Skip to main content

On the L 2 Markov Inequality with Laguerre Weight

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 117))

Abstract

Let w α (t) = t αe t, α > −1, be the Laguerre weight function, and \(\Vert \cdot \Vert _{w_{\alpha }}\) denote the associated L 2-norm, i.e.,

$$\displaystyle{ \Vert f\Vert _{w_{\alpha }}:=\Big (\int _{0}^{\infty }w_{\alpha }(t)\vert f(t)\vert ^{2}\,dt\Big)^{1/2}. }$$

Denote by \(\mathcal{P}_{n}\) the set of algebraic polynomials of degree not exceeding n. We study the best constant c n (α) in the Markov inequality in this norm,

$$\displaystyle{ \Vert p^{{\prime}}\Vert _{ w_{\alpha }} \leq c_{n}(\alpha )\,\Vert p\Vert _{w_{\alpha }}\,,\quad p \in \mathcal{P}_{n}\,, }$$

namely the constant

$$\displaystyle{ c_{n}(\alpha ) =\sup _{\mathop{}_{p\neq 0}^{p\in \mathcal{P}_{n}}}\frac{\Vert p^{{\prime}}\Vert _{w_{\alpha }}} {\Vert p\Vert _{w_{\alpha }}} \,, }$$

and we are also interested in its asymptotic value

$$\displaystyle{ c(\alpha ) =\lim _{n\rightarrow \infty }\frac{c_{n}(\alpha )} {n} \,. }$$

In this paper we obtain lower and upper bounds for both c n (α) and c(α). Note that according to a result of P. Dörfler from 2002, c(α) = [j (α−1)∕2, 1]−1, with j ν, 1 being the first positive zero of the Bessel function J ν (z), hence our bounds for c(α) imply bounds for j (α−1)∕2, 1 as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aleksov, D., Nikolov, G., Shadrin, A.: On the Markov inequality in the L 2 norm with the Gegenbauer weight. J. Approx. Theory 208, 9–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bojanov, B.: Markov-type inequalities for polynomials and splines. In: Chui, C.K., Schumaker, L.L., Stoeckler, J. (eds.) Approximation Theory X. Abstract and Classical Analysis, pp. 31–90. Vanderbilt University Press, Vanderbilt (2002)

    Google Scholar 

  3. Bojanov, B., Nikolov, G.: Duffin and Schaeffer type inequality for ultraspherical polynomials. J. Approx. Theory 84, 129–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böttcher, A., Dörfler, P.: Weighted Markov-type inequalities, norms of Volterra operators, and zeros of Bessel functions. Math. Nachr. 283, 357–367 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Böttcher, A., Dörfler, P.: On the best constant in Markov-type inequalities involving Gegenbauer norms with different weights. Oper. Matr. 161, 40–57 (2010)

    MATH  Google Scholar 

  6. Böttcher, A., Dörfler, P.: On the best constant in Markov-type inequalities involving Laguerre norms with different weights. Monatsh. Math. 5, 261–272 (2011)

    MATH  Google Scholar 

  7. Dörfler, P.: New inequalities of Markov type. SIAM J. Math. Anal. 18, 490–494 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dörfler, P.: Über die bestmögliche Konstante in Markov-Ungleichungen mit Laguerre Gewicht. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 200, 13–20 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Dörfler, P.: Asymptotics of the best constant in a certain Markov-type inequality. J. Approx. Theory 114, 84–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elbert, A.: Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Anal. 133, 65–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ifantis, E.K., Siafarikas, P.D.: A differential equation for the zeros of Bessel functions. Appl. Anal. 20, 269–281 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jensen, S.T.: The Laguerre-Samuelson inequality with extensions and applications in statistics and matrix theory. Master Thesis, McGill University, Montreal, Canada (1999). Available at: http://www-stat.wharton.upenn.edu/~stjensen/papers/shanejensen.mscthesis99.pdf

  13. Kroó, A.: On the exact constant in the L 2 Markov inequality. J. Approx. Theory 151, 208–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Markov, A.A.: On a question of D. I. Mendeleev. Zapiski Petersb. Akad. Nauk 62, 1–24 (1889) (in Russian). Available also at: http://www.math.technion.ac.il/hat/fpapers/mar1.pdf

  15. Markov, V.A.: On functions which deviate least from zero in a given interval. Saint-Petersburg University (1892) (in Russian); German translation: Math. Ann. 77, 213–258 (1916). Available also at: http://www.math.technion.ac.il/hat/fpapers/vmar.pdf

  16. Milovanović, G.V., Mitrinović, D.S., Rassias, Th.M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  17. Nikolov, G.: On certain Duffin and Schaeffer type inequalities. J. Approx. Theory 93, 157–176 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nikolov, G.: Inequalities of Duffin-Schaeffer type. SIAM J. Math. Anal. 33, 686–698 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nikolov, G.: Markov-type inequalities in the L 2-norms induced by the Tchebycheff weights. Arch. Inequal. Appl. 1, 361–376 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Nikolov, G.: An extension of an inequality of Duffin and Schaeffer. Constr. Approx. 21, 181–191 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nikolov, G.: Inequalities of Duffin-Schaeffer type. II. East J. Approx. 11, 147–168 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Nikolov, G.: Polynomial inequalities of Markov and Duffin-Schaeffer type. In: Bojanov, B. (ed.) Constructive Theory of Functions, pp. 201–246. Prof. Marin Drinov Academic Publishing House, Sofia (2005)

    Google Scholar 

  23. Nikolov, G., Shadrin, A.: On Markov–Duffin–Schaeffer inequalities with a majorant. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010, pp. 227–264. Prof. Marin Drinov Academic Publishing House, Sofia (2012)

    Google Scholar 

  24. Nikolov, G., Shadrin, A.: On Markov–Duffin–Schaeffer inequalities with a majorant. II. In: Ivanov, K., Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2013, pp. 175–197. Prof. Marin Drinov Academic Publishing House, Sofia (2014)

    Google Scholar 

  25. Schmidt, E.: Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum. Math. Anal. 119, 165–204 (1944)

    Article  MATH  Google Scholar 

  26. Shadrin, A.Yu.: Interpolation with Lagrange polynomials. A simple proof of Markov inequality and some of its generalizations Approx. Theory Appl. 8, 51–61 (1992)

    MathSciNet  MATH  Google Scholar 

  27. Shadrin, A.: Twelve proofs of the Markov inequality. In: Dimitrov, D.K., Nikolov, G., Uluchev, R. (eds.) Approximation Theory: A Volume Dedicated to Borislav Bojanov, pp. 233–298. Professor Marin Drinov Academic Publishing House, Sofia (2004). Available also at: http://www.damtp.cam.ac.uk/user/na/people/Alexei/papers/markov.pdf

  28. Szegő, G.: Orthogonal Polynomials. AMS Colloquium Publications, vol. 23. AMS, Providence, RI (1975)

    Google Scholar 

  29. Turán, P.: Remark on a theorem of Ehrhard Schmidt. Mathematica (Cluj) 2, 373–378 (1960)

    MathSciNet  MATH  Google Scholar 

  30. van Doorn, E.A.: Representations and bounds for the zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices. J. Approx Theory 51, 254–266 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research on this paper was conducted during a visit of the first-named author to the Department of Applied Mathematics and Theoretical Physics of the University of Cambridge in January, 2015. The work was accomplished during a 3-week stay of the authors in the Oberwolfach Mathematical Institute in April, 2016 within the Research in Pairs Program. The first-named author acknowledges the partial support by the Sofia University Research Fund through contract no. 30/2016. The second-named author was partially supported by the Pembroke College Fellows’ Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geno Nikolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nikolov, G., Shadrin, A. (2017). On the L 2 Markov Inequality with Laguerre Weight. In: Govil, N., Mohapatra, R., Qazi, M., Schmeisser, G. (eds) Progress in Approximation Theory and Applicable Complex Analysis. Springer Optimization and Its Applications, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-49242-1_1

Download citation

Publish with us

Policies and ethics