Advertisement

Gene–Environment Correlation as a Source of Stability and Diversity in Development

Chapter
Part of the Advances in Development and Psychopathology: Brain Research Foundation Symposium Series book series (AIDP, volume 2)

Abstract

As free-ranging organisms develop, their phenotype at any particular point is an influence on the selection of future environments. New and more varied environments make once-similar individuals more different, and those increased differences cause even greater differences in environment. Reciprocal effect processes of this kind introduce nonindependence and nonlinearity into developmental models, violating the assumptions of simple linear regression models or the classical twin model. Nevertheless, twins are a crucial laboratory for understanding the environmental differentiation of genetically related individuals, informing developmental science for singletons as well.

Keywords

Gene–environment correlation Developmental behavior genetics Reciprocal effect models 

References

  1. Anastasi, A. (1958). Heredity, environment, and the question “how?”. Psychological Review, 65(4), 197–208.CrossRefPubMedGoogle Scholar
  2. Bartels, M., Rietveld, M. J. H., Van Baal, G. C. M., & Boomsma, D. I. (2002). Genetic and environmental influences on the development of intelligence. Behavior Genetics, 32(4), 237–249.CrossRefPubMedGoogle Scholar
  3. Beam, C. R., & Turkheimer, E. (2013). Phenotype-environment correlations in longitudinal twin models. Development & Psychopathology, 25(1), 7–16.CrossRefGoogle Scholar
  4. Beam, C. R., Emery, R. E., Reynolds, C. A., Gatz, M., Turkheimer, E., & Pedersen, N. L. (2016). Widowhood and the stability of late life depressive symptomatology in the Swedish Adoption Twin Study of Aging. Behavior Genetics, 46(1), 100–113.CrossRefPubMedGoogle Scholar
  5. Beam, C. R., Turkheimer, E., Dickens, W. T., & Davis, D. W. (2015). Twin differentiation of cognitive ability through phenotype to environment transmission: The Louisville Twin Study. Behavior Genetics, 45(6), 622–634.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bergen, S. E., Gardner, C. O., & Kendler, K. S. (2007). Age-related changes in heritability of behavioral phenotypes over adolescence and young adulthood: A meta-analysis. Twin Research and Human Genetics, 10(03), 423–433.CrossRefPubMedGoogle Scholar
  7. Bouchard, T. J. (2009). Genetic influence on human intelligence (Spearman’s g): How much? Annals of Human Biology, 36(5), 527–544.CrossRefPubMedGoogle Scholar
  8. Bouchard, T. J. (2013). The Wilson effect: The increase in heritability of IQ with age. Twin Research and Human Genetics, 16(05), 923–930.CrossRefPubMedGoogle Scholar
  9. Briley, D. A., & Tucker-Drob, E. M. (2013). Explaining the increasing heritability of cognitive ability across development: A meta-analysis of longitudinal twin and adoption studies. Psychological Science, 24(9), 1704–1713.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bronfenbrenner, U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101(4), 568–586.CrossRefPubMedGoogle Scholar
  11. de Kort, J. M., Dolan, C. V., Kan, K.-J., van Beijsterveldt, C. E. M., Bartels, M., & Boomsma, D. I. (2014). Can GE-covariance originating in phenotype to environment transmission account for the Flynn Effect? Journal of Intelligence, 2(3), 82–105.CrossRefGoogle Scholar
  12. Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effects: The IQ paradox resolved. Psychological Review, 108(2), 346–369.CrossRefPubMedGoogle Scholar
  13. Dolan, C. V., de Kort, J. M., van Beijsterveldt, T. C. E. M., Bartels, M., & Boomsma, D. I. (2014). GE covariance through phenotype to environment transmission: An assessment in longitudinal twin data and application to childhood anxiety. Behavior Genetics, 44(3), 240–253.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fischbein, S. (1978). Heredity-environment interaction in the development of twins. International Journal of Behavioral Development, 1(4), 313–322.CrossRefGoogle Scholar
  15. Fischbein, S. (1986). Person-environment interaction in education setting. Report No. 1 from the Department of Educational Research, Stockholm Institute of Education.Google Scholar
  16. Fischbein, S., Guttman, R., Nathan, M., & Esrachi, A. (1990). Permissiveness-restrictiveness for twins and controls in two educational settings: The Swedish compulsory school and the Israeli kibbutz. Acta Geneticae Medicae et Gemellologiae, 39, 245–257.CrossRefPubMedGoogle Scholar
  17. Fuller, J. L., & Thompson, W. R. (1960). Behavior genetics. New York: Wiley.Google Scholar
  18. Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J. C., van Beijsterveldt, C. E. M., … Plomin, R. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry, 15(11), 1112–1120.Google Scholar
  19. Humphreys, L. G., & Davey, T. C. (1988). Continuity in intellectual growth from 12 months to 9 years. Intelligence, 12(2), 183–197.CrossRefGoogle Scholar
  20. Lewontin, R. C. (2006). The analysis of variance and the analysis of causes. International Journal of Epidemiology, 35(3), 520–525.CrossRefPubMedGoogle Scholar
  21. Lickliter, R., & Harshaw, C. (2010). Canalization and malleability reconsidered: the developmental basis of phenotypic stability and variability. In K. Hood, C. Halpern, G. Greenberg, & R. Lerner (Eds.), Handbook of developmental science, behavior, and genetics (p. 491). Malden: Wiley.Google Scholar
  22. McCartney, K., Harris, M. J., & Bernieri, F. (1990). Growing up and growing apart: A developmental meta-analysis of twin studies. Psychological Bulletin, 107(2), 226–237.CrossRefPubMedGoogle Scholar
  23. McGue, M., Bouchard, T. J., Iacono, W. G., & Lykken, D. T. (1993). Behavioral genetics of cognitive ability: A life-span perspective (pp. 59–76).Google Scholar
  24. Pedersen, N. L., Plomin, R., Nesselroade, J. R., & McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life span. Psychological Science, 3(6), 346–352.CrossRefGoogle Scholar
  25. Plomin, R. (1986). Multivariate analysis and developmental behavioral genetics: Developmental change as well as continuity. Behavior Genetics, 16(1), 25–43.CrossRefPubMedGoogle Scholar
  26. Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309.Google Scholar
  27. Plomin, R., & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics. Journal of personality and social psychology, 86(1), 112.CrossRefPubMedGoogle Scholar
  28. Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702–709.CrossRefPubMedGoogle Scholar
  29. Roberts, R. C. (1967). Some concepts and methods in quantitative genetics. In J. Hirsch (Ed.), Behavior-genetic analysis (pp. 214–257). New York: McGraw-Hill.Google Scholar
  30. Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory of genotype-environment effects. Child Development, 54, 424–435.PubMedGoogle Scholar
  31. Tucker-Drob, E. M., & Briley, D. A. (2014). Continuity of genetic and environmental influences on cognition across the life span: a meta-analysis of longitudinal twin and adoption studies. Psychological Bulletin, 140(4), 949–979.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9(5), 160–164.CrossRefGoogle Scholar
  33. Turkheimer, E. (2004). Spinach and ice cream: Why social science is so difficult. In L. DiLalla (Ed.), Behavior genetics principles: Perspectives in development, personality, and psychopathology (pp. 161–189). Washington, DC: American Psychological Association.Google Scholar
  34. Turkheimer, E. (2006). Inter: Action and play [Review of the book Genes and behavior: Nature-nurture interplay explained]. PsycCRITIQUES, 51(43).Google Scholar
  35. Turkheimer, E., & Beam, C. R. (2012). Lindon Eaves: Master of developmental models. Festschrift in honor of Lindon Eaves. Edinburgh, Scotland.Google Scholar
  36. Turkheimer, E., & Gottesman, I. I. (1996). Simulating the dynamics of genes and environment in development. Development & Psychopathology, 8, 667–677.CrossRefGoogle Scholar
  37. Turkheimer, E., & Waldron, M. (2000). Nonshared environment: A theoretical, methodological, and quantitative review. Psychological Bulletin, 126, 78–108.CrossRefPubMedGoogle Scholar
  38. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628.CrossRefPubMedGoogle Scholar
  39. Turkheimer, E., Pettersson, E., & Horn, E. E. (2014). A phenotypic null hypothesis for the genetics of personality. Annual Review of Psychology, 65, 515–540.CrossRefPubMedGoogle Scholar
  40. Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565.CrossRefGoogle Scholar
  41. Wilson, R. S. (1983). The Louisville Twin Study: Developmental synchronies in behavior. Child Development, 54(2), 298–316.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Department of PsychologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations