Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 674 Accesses

Abstract

This chapter discusses the integration of Solar Photovoltaic (PV) and Battery Energy Storage (BES) units for reducing energy loss and enhancing voltage stability. In this chapter, each nondispatchable PV unit is converted into a dispatchable source with a combination of PV and BES units. New multiobjective index-based analytical expressions are proposed to capture the size and power factor of the combination of PV and BES units. A Self-Correction Algorithm (SCA) is also developed for sizing multiple PV and BES units while considering the time-varying demand and probabilistic generation. The power factors of PV and BES units are optimally dispatched at each load level. The simulation results show that operation of PV and BES units with optimal power factors can reduce energy losses and enhance voltage stability significantly compared to that with unity power factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katiraei F, Aguero JR (2011) Solar PV integration challenges. IEEE Power Energ Mag 9(3):62–71. doi:10.1109/mpe.2011.940579

    Article  Google Scholar 

  2. Omran WA, Kazerani M, Salama MMA (2011) Investigation of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems. IEEE Trans Energy Convers 26(1):318–327. doi:10.1109/tec.2010.2062515

    Article  Google Scholar 

  3. Yeh HG, Gayme DF, Low SH (2012) Adaptive VAr control for distribution circuits with photovoltaic generators. IEEE Trans Power Syst 27(3):1656–1663. doi:10.1109/tpwrs.2012.2183151

    Article  Google Scholar 

  4. Turitsyn K, Sulc P, Backhaus S, Chertkov M (2011) Options for control of reactive power by distributed photovoltaic generators. Proc IEEE 99(6):1063–1073. doi:10.1109/JPROC.2011.2116750

    Article  Google Scholar 

  5. Albuquerque FL, Moraes AJ, Guimarães GC, Sanhueza SMR, Vaz AR (2010) Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator. Sol Energy 84(7):1310–1317. doi:10.1016/j.solener.2010.04.011

    Article  Google Scholar 

  6. IEEE 1547 Standard for interconnecting distributed resources with electric power systems, 2003. doi:10.1109/ieeestd.2003.94285

  7. Chen SX, Gooi HB, Wang MQ (2012) Sizing of energy storage for microgrids. IEEE Transactions on Smart Grid 3(1):142–151. doi:10.1109/tsg.2011.2160745

    Article  Google Scholar 

  8. Gabash A, Pu L (2012) Active-reactive optimal power flow in distribution networks with embedded generation and battery storage. IEEE Trans Power Syst 27(4):2026–2035. doi:10.1109/tpwrs.2012.2187315

    Article  Google Scholar 

  9. Gabash A, Li P (2013) Flexible optimal operation of battery storage systems for energy supply networks. IEEE Trans Power Syst 28(3):2788–2797. doi:10.1109/tpwrs.2012.2230277

    Article  Google Scholar 

  10. Singh D, Verma KS (2009) Multiobjective optimization for DG planning with load models. IEEE Trans Power Syst 24(1):427–436. doi:10.1109/TPWRS.2008.2009483

    Article  Google Scholar 

  11. Ochoa LF, Padilha-Feltrin A, Harrison GP (2006) Evaluating distributed generation impacts with a multiobjective index. IEEE Trans Power Deliv 21(3):1452–1458. doi:10.1109/TPWRD.2005.860262

    Article  Google Scholar 

  12. Ochoa LF, Padilha-Feltrin A, Harrison GP (2008) Evaluating distributed time-varying generation through a multiobjective index. IEEE Trans Power Deliv 23(2):1132–1138. doi:10.1109/TPWRD.2008.915791

    Article  Google Scholar 

  13. El-Zonkoly AM (2011) Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation. IET Gener Trans Distrib 5(7):760–771. doi:10.1049/iet-gtd.2010.0676

    Article  Google Scholar 

  14. Canizares CA, Alvarado FL (1993) Point of collapse and continuation methods for large AC/DC systems. IEEE Trans Power Syst 8(1):1–8. doi:10.1109/59.221241

    Article  Google Scholar 

  15. Ettehadi M, Ghasemi H, Vaez-Zadeh S (2013) Voltage stability-based DG placement in distribution networks. IEEE Trans Power Deliv 28(1):171–178. doi:10.1109/tpwrd.2012.2214241

    Article  Google Scholar 

  16. Al Abri RS, El-Saadany EF, Atwa YM (2013) Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation. IEEE Trans Power Syst 28(1):326–334. doi:10.1109/tpwrs.2012.2200049

    Article  Google Scholar 

Download references

Acknowlegments

The work presented in this chapter was taken from the journal paper: D.Q. Hung, N. Mithulananthan, and R.C. Bansal, “Integration of PV and BES units in commercial distribution systems considering energy losses and voltage stability”, Applied Energy, volume 113, pages 1162-1170, January 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadarajah Mithulananthan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mithulananthan, N., Hung, D.Q., Lee, K.Y. (2017). PV and BES Integration. In: Intelligent Network Integration of Distributed Renewable Generation . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49271-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49271-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49270-4

  • Online ISBN: 978-3-319-49271-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics