Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 681 Accesses

Abstract

This chapter presents the integration of Photovoltaic (PV) sources into distribution systems. Firstly, different types of time-varying voltage-dependent load models are introduced along with solar PV modelling, where a probability distribution function is used to describe the uncertainty of PV generation with detailed steps for steady-state analyses. To incorporate PV outputs as multistate variables in the problem formulation, a combined generation-load is also briefly explained. Secondly, various impact indices, namely active power loss, reactive power loss and voltage deviation indices to aid the integration of PV sources are introduced with their detailed mathematical model. A combination of these indices with appropriate weights based on priority to form a multi-objective index is also described in the model. Based on such an index, an expression for sizing PV units at various locations is also introduced along with a computational procedure to determine the best allocation for a PV unit. Finally, examples of application of the proposed methodologies on different distribution systems are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eftekharnejad S, Vittal V, Heydt GT, Keel B, Loehr J (2013) Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans Power Syst 28(2):893–901. doi:10.1109/tpwrs.2012.2216294

    Article  Google Scholar 

  2. Whitaker C, Newmiller J, Ropp M, Norris B (2008) Distributed photovoltaic systems design and technology requirements. Sandia National Laboratories. https://www1.eere.energy.gov/solar/pdfs/distributed_pv_system_design.pdf

  3. Lopez E, Opazo H, Garcia L, Bastard P (2004) Online reconfiguration considering variability demand: applications to real networks. IEEE Trans Power Syst 19(1):549–553. doi:10.1109/tpwrs.2003.821447

    Article  Google Scholar 

  4. SolarAnywhere. Available: https://solaranywhere.com/

  5. Atwa YM, El-Saadany EF, Salama MMA, Seethapathy R (2010) Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans Power Syst 25(1):360–370. doi:10.1109/TPWRS.2009.2030276

    Article  Google Scholar 

  6. Turitsyn K, Sulc P, Backhaus S, Chertkov M (2011) Options for control of reactive power by distributed photovoltaic generators. Proc IEEE 99(6):1063–1073. doi:10.1109/JPROC.2011.2116750

    Article  Google Scholar 

  7. Albuquerque FL, Moraes AJ, Guimarães GC, Sanhueza SMR, Vaz AR (2010) Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator. Sol Energy 84(7):1310–1317. doi:10.1016/j.solener.2010.04.011

    Article  Google Scholar 

  8. Hung DQ, Mithulananthan N, Bansal RC (2010) Analytical expressions for DG allocation in primary distribution networks. IEEE Trans Energy Convers 25(3):814–820. doi:10.1109/TEC.2010.2044414

    Article  Google Scholar 

  9. Injeti SK, Prema Kumar N (2013) A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. Int J Electr Power Energy Syst 45(1):142–151. doi:10.1016/j.ijepes.2012.08.043

    Article  Google Scholar 

  10. Viawan FA, Karlsson D (2007) Combined local and remote voltage and reactive power control in the presence of induction machine distributed generation. IEEE Trans Power Syst 22(4):2003–2012. doi:10.1109/tpwrs.2007.907362

    Article  Google Scholar 

  11. Singh D, Verma KS (2009) Multiobjective optimization for DG planning with load models. IEEE Trans Power Syst 24(1):427–436. doi:10.1109/TPWRS.2008.2009483

    Article  Google Scholar 

  12. Ochoa LF, Padilha-Feltrin A, Harrison GP (2006) Evaluating distributed generation impacts with a multiobjective index. IEEE Trans Power Delivery 21(3):1452–1458. doi:10.1109/TPWRD.2005.860262

    Article  Google Scholar 

  13. El-Zonkoly AM (2011) Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation. IET Gener Transm Distrib 5(7):760–771. doi:10.1049/iet-gtd.2010.0676

    Article  Google Scholar 

  14. Ochoa LF, Padilha-Feltrin A, Harrison GP (2008) Evaluating distributed time-varying generation through a multiobjective index. IEEE Trans Power Delivery 23(2):1132–1138. doi:10.1109/TPWRD.2008.915791

    Article  Google Scholar 

  15. Hung DQ, Mithulananthan N, Bansal RC (2010) Analytical expressions for DG allocation in primary distribution networks. IEEE Trans Energy Convers 25(3):814–820. doi:10.1109/TEC.2010.2044414

    Article  Google Scholar 

  16. Caisheng W, Nehrir MH (2004) Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Trans Power Syst 19(4):2068–2076. doi:10.1109/tpwrs.2004.836189

    Article  Google Scholar 

  17. Gözel T, Hocaoglu MH (2009) An analytical method for the sizing and siting of distributed generators in radial systems. Electr Power Syst Res 79(6):912–918. doi:10.1016/j.epsr.2008.12.007

    Article  Google Scholar 

  18. Acharya N, Mahat P, Mithulananthan N (2006) An analytical approach for DG allocation in primary distribution network. Int J Electr Power Energy Syst 28(10):669–678. doi:10.1016/j.ijepes.2006.02.013

    Article  Google Scholar 

  19. Samadi A, Ghandhari M, Söder L (2012) Reactive power dynamic assessment of a PV system in a distribution grid. Energy Procedia 20:98–107. doi:10.1016/j.egypro.2012.03.012

    Article  Google Scholar 

  20. Hung DQ, Mithulananthan N, Lee KY (2014) Determining PV penetration for distribution systems with time-varying load models. IEEE Trans Power Syst 29(6):3048–3057. doi:10.1109/tpwrs.2014.2314133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadarajah Mithulananthan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mithulananthan, N., Hung, D.Q., Lee, K.Y. (2017). PV Integration. In: Intelligent Network Integration of Distributed Renewable Generation . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-49271-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49271-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49270-4

  • Online ISBN: 978-3-319-49271-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics