular interleukin (IL)-1 family cytokine processing enzyme. Arch Pharm Res. 2016;39:1556–64.PubMedGoogle Scholar
  15. Levine SJ, Benfield T, Shelhamer JH. Corticosteroids induce intracellular interleukin-1 receptor antagonist type I expression by a human airway epithelial cell line. Am J Respir Cell Mol Biol. 1996;15:245–51.PubMedGoogle Scholar
  16. Lopalco G, Cantarini L, Vitale A, et al. Interleukin-1 as a common denominator from autoinflammatory to autoimmune disorders: premises, perils, and perspectives. Mediators Inflamm. 2015;2015:194864.PubMedPubMedCentralGoogle Scholar
  17. Mattii M, Lovászi M, Garzorz N, et al. Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells. Br J Dermatol. 2018;178:722–30.PubMedPubMedCentralGoogle Scholar
  18. Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015a;8:371–88.PubMedPubMedCentralGoogle Scholar
  19. Moreira A, Torres B, Peruzzo J, et al. Skin symptoms as diagnostic clue for autoinflammatory diseases. An Bras Dermatol. 2017;92:72–80.PubMedPubMedCentralGoogle Scholar
  20. Murthy AS, Leslie K. Autoinflammatory skin disease: a review of concepts and applications to general dermatology. Dermatology. 2016;232:534–40.PubMedGoogle Scholar
  21. Palomo J, Dietrich D, Martin P, et al. The interleukin (IL)-1 cytokine family-balance between agonists and antagonists in inflammatory diseases. Cytokine. 2015;76:25–37.PubMedGoogle Scholar
  22. Tack CJ, Stienstra R, Joosten LA, Netea MG. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev. 2012;249:239–52.PubMedGoogle Scholar
  23. Yang CA, Chiang BL. Inflammasomes and human autoimmunity: a comprehensive review. J Autoimmun. 2015;61:1–8.PubMedGoogle Scholar
  24. Zouboulis CC. Acne as a chronic systemic disease. Clin Dermatol. 2014;32:389–96.PubMedGoogle Scholar

Acne Fulminans

  1. Alakeel A, Ferneiny M, Auffret N, Bodemer C. Acne fulminans: case series and review of the literature. Pediatr Dermatol. 2016;33:e388–92.PubMedGoogle Scholar
  2. Blanc D, Zultak M, Wendling D, Lonchampt F. Eruptive pyogenic granulomas and acne fulminans in two siblings treated with isotretinoin: a possible common pathogenesis. Dermatologica. 1988;177:16–8.PubMedGoogle Scholar
  3. Burns RE, Colville JM. Acne conglobata with septicemia. Arch Dermatol. 1959;79:361–3.Google Scholar
  4. Camisa C. Acute arthritis during isotretinoin therapy for acne. J Am Acad Dermatol. 1986;15:1061–2.PubMedGoogle Scholar
  5. Choi EH, Bang D. Acne fulminans and 13-cis-retinoic acid. J Dermatol. 1992;19:378–83.PubMedGoogle Scholar
  6. Chua SL, Angus JE, Ravenscroft J, Perkins W. Synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome and acne fulminans: are they part of the same disease spectrum? Clin Exp Dermatol. 2009;34:e241–3.PubMedGoogle Scholar
  7. Darley CR, Currey HLF, Baker H. Acne fulminans with arthritis in identical twins treated with isotretinoin. J R Soc Med. 1984;77:328–30.PubMedPubMedCentralGoogle Scholar
  8. Dawoud NM, Elnady BM, Elkhouly T, Yosef A. Adalimumab as a successful treatment for acne fulminans and bilateral acute sacroiliitis with hip synovitis complicating isotretinoin therapy. Indian J Dermatol Venereol Leprol. 2018;84:104–7.PubMedGoogle Scholar
  9. Elías LM, Gómez MI, Torrelo A, et al. Acne fulminans and bilateral seronegative sacroiliitis triggered by isotretinoin. J Dermatol. 1991;18:366–7.PubMedGoogle Scholar
  10. Engber PB, Marino CT. Acne fulminans with prolonged polyarthralgia. Int J Dermatol. 1980;19:567–9.PubMedGoogle Scholar
  11. Goldschmidt H, Leyden JJ, Stein KH. Acne fulminans: investigation of acute febrile ulcerative acne. Arch Dermatol. 1977;113:444–9.PubMedGoogle Scholar
  12. Greywal T, Zaenglein AL, Baldwin HE, et al. Evidence-based recommendations for the management of acne fulminans and its variants. J Am Acad Dermatol. 2017;77:109–17.Google Scholar
  13. Heydenreich G. Testosterone and anabolic steroids and acne fulminans. Arch Dermatol. 1989;125:571–2.Google Scholar
  14. Iqbal M, Kolodney MS. Acne fulminans with synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome treated with infliximab. J Am Acad Dermatol. 2005a;52(5 Suppl 1):S118–20.PubMedGoogle Scholar
  15. Jansen T, Plewig G. Acne fulminans. Int J Dermatol. 1998;37:254–7.PubMedGoogle Scholar
  16. Jansen T, Romiti R, Plewig G. Acute severe acne in a female patient (acne fulminans?). Br J Dermatol. 1999;141:945–7.PubMedGoogle Scholar
  17. Jemec GBE, Rasmussen I. Bone lesions of acne fulminans. J Am Acad Dermatol. 1989;20:353–7.PubMedGoogle Scholar
  18. Karvonen SL. Acne fulminans: report of clinical findings and treatment of twenty-four patients. J Am Acad Dermatol. 1993;28:572–9.PubMedGoogle Scholar
  19. Kellett JK, Beck MH, Chalmers RJG. Erythema nodosum and circulating immune complexes in acne fulminans after treatment with isotretinoin. Br Med J. 1985;290:820.Google Scholar
  20. Kraus SL, Emmert S, Schön MP, Haenssle HA. The dark side of beauty: acne fulminans induced by anabolic steroids in a male bodybuilder. Arch Dermatol. 2012;148:1210–2.Google Scholar
  21. Lages RB, Bona SH, Silva FV, et al. Acne fulminans successfully treated with prednisone and dapsone. An Bras Dermatol. 2012;87:612–4.Google Scholar
  22. Li AW, Antaya RJ. Isotretinoin-induced acne fulminans without systemic symptoms with concurrent exuberant granulation tissue. Pediatr Dermatol. 2018;35:257–8.Google Scholar
  23. Massa AF, Burmeister L, Bass D, Zouboulis CC. Acne fulminans: treatment experience from 26 patients. Dermatology. 2017;233:136–40.PubMedGoogle Scholar
  24. McAuley D, Miller RA. Acne fulminans associated with inflammatory bowel disease. Report of a case. Arch Dermatol. 1985;121:91–3.PubMedGoogle Scholar
  25. Moreno GJ, Feliu MM, Camacho F. Pseudo-acne fulminans caused by isotretinoin. Med Cutan Ibero Lat Am. 1988;16:59–60.Google Scholar
  26. Nault P, Lassonde M, St-Antoine P. Acne fulminans with osteolytic lesions. Arch Dermatol. 1985;121:662–4.PubMedGoogle Scholar
  27. Oranges T, Insalaco A, Diociaiuti A, et al. Severe osteoarticular involvement in isotretinoin-triggered acne fulminans: two cases successfully treated with anakinra. J Eur Acad Dermatol Venereol. 2017;31:e277–9.PubMedGoogle Scholar
  28. Pauli SL, Valkeakari T, Räsänen L, et al. Osteomyelitis-like bone lesions in acne fulminans. Eur J Pediatr. 1989;149:110–3.PubMedGoogle Scholar
  29. Pautrier LM. Acné conglobata avec placards végétants et ulcéreux à type de pyodermites végétantes; abcès torpides, placards fibreux - importance anormale des trajets fistulisés sous-cutanés - mort par septicémie avec larges abcès et décollements osseux. Acta Derm Venereol (Stockh). 1937;18:565–74.Google Scholar
  30. Placzek M, Degitz K, Schmidt H, Plewig G. Acne fulminans in late-onset congenital adrenal hyperplasia. Lancet. 1999;354:739–40.PubMedGoogle Scholar
  31. Plewig G, Kligman AM. Acne fulminans (acute febrile ulcerative conglobate acne with polyarthralgia). In: Plewig G, Kligman AM, editors. Acne, morphogenesis and treatment. Berlin: Springer; 1975. p. 196–7, 200, 201.Google Scholar
  32. Posma E, Moes H, Heineman MJ, Faas MM. The effect of testosterone on cytokine production in the specific and non-specific immune response. Am J Reprod Immunol. 2004;52:237–43.PubMedGoogle Scholar
  33. Proença NG. Acne fulminans. An Bras Dermatol. 2017;92(5 Suppl 1):8–10.PubMedPubMedCentralGoogle Scholar
  34. Reunala T, Pauli SL, Rasanen L. Musculoskeletal symptoms and bone lesions in acne fulminans. J Am Acad Dermatol. 1990;22:144–6.PubMedGoogle Scholar
  35. Saint-Jean M, Frenard C, Le Bras M, et al. Testosterone-induced acne fulminans in twins with Kallmann’s syndrome. JAAD Case Rep. 2014;1:27–9.PubMedPubMedCentralGoogle Scholar
  36. Seukeran DC, Cunliffe WJ. The treatment of acne fulminans: a review of 25 cases. Br J Dermatol. 1999;141:307–9.PubMedGoogle Scholar
  37. Sotoodian B, Kuzel P, Brassard A, Fiorillo L. Disfiguring ulcerative neutrophilic dermatosis secondary to doxycycline and isotretinoin in an adolescent boy with acne conglobata. Cutis. 2017;100:E23–6.PubMedGoogle Scholar
  38. Ström S, Thyresson N, Boström H. Acute febrile ulcerative conglobate acne with leukemoid reaction. Acta Derm Venereol (Stockh). 1973;53:306–12.Google Scholar
  39. Tago O, Nagai Y, Matsushima Y, Ishikawa O. A case of acne fulminans successfully treated with cyclosporin A and prednisolone. Acta Derm Venereol. 2011;91:337–8.PubMedGoogle Scholar
  40. Wakabayashi M, Fujimoto N, Uenishi T, et al. A case of acne fulminans in a patient with ulcerative colitis successfully treated with prednisolone and diaminodiphenylsulfone: a literature review of acne fulminans, rosacea fulminans and neutrophilic dermatoses occurring in the setting of inflammatory bowel disease. Dermatology. 2011;222:231–5.PubMedGoogle Scholar
  41. Wong SS, Pritchard MH, Holt PJA. Familial acne fulminans. Clin Exp Dermatol. 1992;17:351–3.PubMedGoogle Scholar

SAPHO Syndrome

  1. Adamo S, Nilsson J, Krebs A, et al. Successful treatment of SAPHO syndrome with apremilast. Br J Dermatol. 2018;179:959–62.PubMedGoogle Scholar
  2. Aljuhani F, Tournadre A, Tatar Z, et al. The SAPHO syndrome: a single-center study of 41 adult patients. J Rheumatol. 2015;42:329–33.PubMedGoogle Scholar
  3. Amital H, Applbaum YH, Aamar S, et al. SAPHO syndrome treated with pamidronate: an open-label study of 10 patients. Rheumatology. 2004;43:658–61.PubMedGoogle Scholar
  4. Assmann G, Wagner AD, Monika M, et al. Single-nucleotide polymorphisms p53 G72C and Mdm2 T309G in patients with psoriasis, psoriatic arthritis, and SAPHO syndrome. Rheumatol Int. 2010;30:1273–6.PubMedPubMedCentralGoogle Scholar
  5. Berthelot JM, Corvec S, Hayem G. SAPHO, autophagy, IL-1, FoxO1, and Propionibacterium (Cutibacterium) acnes. Joint Bone Spine. 2018;85:171–6.PubMedGoogle Scholar
  6. Cassel SL, Janczy JR, Bing X, et al. Inflammasome-independent IL-1β mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci USA. 2014;111:1072–7.PubMedGoogle Scholar
  7. Chamot AM, Benhamou CL, Kahn MF, et al. Le syndrome acné pustulose hyperostose ostéite (SAPHO): résultats d’une enquête nationale-85 observations. Rev Rhum Mal Osteoartic. 1987;54:187–96.PubMedGoogle Scholar
  8. Chitu V, Ferguson PJ, de Bruijn R, et al. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood. 2009;114:2497–505.PubMedPubMedCentralGoogle Scholar
  9. Cianci F, Zoli A, Gremese E, Ferraccioli G. Clinical heterogeneity of SAPHO syndrome: challenging diagnose and treatment. Clin Rheumatol. 2017;36:2151–8.PubMedGoogle Scholar
  10. Colina M, Lo Monaco A, Khodeir M, Trotta F. Propionibacterium acnes and SAPHO syndrome: a case report and literature review. Clin Exp Rheumatol. 2007;25:457–60.PubMedGoogle Scholar
  11. Dong A, Bai Y, Cui Y, et al. FDG PET/CT in early and late stages of SAPHO syndrome: two case reports with MRI and bone scintigraphy correlation. Clin Nucl Med. 2016;41:e211–5.PubMedGoogle Scholar
  12. Drobek A, Kralova J, Skopcova T, et al. PSTPIP2, a protein associated with autoinflammatory disease, interacts with inhibitory enzymes SHIP1 and Csk. J Immunol. 2015;195:3416–26.PubMedGoogle Scholar
  13. Ferguson PJ, Bing X, Vasef MA, et al. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone. 2006;38:41–7.PubMedGoogle Scholar
  14. Ferguson PJ, Laxer RM. New discoveries in CRMO: IL-1β, the neutrophil, and the microbiome implicated in disease pathogenesis in Pstpip2-deficient mice. Semin Immunopathol. 2015;37:407–12.PubMedGoogle Scholar
  15. Firinu D, Barca MP, Lorrai MM, et al. TH17 cells are increased in the peripheral blood of patients with SAPHO syndrome. Autoimmunity. 2014a;47:389–94.PubMedGoogle Scholar
  16. Firinu D, Murgia G, Lorrai MM, et al. Biological treatments for SAPHO syndrome: an update. Inflamm Allergy Drug Targets. 2014b;13:199–205.PubMedGoogle Scholar
  17. Firinu D, Garcia-Larsen V, Manconi PE, Del Giacco SR. SAPHO syndrome: current developments and approaches to clinical treatment. Curr Rheumatol Rep. 2016;18:35.PubMedGoogle Scholar
  18. Galadari H, Bishop AG, Venna SS, et al. Synovitis, acne, pustulosis, hyperostosis, and osteitis syndrome treated with a combination of isotretinoin and pamidronate. J Am Acad Dermatol. 2009;61:123–5.PubMedGoogle Scholar
  19. Govoni M, Colina M, Massara A, Trotta F. SAPHO syndrome and infections. Autoimmun Rev. 2009;8:256–9.PubMedGoogle Scholar
  20. Hayem G, Bouchaud-Chabot A, Benali K, et al. SAPHO syndrome: a long-term follow-up study of 120 cases. Arthritis Rheum. 1999;29:159–71.Google Scholar
  21. Hurtado-Nedelec M, Chollet-Martin S, Nicaise-Roland P, et al. Characterization of the immune response in the synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome. Rheumatology. 2008;47:1160–7.PubMedGoogle Scholar
  22. Hurtado-Nedelec M, Chollet-Martin S, Chapeton D, et al. Genetic susceptibility factors in a cohort of 38 patients with SAPHO syndrome: a study of PSTPIP2, NOD2, and LPIN2 genes. J Rheumatol. 2010;37:401–9.PubMedGoogle Scholar
  23. Iqbal M, Kolodney MS. Acne fulminans with synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome treated with infliximab. J Am Acad Dermatol. 2005b;52(Suppl):S118–20.PubMedGoogle Scholar
  24. Kahn MF, Khan MA. The SAPHO syndrome. Baillieres Clin Rheumatol. 1994;8:333–62.PubMedGoogle Scholar
  25. Kahn MF, Bouvier M, Palazzo E, et al. Sternoclavicular pustulotic osteitis (SAPHO). 20-year interval between skin and bone lesions. J Rheumatol. 1991;18:1104–8.PubMedGoogle Scholar
  26. Kim C. Current knowledge and future prospects for SAPHO syndrome. Drugs Today (Barc). 2014;50:757–61.Google Scholar
  27. Kotilainen P, Merilahti-Palo R, Lehtonen OP, et al. Propionibacterium acnes isolated from sternal osteitis in a patient with SAPHO syndrome. J Rheumatol. 1996;23:1302–4.PubMedGoogle Scholar
  28. Laredo JD, Vuillemin-Bodaghi V, Boutry N, et al. SAPHO syndrome: MR appearance of vertebral involvement. Radiology. 2007;242:825–31.PubMedGoogle Scholar
  29. Li N, Ma J, Li K, et al. Different contributions of CDKAL1, KIF21B, and LRRK2/MUC19 polymorphisms to SAPHO syndrome, rheumatoid arthritis, ankylosing spondylitis, and seronegative spondyloarthropathy. Genet Test Mol Biomarkers. 2017;21:122–6.PubMedGoogle Scholar
  30. Liao HJ, Chyuan IT, Wu CS, et al. Increased neutrophil infiltration, IL-1 production and a SAPHO syndrome-like phenotype in PSTPIP2-deficient mice. Rheumatology (Oxford). 2015;54:1317–26.Google Scholar
  31. Lukens JR, Gross JM, Calabrese C, et al. Critical role for inflammasome-independent IL-1β production in osteomyelitis. Proc Natl Acad Sci USA. 2014;111:1066–71.PubMedGoogle Scholar
  32. Mann B, Shaerf DA, Sheeraz A, et al. SAPHO syndrome presenting as widespread bony metastatic disease of unknown origin. Rheumatol Int. 2012;32:505–7.PubMedGoogle Scholar
  33. Marzano AV, Borghi A, Meroni PL, Cugno M. Pyoderma gangrenosum and its syndromic forms: evidence for a link with autoinflammation. Br J Dermatol. 2016;175:882–91.PubMedGoogle Scholar
  34. Mateo L, Sanint J, Rodríguez Muguruza S, et al. SAPHO syndrome presenting as an osteolytic lesion of the neck. Reumatol Clin. 2017;13:44–7.PubMedGoogle Scholar
  35. Nguyen MT, Borchers A, Selmi C, et al. The SAPHO syndrome. Semin Arthritis Rheum. 2012;42:254–65.PubMedGoogle Scholar
  36. Olivieri I, Padula A, Palazzi C. Pharmacological management of SAPHO syndrome. Expert Opin Investig Drugs. 2006;15:1229–33.PubMedGoogle Scholar
  37. Phillips FC, Gurung P, Kanneganti TD. Microbiota and caspase-1/caspase-8 regulate IL-1β-mediated bone disease. Gut Microbes. 2016;7:334–41.PubMedPubMedCentralGoogle Scholar
  38. Qu C, Bonar SL, Hickman-Brecks CL, et al. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J. 2015;29:1269–79.PubMedGoogle Scholar
  39. Rukavina I. SAPHO syndrome: a review. J Child Orthop. 2015;9:19–27.PubMedPubMedCentralGoogle Scholar
  40. Ruscitti P, Cipriani P, Carubbi F, et al. The role of IL-1β in the bone loss during rheumatic diseases. Mediators Inflamm. 2015;2015:782382.PubMedPubMedCentralGoogle Scholar
  41. Schaub S, Sirkis HM, Kay J. Imaging for synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. Rheum Dis Clin North Am. 2016;42:695–710.PubMedGoogle Scholar
  42. Takizawa Y, Murota A, Setoguchi K, Suzuki Y. Severe inflammation associated with synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome was markedly ameliorated by single use of minocycline. Mod Rheumatol. 2014;24:1015–8.PubMedGoogle Scholar
  43. Tan PL, Katz JM, Ames R, et al. Aminobisphosphonate inhibition of interleukin-1-induced bone resorption in mouse calvariae. Arthritis Rheum. 1988;31:762–8.PubMedGoogle Scholar
  44. Vekic DA, Woods J, Lin P, Cains GD. SAPHO syndrome associated with hidradenitis suppurativa and pyoderma gangrenosum successfully treated with adalimumab and methotrexate: a case report and review of the literature. Int J Dermatol. 2018;57:10–8.PubMedGoogle Scholar
  45. Wollheim FA. The SAPHO syndrome and genetics—discoveries in need of replication. Curr Rheumatol Rev. 2013;9:8–10.PubMedGoogle Scholar
  46. Yamazaki M, Kawai M, Miyagawa K, et al. Interleukin-1-induced acute bone resorption facilitates the secretion of fibroblast growth factor 23 into the circulation. J Bone Miner Metab. 2015;33:342–54.PubMedGoogle Scholar
  47. Zimmermann P, Curtis N. Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome—a challenging diagnosis not to be missed. J Infect. 2016;72(Suppl):S106–14.PubMedGoogle Scholar

PAPA Syndrome

  1. Brenner M, Ruzicka T, Plewig G, et al. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol. 2009;161:1199–201.PubMedGoogle Scholar
  2. Caorsi R, Picco P, Buoncompagni A, et al. Osteolytic lesion in PAPA syndrome responding to anti-interleukin 1 treatment. J Rheumatol. 2014;41:2333–4.PubMedGoogle Scholar
  3. Cortis E, De Benedetti F, Insalaco A, et al. Abnormal production of the tumour necrosis factor (TNF) alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome. J Pediatr. 2004;145:851–5.PubMedGoogle Scholar
  4. Cugno M, Borghi A, Marzano AV. PAPA, PASH and PAPASH syndromes: pathophysiology, presentation and treatment. Am J Clin Dermatol. 2017;18:555–62.PubMedGoogle Scholar
  5. Demidowich AP, Freeman AF, Kuhns DB, et al. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis Rheum. 2012;64:2022–7.PubMedGoogle Scholar
  6. Dierselhuis MP, Frenkel J, Wulffraat NM, Boelens JJ. Anakinra for flares of pyogenic arthritis in PAPA syndrome. Rheumatology (Oxford). 2005;44:406–8.Google Scholar
  7. Geusau A, Mothes-Luksch N, Nahavandi H, et al. Identification of a homozygous PSTPIP1 mutation in a patient with a PAPA-like syndrome responding to canakinumab treatment. JAMA Dermatol. 2013;149:209–15.PubMedPubMedCentralGoogle Scholar
  8. Holzinger D, Roth J. Alarming consequences—autoinflammatory disease spectrum due to mutations in proline-serine-threonine phosphatase-interacting protein 1. Curr Opin Rheumatol. 2016;28:550–9.PubMedGoogle Scholar
  9. Lindor NM, Arsenault TM, Solomon H, et al. A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum and acne: PAPA syndrome. Mayo Clin Proc. 1997;72:611–5.PubMedGoogle Scholar
  10. Lindwall E, Singla S, Davis WE, Quinet RJ. Novel PSTPIP1 gene mutation in a patient with pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome. Semin Arthritis Rheum. 2015;45:91–3.PubMedPubMedCentralGoogle Scholar
  11. Löffler W, Lohse P, Weihmayr T, Widenmayer W. Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome: differential diagnosis of septic arthritis by regular detection of exceedingly high synovial cell counts. Infection. 2017;45:395–402.PubMedGoogle Scholar
  12. Shoham NG, Centola M, Mansfield E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100:13501–6.PubMedPubMedCentralGoogle Scholar
  13. Smith EJ, Allantaz F, Bennett L, et al. Clinical, molecular, and genetic characteristics of PAPA syndrome: a review. Curr Genomics. 2010;11:519–27.PubMedPubMedCentralGoogle Scholar
  14. Tallon B, Corkill M. Peculiarities of PAPA syndrome. Rheumatology. 2006;45:1140–3.PubMedGoogle Scholar
  15. Vinkel C, Thomsen SF. Autoinflammatory syndromes associated with hidradenitis suppurativa and/or acne. Int J Dermatol. 2017;56:811–8.PubMedGoogle Scholar
  16. Waite AL, Schaner P, Richards N, et al. Pyrin modulates the intracellular distribution of PSTPIP1. PLoS One. 2009;4:e6147.PubMedPubMedCentralGoogle Scholar
  17. Wang D, Höing S, Patterson HC, et al. Inflammation in mice ectopically expressing human pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome-associated PSTPIP1 A230T mutant proteins. J Biol Chem. 2013;288:4594–601.PubMedPubMedCentralGoogle Scholar
  18. Wise CA, Gillum JD, Seidman CE, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11:961–9.PubMedPubMedCentralGoogle Scholar
  19. Yeon HB, Lindor HM, Seidman JG, Seidman CE. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome maps to chromosome 15q. Am J Hum Genet. 2000;66:1443–8.PubMedPubMedCentralGoogle Scholar
  20. Yu JW, Wu J, Zhang Z, et al. Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006;13:236–49.PubMedGoogle Scholar

PASH Syndrome

  1. Braun-Falco M, Kovnerystyy O, Lohse P, et al. Pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH)—a new autoinflammatory syndrome distinct from PAPA syndrome. J Am Acad Dermatol. 2012;66:409–15.PubMedGoogle Scholar
  2. Calderdéron-Castrat X, Bancalari-Diaz D, Román-Curto C, et al. PSTPIP1 gene mutation in a pyoderma gangrenosum, acne and suppurative hidradenitis (PASH) syndrome. Br J Dermatol. 2016;175:194–8.Google Scholar
  3. Duchatelet S, Miskinyte S, Join-Lambert O, et al. First nicastrin mutation in PASH (pyoderma gangrenosum, acne and suppurative hidradenitis) syndrome. Br J Dermatol. 2015;173:610–2.PubMedGoogle Scholar
  4. Hsiao JL, Antaya RJ, Berger T, et al. Hidradenitis suppurativa and concomitant pyoderma gangrenosum: a case series and literature review. Arch Dermatol. 2010;146:1265–70.PubMedGoogle Scholar
  5. Join-Lambert O, Duchatelet S, Delage M, et al. Remission of refractory pyoderma gangrenosum, severe acne, and hidradenitis suppurativa (PASH) syndrome using targeted antibiotic therapy in 4 patients. J Am Acad Dermatol. 2015;73(5 Suppl 1):S66–9.PubMedGoogle Scholar
  6. Lamiaux M, Dabouz F, Wantz M, et al. Successful combined antibiotic therapy with oral clindamycin and oral rifampicin for pyoderma gangrenosum in patient with PASH syndrome. JAAD Case Rep. 2017;4:17–21.PubMedPubMedCentralGoogle Scholar
  7. Marzano AV, Ishak RS, Colombo A, et al. Pyoderma gangrenosum, acne and suppurative hidradenitis syndrome following bowel bypass surgery. Dermatology. 2012;225:215–9.PubMedGoogle Scholar
  8. Marzano AV, Ceccherini I, Gattorno M, et al. Association of pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH) shares genetic and cytokine profiles with other autoinflammatory diseases. Medicine (Baltimore). 2014;93:e187.Google Scholar
  9. Marzano AV, Damiani G, Ceccherini I, et al. Autoinflammation in pyoderma gangrenosum and its syndromic form (pyoderma gangrenosum, acne and suppurative hidradenitis). Br J Dermatol. 2017;176:1588–98.PubMedGoogle Scholar
  10. Murphy B, Morrison G, Podmore P. Successful use of adalimumab to treat pyoderma gangrenosum, acne and suppurative hidradenitis (PASH syndrome) following colectomy in ulcerative colitis. Int J Colorectal Dis. 2015;30:1139–40.PubMedGoogle Scholar
  11. Niv D, Ramirez JA, Fivenson DP. Pyoderma gangrenosum, acne, and hidradenitis suppurativa (PASH) syndrome with recurrent vasculitis. JAAD Case Rep. 2017;3:70–3.PubMedPubMedCentralGoogle Scholar
  12. Staub J, Pfannschmidt N, Strohal R, et al. Successful treatment of PASH syndrome with infliximab, cyclosporine and dapsone. J Eur Acad Dermatol Venereol. 2015;29:2243–7.PubMedGoogle Scholar
  13. Zivanovic D, Masirevic I, Ruzicka T, et al. Pyoderma gangrenosum, acne, suppurative hidradenitis (PASH) and polycystic ovary syndrome: coincidentally or aetiologically connected? Australas J Dermatol. 2017;58:e54–9.PubMedGoogle Scholar

PASS Syndrome

  1. Bruzzese V. Pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and axial spondyloarthritis: efficacy of anti-tumor necrosis factor a therapy. J Clin Rheumatol. 2012;18:413–5.PubMedGoogle Scholar
  2. Leuenberger M, Berner J, Di Lucca J, et al. PASS syndrome: an IL-1-driven autoinflammatory disease. Dermatology. 2016;232:254–8.PubMedGoogle Scholar

PAPASH, PsAPASH, and PAC Syndrome

  1. Garzorz N, Papanagiotou V, Atenhan A, et al. Pyoderma gangrenosum, acne, psoriasis, arthritis and suppurative hidradenitis (PAPASH)-syndrome: a new entity within the spectrum of autoinflammatory syndromes? J Eur Acad Dermatol Venereol. 2016;30:141–3.PubMedGoogle Scholar
  2. Marzano AV, Trevisan V, Gattorno M, et al. Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene. JAMA Dermatol. 2013;149:762–4.PubMedGoogle Scholar
  3. Saraceno R, Babino G, Chiricozzi A, et al. PsAPASH: a new syndrome associated with hidradenitis suppurativa with response to tumor necrosis factor inhibition. J Am Acad Dermatol. 2015;72:e42–4.PubMedGoogle Scholar
  4. Zeeli T, Padalon-Brauch G, Ellenbogen E, et al. Pyoderma gangrenosum, acne and ulcerative colitis in a patient with a novel mutation in the PSTPIP1 gene. Clin Exp Dermatol. 2015;40:367–72.Google Scholar

Apert Syndrome

  1. Ahmed Z, Schuller AC, Suhling K, et al. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem J. 2008;413:37–49.PubMedPubMedCentralGoogle Scholar
  2. Apert E. De l‘a acrocé phalosyndactylie. Bull Soc Med Hop (Paris). 1906;23:1310–30.Google Scholar
  3. Benjamin LT, Trowers AB, Schachner LA. Successful acne management in Apert syndrome twins. Pediatr Dermatol. 2005;22:561–5.PubMedGoogle Scholar
  4. Bissacotti Steglich EM, Steglich RB, Melo MM, de Almeida HL Jr. Extensive acne in Apert syndrome. Int J Dermatol. 2016;55:e596–8.PubMedGoogle Scholar
  5. Boulet SL, Rasmussen SA, Honein MA. A population-based study of craniosynostosis in metropolitan Atlanta, 1989–2003. Am J Med Genet. 2008;146A:984–91.PubMedGoogle Scholar
  6. Campanati A, Marconi B, Penna L, et al. Pronounced and early acne in Apert’s syndrome: a case successfully treated with oral isotretinoin. Eur J Dermatol. 2002;12:496–8.PubMedGoogle Scholar
  7. Dolenc-Voljc M, Finzgar-Perme M. Successful isotretinoin treatment of acne in a patient with Apert syndrome. Acta Derm Venereol. 2008;88:534–5.PubMedGoogle Scholar
  8. Downs AM, Codon CA, Tan R. Isotretinoin therapy for antibiotic refractory acne in Apert’s syndrome. Clin Exp Dermatol. 1999;24:461–3.PubMedGoogle Scholar
  9. Fenwick AL, Bowdin SC, Klatt RE, Wilkie AO. A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome. BMC Med Genet. 2011;12:122.PubMedPubMedCentralGoogle Scholar
  10. Freiman A, Tessler O, Barankin B. Apert syndrome. Int J Dermatol. 2006;45:1341–3.PubMedGoogle Scholar
  11. Gilaberte M, Puig L, Alomar A. Isotretinoin treatment of acne in a patient with Apert syndrome. Pediatr Dermatol. 2003;20:443–36.PubMedGoogle Scholar
  12. Koca TT. Apert syndrome: a case report and review of the literature. North Clin Istanb. 2016;3:135–9.PubMedPubMedCentralGoogle Scholar
  13. Lemonnier J, Haÿ E, Delannoy P, et al. Increased osteoblast apoptosis in Apert craniosynostosis: role of protein kinase C and interleukin-1. Am J Pathol. 2001;158:1833–42.PubMedPubMedCentralGoogle Scholar
  14. Melnik BC. Role of FGFR2-signaling in the pathogenesis of acne. Dermatoendocrinol. 2009;1:141–56.PubMedPubMedCentralGoogle Scholar
  15. Melnik BC, Schmitz G, Zouboulis CC. Anti-acne agents attenuate FGFR2 signal transduction in acne. J Invest Dermatol. 2009;129:1868–77.PubMedGoogle Scholar
  16. Oldridge M, Zackai EH, McDonald-McGinn DM, et al. De novo alu-element insertions in FGFR2 identify a distinct pathological basis for Apert syndrome. Am J Hum Genet. 1999;64:446–61.PubMedPubMedCentralGoogle Scholar
  17. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4:215–66.PubMedPubMedCentralGoogle Scholar
  18. Solomon LM, Fretzin DF, Pruzansky S. Pilosebaceous abnormalities in Apert’s syndrome. Arch Dermatol. 1970;102:381–5.PubMedGoogle Scholar
  19. Solomon L, Cohen M, Pruzansky S. Pilosebaceous abnormalities in Apert type acrocephalosyndactyly. Birth Defects. 1971;7:193–5.PubMedGoogle Scholar
  20. Steffen C. The acneiform eruption of Apert’s syndrome is not acne vulgaris. Am J Dermatopathol. 1984;6:213–20.PubMedGoogle Scholar
  21. Wilkie AO, Slaney SF, Oldridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165–72.PubMedGoogle Scholar

Acneiform Nevus of Munro

  1. Melnik B, Vakilzadeh F, Aslanidis C, Schmitz G. Unilateral segmental acneiform nevus—a model disorder towards understanding FGFR2 function in acne. Br J Dermatol. 2008;158:1397–9.PubMedPubMedCentralGoogle Scholar
  2. Munro CS, Wilkie AOM. Epidermal mosaicism producing localized acne: somatic mutation in FGFR2. Lancet. 1998;352:704–5.PubMedPubMedCentralGoogle Scholar
  3. Torchia D, Schachner LA, Izakovic J. Segmental acne versus mosaic conditions with acne lesions. Dermatology. 2012;224:10–4.PubMedGoogle Scholar

Congenital Adrenal Hyperplasia

  1. Caputo V, Fiorella S, Curiale S, et al. Refractory acne and 21-hydroxylase deficiency in a selected group of female patients. Dermatology. 2010;220:121–7.PubMedGoogle Scholar
  2. Carmina E, Dewailly D, Escobar-Morreale HF, et al. Non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency revisited: an update with a special focus on adolescent and adult women. Hum Reprod Update. 2017;23:580–99.PubMedGoogle Scholar
  3. Degitz K, Placzek M, Arnold B, et al. Congenital adrenal hyperplasia and acne in male patients. Br J Dermatol. 2003;148:1263–6.PubMedGoogle Scholar
  4. Dessinioti C, Katsambas AD. Congenital adrenal hyperplasia. Dermatoendocrinol. 2009;1:87–91.PubMedPubMedCentralGoogle Scholar
  5. Escobar-Morreale HF, Snachon R, San Millan JL. A prospective study of the prevalence of nonclassical congenital adrenal hyperplasia among women presenting with hyperandrogenic symptoms and signs. J Clin Endocrinol Metab. 2008;93:5275–83.Google Scholar
  6. Ju Q, Tao T, Hu T, et al. Sex hormones and acne. Clin Dermatol. 2017;35:130–7.Google Scholar
  7. Karrer-Voegeli S, Rey F, Reymond MJ, et al. Androgen dependence of hirsutism, acne and alopecia in women: retrospective analysis of 228 patients investigated for hyperandrogenism. Medicine (Baltimore). 2009;88:32–45.Google Scholar
  8. Trakakis E, Rizos D, Loghis C, et al. The prevalence of non-classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency in Greek women with hirsutism and polycystic ovary syndrome. Endocr J. 2008;55:33–9.PubMedGoogle Scholar
  9. Trakakis E, Basios G, Trompoukis P, et al. An update on 21-hydroxylase deficient congenital adrenal hyperplasia. Gynecol Endocrinol. 2010;26:63–71.PubMedPubMedCentralGoogle Scholar
  10. Witchel SF. Non-classic congenital adrenal hyperplasia. Steroids. 2013;78:747–50.PubMedGoogle Scholar
  11. Witchel SF. Congenital adrenal hyperplasia. J Pediatr Adolesc Gynecol. 2017;30:520–34.PubMedPubMedCentralGoogle Scholar

SAHA Syndrome

  1. Bachelot A, Chabbert-Buffet N, Salenave S, et al. Anti-androgen treatments. Ann Endocrinol (Paris). 2010;71:19–24.Google Scholar
  2. Carmina E, Rosato F, Janni A, et al. Extensive clinical experience: relative prevalence of different androgen excess disorders in 950 women referred because of clinical hyperandrogenism. J Clin Endocrinol Metab. 2006;91:2–6.PubMedGoogle Scholar
  3. Chen W, Zouboulis CC. Hormones and the pilosebaceous unit. Dermatoendocrinol. 2009;1:81–6.PubMedPubMedCentralGoogle Scholar
  4. Essah PA, Wickham EP, Nunley JR, Nestler JE. Dermatology of androgen-related disorders. Clin Dermatol. 2006;24:289–98.PubMedGoogle Scholar
  5. Langan EA, Hinde E, Paus RR. Prolactin as a candidate sebotrop(h)ic hormone? Exp Dermatol. 2018;27:729–36.PubMedGoogle Scholar
  6. Orfanos CE. Antiandró genos en dermatología. Arch Arg Derm. 1982;32(Suppl. 1):51–5.Google Scholar
  7. Orfanos CE, Adler YA, Zouboulis CC. The SAHA syndrome. Horm Res. 2000;54:251–8.PubMedGoogle Scholar
  8. Zouboulis CC, Chen W, Thornton MJ, et al. Sexual hormones in human skin. Horm Metab Res. 2007;39:85–95.PubMedGoogle Scholar

PCO Syndrome

  1. Bakhshalizadeh S, Amidi F, Alleyassin A, et al. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome. Syst Biol Reprod Med. 2017;63:150–61.PubMedGoogle Scholar
  2. Belani M, Deo A, Shah P, et al. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients. J Steroid Biochem Mol Biol. 2018;178:283–92.PubMedGoogle Scholar
  3. Dewailly D, Robin G, Peigne M, et al. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22:709–24.PubMedGoogle Scholar
  4. Ewens KG, Stewart DR, Ankener W, et al. Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab. 2010;95:2306–15.PubMedPubMedCentralGoogle Scholar
  5. Garg D, Tal R. The role of AMH in the pathophysiology of polycystic ovarian syndrome. Reprod Biomed Online. 2016;33:15–28.PubMedGoogle Scholar
  6. Glueck CJ, Goldenberg N, Sieve L, Wang P. An observational study of reduction of insulin resistance and prevention of development of type 2 diabetes mellitus in women with polycystic ovary syndrome treated with metformin and diet. Metabolism. 2008;57:954–60.PubMedGoogle Scholar
  7. Goodman NF, Cobin RH, Futterweit W, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome—part 1. Endocr Pract. 2015a;21:1291–2300.PubMedGoogle Scholar
  8. Goodman NF, Cobin RH, Futterweit W, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society Disease State Clinical Review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome—part 2. Endocr Pract. 2015b;21:1415–26.PubMedGoogle Scholar
  9. History of discovery of polycystic ovary syndrome. Adv Clin Exp Med. 2017;26:555–8.Google Scholar
  10. Kelekci KH, Kelekci S, Incki K, et al. Ovarian morphology and prevalence of polycystic ovary syndrome in reproductive aged women with or without mild acne. Int J Dermatol. 2010;49:775–9.PubMedGoogle Scholar
  11. Lewandowski KC, Płusajska J, Horzelski W, et al. Limitations of insulin resistance assessment in polycystic ovary syndrome. Endocr Connect. 2018;7:403–12.PubMedPubMedCentralGoogle Scholar
  12. Li X, Cui P, Jiang HY, et al. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am J Transl Res. 2015;7:574–86.PubMedPubMedCentralGoogle Scholar
  13. Liu Y, Chen Y. Fat mass and obesity associated gene polymorphism and the risk of polycystic ovary syndrome: a meta-analysis. Iran J Public Health. 2017;46:4–11.PubMedPubMedCentralGoogle Scholar
  14. Liu AL, Liao HQ, Li ZL, et al. New insights into mTOR signal pathways in ovarian-related diseases: polycystic ovary syndrome and ovarian cancer. Asian Pac J Cancer Prev. 2016;17:5087–94.PubMedPubMedCentralGoogle Scholar
  15. Liu AL, Xie HJ, Xie HY, et al. Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: a systematic review and meta-analysis. BMC Med Genet. 2017;18:89.PubMedPubMedCentralGoogle Scholar
  16. Liu AL, Liao HQ, Zhou J, et al. The role of FTO variants in the susceptibility of polycystic ovary syndrome and in vitro fertilization outcomes in Chinese women. Gynecol Endocrinol. 2018;34(8):719–23.PubMedGoogle Scholar
  17. Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med. 2015b;13:385.PubMedPubMedCentralGoogle Scholar
  18. Melnik BC, Schmitz G. Metformin: an inhibitor of mTORC1 signaling. J Endocrinol Diabetes Obes. 2014;2:1029.Google Scholar
  19. Nardo LG, Patchava S, Laing I. Polycystic ovary syndrome: pathophysiology, molecular aspects and clinical implications. Panminerva Med. 2008;50:267–78.PubMedGoogle Scholar
  20. Pasquali R, Gambineri A. New perspectives on the definition and management of polycystic ovary syndrome. J Endocrinol Invest. 2018;41:1123–35.PubMedGoogle Scholar
  21. Rajaeieh G, Marasi M, Shahshahan Z, et al. The relationship between intake of dairy products and polycystic ovary syndrome in women who referred to Isfahan University of Medical Science Clinics in 2013. Int J Prev Med. 2014;5:687–94.PubMedPubMedCentralGoogle Scholar
  22. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467–520.PubMedPubMedCentralGoogle Scholar
  23. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2003;19:41–7.Google Scholar
  24. Salley KE, Wickham EP, Cheang KI, et al. Glucose intolerance in polycystic ovary syndrome—a position statement of the Androgen Excess Society. J Clin Endocrinol Metab. 2007;92:4546–56.PubMedGoogle Scholar
  25. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29:181–91.Google Scholar
  26. Wehr E, Pilz S, Schweighofer N, et al. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur J Endocrinol. 2009;161:575–82.PubMedGoogle Scholar
  27. Wehr E, Schweighofer N, Möller R, et al. Association of FTO gene with hyperandrogenemia and metabolic parameters in women with polycystic ovary syndrome. Metabolism. 2010;59:575–80.PubMedGoogle Scholar
  28. Yaba A, Demir N. The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J Ovarian Res. 2012;5:38.PubMedPubMedCentralGoogle Scholar
  29. Zhao H, Lv Y, Li L, Chen ZJ. Genetic studies on polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2016;37:56–65.PubMedGoogle Scholar

HAIR-AN Syndrome

  1. Blomberg M, Jeppesen EM, Skovby F, Benfeldt E. FGFR3 mutations and the skin: report of a patient with a FGFR3 gene mutation, acanthosis nigricans, hypochondroplasia and hyperinsulinemia and review of the literature. Dermatology. 2010;220:297–305.PubMedGoogle Scholar
  2. Dédjan AH, Chadli A, El Aziz S, Farouqi A. Hyperandrogenism-insulin resistance-acanthosis nigricans syndrome. Case Rep Endocrinol. 2015;2015:193097.PubMedPubMedCentralGoogle Scholar
  3. Elmer KB, George RM. HAIR-AN syndrome: a multisystem challenge. Am Fam Physician. 2001;63:2385–90.PubMedGoogle Scholar
  4. Giri D, Alsaffar H, Ramakrishnan R. Acanthosis nigricans and its response to metformin. Pediatr Dermatol. 2017;34:e281–2.PubMedGoogle Scholar
  5. Ingletto D, Ruggiero L, De Sanctis V. HAIR-AN syndrome (hyperandrogenism, insulin resistance, acanthosis nigricans) in an adolescent with Cohen’s syndrome. Minerva Pediatr. 2001;53:493–4.PubMedGoogle Scholar
  6. Karadağ AS, You Y, Danarti R, et al. Acanthosis nigricans and the metabolic syndrome. Clin Dermatol. 2018;36:48–53.PubMedGoogle Scholar
  7. Macut D, Antić IB, Bjekić-Macut J. Cardiovascular risk factors and events in women with androgen excess. J Endocrinol Invest. 2015;38:295–301.PubMedGoogle Scholar
  8. Manco M, Castagneto M, Nanni G, et al. Biliopancreatic diversion as a novel approach to the HAIR-AN syndrome. Obes Surg. 2005;15:286–9.PubMedGoogle Scholar
  9. McClanahan KK, Omar HA. Navigating adolescence with a chronic health condition: a perspective on the psychological effects of HAIR-AN syndrome on adolescent girls. Sci World J. 2006;6:1350–8.Google Scholar
  10. Musso C, Cochran E, Moran SA, et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): a 30-year prospective. Medicine (Baltimore). 2004;83:209–22.Google Scholar
  11. Omar HA, Logsdon S, Richards J. Clinical profiles, occurrence, and management of adolescent patients with HAIR-AN syndrome. Sci World J. 2004;4:507–11.Google Scholar
  12. Pfeifer SL, Wilson RM, Gawkrodger DJ. Clearance of acanthosis nigricans associated with the HAIR-AN syndrome after partial pancreatectomy: an 11-year follow-up. Postgrad Med J. 1999;75:421–2.PubMedPubMedCentralGoogle Scholar
  13. Rager KM, Omar HA. Androgen excess disorders in women: the severe insulin-resistant hyperandrogenic syndrome, HAIR-AN. Sci World J. 2006;6:116–21.Google Scholar
  14. Shen Z, Hao F, Wei P. HAIR-AN syndrome in a male adolescent with concomitant vitiligo. Arch Dermatol. 2009;145:492–4.PubMedGoogle Scholar
  15. Vigouroux C. What have we learned form monogenic forms of severe insulin resistance associated with PCOS/HAIRAN? Ann Endocrinol (Paris). 2010;71:222–4.Google Scholar
  16. Zemtsov A, Wilson L. Successful treatment of hirsutism in HAIR-AN syndrome using flutamide, spironolactone, and birth control therapy. Arch Dermatol. 1997;133:431–3.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerd Plewig
    • 1
  • Bodo Melnik
    • 2
  • WenChieh Chen
    • 3
  1. 1.Department of Dermatology and AllergyLudwig-Maximilian-University MunichMunichGermany
  2. 2.Department of Dermatology, Environmental Medicine and Health TheoryUniversity of OsnabrückOsnabrückGermany
  3. 3.Department of Dermatology and AllergyTechnical University of MunichMunichGermany

Personalised recommendations