Skip to main content

A Unified and General Framework for Enriching Finite Element Approximations

  • Chapter
  • First Online:
Progress in Approximation Theory and Applicable Complex Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 117))

Abstract

In this chapter our goal is to develop a unified and general framework for enriching finite element approximations via the use of additional enrichment functions. A crucial point in such an approach is to determine conditions on enrichment functions which guarantee that they generate a well-defined finite element. We start by giving under some conditions an abstract general theorem characterizing the existence of any enriched finite element approximation. After proving four key lemmas, we then establish under a unisolvence condition a more practical characterization result. We show that this proposed method easily allows us to establish a new class of enriched non-conforming finite elements in any dimension. This new family is inspired by the Han rectangular element and the nonconforming rotated element of Rannacher and Turek. They are all obtained as applications of a new family of multivariate trapezoidal, midpoint, and Simpson type cubature formulas, which employ integrals over facets. In addition, we provide analogously a general class of perturbed trapezoidal and midpoint cubature formulas, and use them to build a new enriched nonconforming finite element of Wilson-type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achchab, B., Agouzal, A., Bouihat, K.: A simple nonconforming quadrilateral finite element. C. R. Acad. Sci. Paris Ser. I 352, 529–533 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achchab, B., Bouihat, K., Guessab, A., Schmeisser, G.: A general approach to the construction of nonconforming finite elements on convex polytope. Appl. Math. Comput. 268, 916–923 (2015)

    MathSciNet  Google Scholar 

  3. Achchab, B., Guessab, A., Zaim, Y.: A new class of nonconforming finite elements for the enrichment of Q 1 element on convex polytope. Appl. Math. Comput. 271, 657–668 (2015)

    MathSciNet  Google Scholar 

  4. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Addison-Wesley, Reading, MA (1975)

    Google Scholar 

  5. Babu\(\check{\mathrm{s}}\) ka, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12 (1), 1–125 (2003)

    Google Scholar 

  6. Babu\(\check{\mathrm{s}}\) ka, I., Banerjee, U., Osborn, J.: Generalized finite element methods: main ideas, results and perspective. Int. J. Comput. Methods 1 (1), 67–103 (2004)

    Google Scholar 

  7. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Meth. Appl. Mech. Eng. 139 (1–4), 3–47 (1996)

    Article  MATH  Google Scholar 

  8. Benzley, S.E.: Representation of singularities with isoparametric finite elements. Int. J. Numer. Methods Eng. 8, 537–545 (1974)

    Article  MATH  Google Scholar 

  9. Byskov, E.: The calculation of stress intensity factors using the finite element method with cracked elements. Int. J. Fract. Mech. 6, 159–167 (1970)

    Google Scholar 

  10. Cai, Z., Douglas, J. Jr., Ye, X.: A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36, 215–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Z., Douglas, J. Jr., Santos, J.E., Sheen, D., Ye, X.: Nonconforming quadrilateral finite elements: a correction. Calcolo 37, 253–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1980)

    MATH  Google Scholar 

  13. De, S., Bathe, K.J.: The method of finite spheres. Comput. Mech. 25 (4), 329–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Douglas, J. Jr., Santos, J.E., Sheen, D., Ye, X.: Non conforming Galerkin methods based on quadrilateral elements for second order elliptic problems. RAIRO Math. Model. Anal. Numer. 33, 747–770 (1999)

    Article  MATH  Google Scholar 

  15. Fix, G., Gulati, S., Wakoff, G.I.: On the use of singular functions with finite element approximations. J. Comput. Phys. 13, 209–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fries, T.P., Belytschko, T.: The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 68 (13), 1358–385 (2006)

    Article  MATH  Google Scholar 

  17. Han, H.: Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (3), 223–233 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Khoei, A.R.: Extended Finite Element Method, Theory and Applications. Wiley, New York (2015)

    MATH  Google Scholar 

  19. Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)

    MATH  Google Scholar 

  20. Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of nonconforming low order finite elements applied to the Poisson equation. IMA J. Numer. Anal. 25, 160–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, G.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC, Boca Raton, FL (2002)

    Book  Google Scholar 

  22. Mao, S.P., Chen, S.C., Shi, D.: Convergence and superconvergence of a nonconforming finite element on anisotropic meshes. Int. J. Numer. Anal. Model. 4, 16–38 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8 (2), 97–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Silvester, J.R.: Determinants of block matrices. Math. Gaz. 84, 460–467 (2000)

    Article  Google Scholar 

  25. Zienkiewicz, O.C.: The Finite Element Method, 3rd edn. McGraw-Hill, New York (1977)

    MATH  Google Scholar 

Download references

Acknowledgements

Allal Guessab and Yassine Zaim would like to thank the Volubilis Hubert Curien Program (Grant No. MA/13/286) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allal Guessab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guessab, A., Zaim, Y. (2017). A Unified and General Framework for Enriching Finite Element Approximations. In: Govil, N., Mohapatra, R., Qazi, M., Schmeisser, G. (eds) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-49242-1_22

Download citation

Publish with us

Policies and ethics