Skip to main content

New Non-anti-TNF-α Biological Therapies for the Treatment of Inflammatory Bowel Disease

  • Chapter
  • First Online:
Pediatric Inflammatory Bowel Disease

Abstract

Blockade of the tumor necrosis factor alpha (TNF-α) pathway has been a major advancement for the treatment of inflammatory bowel disease (IBD). A substantial proportion of patients with moderate to severe Crohn’s disease do not have a response to treatment with TNFα antagonists (primary nonresponse), and among patients who do have a response, it is often not sustained (secondary nonresponders) or side effects require discontinuation of medical therapy. As a consequence of this, there is an ongoing need to develop new biologics with different mechanisms of action. This chapter will discuss the major non-anti-TNF-α biological agents in the pipeline that are currently undergoing evaluation to effectively and safely treat patients with IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amiot A, Peyrin-Biroulet L. Current, new and future biological agents on the horizon for the treatment of inflammatory bowel diseases. Ther Adv Gastroenterol. 2015;8(2):66–82.

    Article  CAS  Google Scholar 

  2. Toussirot E. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm Allergy Drug Targets. 2012;11:159–68.

    Article  CAS  PubMed  Google Scholar 

  3. Peluso I, Pallone F, Monteleone G. Interleukin-12 and Th1 immune response in Crohn’s disease: pathogenetic relevance and therapeutic implication. World J Gastroenterol. 2006;12:5606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Neurath MF. IL-23: a master regulator in Crohn’s disease. Nat Med. 2007;13:26–8.

    Article  CAS  PubMed  Google Scholar 

  5. Niederreiter L, Adolph TE, Kaser A. Anti-IL-12/23 in Crohn’s disease: bench and bedside. Curr Drug Targets. 2013;14(12):1379–84.

    Article  CAS  PubMed  Google Scholar 

  6. Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F, Neurath MF, Strober W, Mannon PJ. Both IL-12p70 and IL-23 are synthesized during active Crohn’s disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006;12:9–15.

    Article  PubMed  Google Scholar 

  7. Parrello T, Monteleone G, Cucchiara S, et al. Up-regulation of the IL-12 receptor beta 2 chain in Crohn’s disease. J Immunol. 2000;165:7234–9.

    Article  CAS  PubMed  Google Scholar 

  8. Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest. 2006;116:1218–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Onuora S. Ustekinumab after anti-TNF failure: a step closer to the PSUMMIT of psoriatic arthritis therapy? Nat Rev Rheumatol. 2014;10:125.

    Article  PubMed  Google Scholar 

  10. Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, Johanns J, Blank M, Rutgeerts P. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135:1130–41.

    Article  CAS  PubMed  Google Scholar 

  11. Sandborn WJ, Gasink C, Gao LL, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.

    Article  CAS  PubMed  Google Scholar 

  12. Sandborn W, et al. A multicenter, double-blind, placebo-controlled phase3 study of ustekinumab, a human IL-12/23P40 mAB, in moderate-service Crohn’s disease refractory to anti-TFNα: UNITI-1. Inflamm Bowel Dis. 2016;22 Suppl 1:S1.

    Google Scholar 

  13. ACG October 2015. http://www.healio.com/gastroenterology/inflammatory-bowel-disease/news/online/%7B3319d496-e8ac-41db-8729-1e14070f0af8%7D/uniti-2-trial-stelara-effective-for-treating-crohns-disease.

  14. A study to evaluate the safety and efficacy of ustekinumab maintenance therapy in patients with moderately to severely active Crohn’s disease (IM-UNITI). Available at: http://clinicaltrials.gov/show/NCT01369355. http://clinicaltrials.gov/show/NCT01369355. Accessed Jan 2016.

  15. Rinawi F, et al. Ustekinumab for resistant pediatric Crohn’s disease. J Pediatr Gastroenterol Nutr. 2014. [Epub ahead of print].

    Google Scholar 

  16. Bishop C, et al. Ustekinumab in pediatric Crohn’s disease patients: case review. J Pediatr Gastroenterol Nutr. 2016;63(3):348–51.

    Article  CAS  PubMed  Google Scholar 

  17. Papp KA, Griffiths CE, Gordon K, et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol. 2013;168:844–54. Leung, Y, Panaccione R. Update on Ustekinumab for the treatment of Crohn’s disease. Gastroenterol Clin N Am. 43(2014):619–30.

    Google Scholar 

  18. Badat Y, Meissner WG, Laharie D. Demyelination in a patient receiving ustekinumab for refractory Crohn’s disease. J Crohns Colitis. 2014;8:1138–9.

    Article  PubMed  Google Scholar 

  19. Kock K, et al. Preclinical development of AMG 139, a human antibody specifically targeting IL-23. Br J Pharmacol. 2015;172:159–72.

    Google Scholar 

  20. Multiple ascending doses of AMG 139 in healthy and Crohn’s disease subjects, www.clinicaltrials.gov/ct2/show/NCT01258205?term=AMG139&rank=1.

  21. A phase II, multicenter, randomized, double-blind, multiple dose, placebo-controlled, parallel-group study to evaluate the efficacy, pharmacokinetics, and safety of BI 655066, an IL-23 p19 antagonist monoclonal antibody, in patients with moderately to severely active Crohn’s disease, who are naïve to, or were previously treated with anti-TNF therapy. https://clinicaltrials.gov/ct2/show/NCT02031276. Accessed Jan 2016.

  22. A long term extension trial of BI 655066 in patients with moderately to severely active Crohn’s disease. https://clinicaltrials.gov/ct2/show/NCT02513459. Accessed Jan 2016.

  23. BI 655066 dose ranging in psoriasis, active comparator ustekinumab. https://www.clinicaltrials.gov/ct2/show/NCT02054481?term=BI+655066&rank=3.

  24. Krueger JG, et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. 2015;136(1):116–24.e7

    Google Scholar 

  25. Ito H. IL-6 and Crohns disease. Curr Drug Targets Inflamm Allergy. 2003;2(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  26. A study to assess the efficacy and safety of PF-04236921 in subjects with Crohn’s disease who failed anti-TNF therapy (ANDANTE). https://www.clinicaltrials.gov/ct2/show/NCT01287897?term=PF-04236921&rank=3.

  27. Fuss IJ, Strober W. The role of IL-13 and NK T cells in experimental and human ulcerative colitis. Mucosal Immunol. 2008;1(Suppl 1):S31–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550–64.

    Article  CAS  PubMed  Google Scholar 

  29. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113:1490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hua F, et al. A pharmacokinetic comparison of anrukinzumaban anti- IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol. 2015;80(1):101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. May RD, Monk PD, Cohen ES, et al. Preclinical development of CAT-354, an IL-13 neutralizing antibody, for the treatment of severe uncontrolled asthma. Br J Pharmacol. 2012;166:177–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh CK, Faggioni R, Jin F, et al. An open-label, single-dose bioavailability study of the pharmacokinetics of CAT-354 after subcutaneous and intravenous administration in healthy males. Br J Clin Pharmacol. 2010;69:645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Danese S, et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015;64:243–9.

    Article  CAS  PubMed  Google Scholar 

  34. Rothenberg ME, et al. Intravenous anti–IL-13 mAb QAX576 for the treatment of eosinophilic esophagitis. J Allergy Clin Immunol. 2015;135(2):500–7.

    Article  CAS  PubMed  Google Scholar 

  35. A multi-center, randomized, double-blind, active controlled study to assess efficacy, safety and tolerability of the anti-IL13 monoclonal antibody QAX576 in the treatment of perianal fistulas in patients suffering from Crohn’s disease. https://clinicaltrials.gov/ct2/show/NCT01355614?term=QAX576&rank=9.

  36. A study to assess efficacy, safety and tolerability of the Anti-IL-13 monoclonal antibody QAX576 in the treatment of perinanal fistulas in patients suffering from Crohn’s disease. https://clinicaltrials.gov/ct2/show/NCT01316601?term=QAX576&rank=15.

  37. A randomized, double-blind, placebo-controlled, parallel group, multi-center study designed to evaluate the safety, efficacy, pharmacokinetic and pharmacodynamic profile of bertilimumab in patients with active moderate to severe ulcerative colitis. clinicaltrials.gov/ct2/show/NCT01671956?term=Bertilimumab&rank=1. Accessed Jan 2016.

  38. Fitzpatrick LR. Vidofludimus inhibits colonic interleukin-17 and improves hapten-induced colitis in rats by a unique dual mode of action. J Pharmacol Exp Ther. 2012;342(3):850–60.

    Article  CAS  PubMed  Google Scholar 

  39. Xue L, et al. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody. Clin Exp Immunol. 2016;183:102–13.

    Article  CAS  PubMed  Google Scholar 

  40. Hua F, et al. Anti-IL21 receptor monoclonal antibody (ATR-107): safety, pharmacokinetics, and pharmacodynamic evaluation in healthy volunteers: a phase I, first-in-human study. J Clin Pharmacol. 2014;54(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  41. Vugmeyster Y, Guay H, Szklut P, et al. In vitro potency, pharmacokinetic profiles, and pharmacological activity of optimized anti-IL- 21R antibodies in a mouse model of lupus. MAbs. 2010;2:335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vallieres F, Girard D. IL-21 enhances phagocytosis in mononuclear phagocyte cells: identification of spleen tyrosine kinase as a novel molecular target of IL-21. J Immunol. 2013;190:2904–12.

    Article  CAS  PubMed  Google Scholar 

  43. Spolski R, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov. 2014;13:379–95.

    Article  CAS  PubMed  Google Scholar 

  44. Young DA, Hegen M, Ma HL, et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum. 2007;56:1152–63.

    Google Scholar 

  45. Rietdijk ST, D’Haens GR. Recent developments in the treatment of inflammatory bowel disease. J Dig Dis. 2013;14(6):282–7.

    Google Scholar 

  46. Ghoreschi K, Laurence A, O’Shea J. Janus kinases in immune cell signaling. Immunol Rev. 2009;228:273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neurath M. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14:329–34.

    Article  CAS  PubMed  Google Scholar 

  48. Ghoreschi K, Jesson MI, Lee JL, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186:4234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, Niezychowski W, Study A3921063 Investigators. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367(7):616–24.

    Article  CAS  PubMed  Google Scholar 

  50. Sandborn WJ, Ghosh S, Panes J, Vranic I, Wang W, Niezychowski W. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2014;12:1485–93.

    Article  CAS  PubMed  Google Scholar 

  51. Lowenberg M, D’Haens G. Next-generation therapeutics for IBD. Curr Gastroenterol Rep. 2015;17:21.

    Article  PubMed  PubMed Central  Google Scholar 

  52. A study of oral CP-690,550 as a maintenance therapy for ulcerative colitis (OCTAVE). ClinicalTrials.gov Identifier: NCT01458574. Last accessed Jan 2016.

  53. Hyun JG, Lee G, Brown JB, et al. Anti-interferon-inducible chemokine, CXCL10, reduces colitis by impairing T helper-1 induction and recruitment in mice. Inflamm Bowel Dis. 2005;11:799–805.

    Article  PubMed  Google Scholar 

  54. Hardi R, Mayer L, Targan SR, et al. A phase 1 open-label, single-dose, dose-escalation study of MDX-1100, a high-affinity, neutralizing, fully human Igg1 (kappa) anti-CXCL10 (Ip10) monoclonal antibody, in ulcerative colitis. Gastroenterology. 2008;134:A-99–100.

    Article  Google Scholar 

  55. Van Rompaey L, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol. 2013;191:3568–77.

    Article  CAS  PubMed  Google Scholar 

  56. Efficacy and safety of GLPG0634 in subjects with active Crohn’s disease. https://clinicaltrials.gov/ct2/show/NCT02048618?term=GLPG0634&rank=2.

  57. Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med. 1994;180:1587–90.

    Article  CAS  PubMed  Google Scholar 

  58. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.

    Article  CAS  PubMed  Google Scholar 

  59. Monteleone G, Kumberova A, Croft NM, Mc Kenzie C, Steer HW, Mac Donald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108:601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Monteleone G, Boirivant M, Pallone F, Mac Donald TT. TGF-beta1 and Smad7 in the regulation of IBD. Mucosal Immunol. 2008;1(Suppl 1):S50–3.

    Article  CAS  PubMed  Google Scholar 

  61. Boirivant M, Pallone F, Di Giacinto C, et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology. 2006;131:1786–98.

    Article  CAS  PubMed  Google Scholar 

  62. Monteleone G, Fantini MC, Onali S, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther. 2012;20:870–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zorzi F, et al. A phase 1 open-label trial shows that smad7 antisense oligonucleotide (GED0301) does not increase the risk of small bowel strictures in Crohn’s disease. Aliment Pharmacol Ther. 2012;36:850–7.

    Article  CAS  PubMed  Google Scholar 

  64. Monteleone G et al. Abstract presentation UEGW 2014, OP203. Vienna.

    Google Scholar 

  65. Mayer L, Sandborn WJ, Stepanov Y, Geboes K, Hardi R, Yellin M, Tao X, Xu LA, Salter-Cid L, Gujrathi S, Aranda R, Luo AY. Anti-IP-10 antibody (BMS-936557) for ulcerative colitis: a phase II randomised study. Gut. 2014;63(3):442–50.

    Article  CAS  PubMed  Google Scholar 

  66. Kuhne M, Preston B, Wallace S, Chen S, Vasudevan G, Witte A, Cardarelli P. MDX-1100, a fully human anti-CXCL10 (IP-10) antibody, is a high affinity, neutralizing antibody that has entered phase I clinical trials for the treatment of Ulcerative Colitis (UC). J Immunol. 2007;178:S241.

    Google Scholar 

  67. Uguccioni M, Gionchetti P, Robbiani DF, et al. Increased expression of IP-10, IL-8,MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol. 1999;155:331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Witte A, Kuhne MR, Preston BT, et al. W1170 CXCL10 expression and biological activities in inflammatory bowel disease. Gastroenterology. 2008;134:A-648.

    Article  Google Scholar 

  69. Soejima K, BJ R. A functional IFN – inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. J Immunol. 2001;167:6576–82.

    Article  CAS  PubMed  Google Scholar 

  70. Sasaki S, Yoneyama H, Suzuki K, et al. Blockade of CXCL10 protects mice from acute colitis and enhances crypt cell survival. Eur J Immunol. 2002;32:3197–205.

    Article  CAS  PubMed  Google Scholar 

  71. Singh UP, Singh S, Taub DD, et al. Inhibition of IFN-gamma-inducible protein-10 abrogates colitis in IL-10−/− mice. J Immunol. 2003;171:1401–6.

    Article  CAS  PubMed  Google Scholar 

  72. Sandborn WJ, Rutgeerts PJ, Colombel J-F, et al. 827 phase IIA, randomized, placebo-controlled evaluation of the efficacy and safety of induction therapy with eldelumab (anti-IP-10 antibody; BMS-936557) in patients with active Crohn’s disease. Gastroenterology. 2015;148:S-162–3.

    Article  CAS  Google Scholar 

  73. Rivera-Nieves J. Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments. Curr Opin Gastroenterol. 2015;31:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, Lublin FD, Weinstock-Guttman B, Wynn DR, Lynn F, Panzara MA, Sandrock AW, Investigators S. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354:911–23.

    Article  CAS  PubMed  Google Scholar 

  75. Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA, Willmer-Hulme AJ, Dalton CM, Miszkiel KA, O’Connor PW, International Natalizumab Multiple Sclerosis Trial Group. A controlled trial of natalizumab for relapsing multiple sclerosis [see comment]. N Engl J Med. 2003;348:15–23.

    Google Scholar 

  76. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, Investigators A. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.

    Google Scholar 

  77. Gordon FH, Lai CW, Hamilton MI, Allison MC, Srivastava ED, Fouweather MG, Donoghue S, Greenlees C, Subhani J, AmLot PL, Pounder RE. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology. 2001;121:268–74.

    Article  CAS  PubMed  Google Scholar 

  78. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, Vyhnalek P, Zadorova Z, Palmer T, Donoghue S. Natalizumab for active Crohn’s disease. N Engl J Med. 2003;348:24–32.

    Article  CAS  PubMed  Google Scholar 

  79. Sandborn WJ, Colombel JF, Enns R, Feagan BG, Hanauer SB, Lawrance IC, Panaccione R, Sanders M, Schreiber S, Targan S, van Deventer S, Goldblum R, Despain D, Hogge GS, Rutgeerts P. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–25.

    Article  CAS  PubMed  Google Scholar 

  80. Sandborn W, Colombel J, Enns R, Feagan B, Hanauer S, Lawrance I, Panaccione R, Rutgeerts P, Schreiber S, Targan S, van Deventer S. Maintenance therapy with natalizumab does not require use of concomitant iImmunosuppressants for sustained efficacy in patients with active Crohn’s disease: results from the ENACT-2 study. Gastroenterology. 2006;130:A-482 Abstract 1137.

    Google Scholar 

  81. Panaccione R, Colombel J, Enns R, Feagan B, Hanauer S, Lawrance I, Rutgeerts P, Sandborn W, Schreiber S, Targan S, van Deventer S. Natalizumab maintains remission in patients with moderately to severely active Crohn’s disease for up to 2-years: results from an open-label extension study. Gastroenterology. 2006;130:A-111 Abstract 768.

    Google Scholar 

  82. Targan SR, Feagan BG, Fedorak RN, Lashner BA, Panaccione R, Present DH, Spehlmann ME, Rutgeerts PJ, Tulassay Z, Volfova M, Wolf DC, Hernandez C, Bornstein J, Sandborn WJ. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132:1672–83.

    Article  CAS  PubMed  Google Scholar 

  83. Sands BE, Kozarek R, Spainhour J, Barish CF, Becker S, Goldberg L, Katz S, Goldblum R, Harrigan R, Hilton D, Hanauer SB. Safety and tolerability of concurrent natalizumab treatment for patients with Crohn’s disease not in remission whil receiving infliximab. Inflamm Bowel Dis. 2007;13:2–11.

    Article  PubMed  Google Scholar 

  84. Gordon FH, Hamilton MI, Donoghue S, Greenlees C, Palmer T, Rowley-Jones D, Dhillon AP, AmLot PL, Pounder RE. A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther. 2002;16:699–705.

    Article  CAS  PubMed  Google Scholar 

  85. Prescribing information for Tysabri (natalizumab). 2007. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/125104s0576lbl.pdf; https://www.biogen.com.au/content/dam/corporate/en_AU/pdfs/products/TYSABRI/bdptysab11116.pdf.

  86. Hyams JS, Wilson DC, Thomas A, Heuschkel R, Mitton S, Mitchell B, Daniels R, Libonati MA, Zanker S, Kugathasan S, International Natalizumab CD305 Trial Group. Natalizumab therapy for moderate to severe Crohn’s disease in adolescents. J Pediatr Gastroenterol Nutr. 2007;44:185–91.

    Article  CAS  PubMed  Google Scholar 

  87. Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. [see comment]. N Engl J Med. 2005;353:369–74.

    Article  CAS  PubMed  Google Scholar 

  88. Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. [see comment]. N Engl J Med. 2005;353:375–81.

    Article  CAS  PubMed  Google Scholar 

  89. Van Assche G, Van Ranst M, Sciot R, Dubois B, Vermeire S, Noman M, Verbeeck J, Geboes K, Robberecht W, Rutgeerts P. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. [see comment]. N Engl J Med. 2005;353:362–8.

    Article  CAS  PubMed  Google Scholar 

  90. Yousry TA, Major EO, Rysckewitsch C, Fahle G, Fischer S, Hou J, Curfman B, Miszkiel K, Mueller-Lenke N, Sanchez E, Barkhof F, Radue EW, Jager HR, Clifford DB. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephaolopathy. N Engl J Med. 2006;354:924–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Van Deventer SJH, Wedel MK, Baker BF, Xia S, Chuang E, Miner PB. A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther. 2006;23:1415–25.

    Article  CAS  PubMed  Google Scholar 

  92. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369:699–710.

    Article  CAS  PubMed  Google Scholar 

  93. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–21.

    Article  CAS  PubMed  Google Scholar 

  94. Sands BE, Feagan BG, Rutgeerts P, Colombel JF, Sandborn WJ, et al. Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology. 2014;147:618–27.

    Article  CAS  PubMed  Google Scholar 

  95. Zoet ID, et al. Successful vedolizumab therapy in a sixteen-year-old boy with refractory ulcerative colitis. J Crohns Colitis. 2015;10(3):373–4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Poster presentation UEGW 2014, P1059, Hanauer S et al., poster presentation UEGW 2014, P1667, Feagan B et al.

    Google Scholar 

  97. Milch C, Wyant T, Xu J, Parikh A, Kent W, Fox I, et al. Vedolizumab, a monoclonal antibody to the gut homing alpha4beta7 integrin, does not affect cerebrospinal fluid T-lymphocyte immunophenotype. J Neuroimmunol. 2013;264:123–6.

    Article  CAS  PubMed  Google Scholar 

  98. Lowenberg M, D’Haens G. Novel targets for inflammatory bowel disease therapeutics. Curr Gastroenterol Rep. 2013;15:311.

    Article  PubMed  Google Scholar 

  99. Colombel J-F, et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut. 2016;0:1–13.

    Google Scholar 

  100. Vermeire S, O’Byrne S, Keir M, Williams M, Lu TT, Mansfield JC, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 2014;384:309–18.

    Article  CAS  PubMed  Google Scholar 

  101. Pullen N, Molloy E, Carter D, et al. Pharmacological characterization of PF-00547659, an antihuman MAdCAM monoclonal antibody. Br J Pharmacol. 2009;157:281–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vermeire S, Ghosh S, Panes J, Dahlerup JF, Luegering A, Sirotiakova J, et al. The mucosal addressin cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut. 2011;60:1068–75.

    Article  CAS  PubMed  Google Scholar 

  103. Miner PB, Wedel MK, Xia S, Baker BF. Safety and efficacy of two dose formulations of alicaforsen enema compared with mesalazine enema for treatment of mild to moderate left-sided ulcerative colitis: a randomized, double-blind, active-controlled trial. Aliment Pharmacol Ther. 2006;23:1403–13.

    Article  CAS  PubMed  Google Scholar 

  104. Reinisch W, Sandborn W, Danese S, et al. 901a A randomized, multicenter double-blind, placebo-controlled study of the safety and efficacy of anti-MAdCAM Antibody PF-00547659 (PF) in patients with moderate to severe ulcerative colitis: results of the TURANDOT study. Gastroenterology. 2015;148:S-1193.

    Article  Google Scholar 

  105. Sandborn W, Lee SD, Tarabar D, et al. 825 anti-MAdCAM-1 antibody (PF-00547659) for active refractory Crohn’s disease: results of the OPERA study. Gastroenterology. 2015;148:S-162.

    Article  CAS  Google Scholar 

  106. Takazoe M, Watanabe M, Kawaguchi T, Matsumoto T, Oshitani N, Hiwatashi N, Hibi T. Oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn disease – a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2009;136:A-181.

    Article  Google Scholar 

  107. Shanahan Jr WR. ISIS 2302, an antisense inhibitor of intercellular adhesion molecule 1. Expert Opin Investig Drugs. 1999;8:1417–29.

    Article  CAS  PubMed  Google Scholar 

  108. Yacyshyn BR, Chey WY, Goff J, Salzberg B, Baerg R, Buchman AL, Tami J, Yu R, Gibiansky E, Shanahan WR. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut. 2002;51:30–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, Tami JA, Bennett CF, Kisner DL, Shanahan Jr WR. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology. 1998;114:1133–42.

    Article  CAS  PubMed  Google Scholar 

  110. Yacyshyn B, Chey WY, Wedel MK, Yu RZ, Paul D, Chuang E. A randomized, double-masked, placebo-controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn’s disease. Clin Gastroenterol Hepatol. 2007;5:215–20.

    Article  CAS  PubMed  Google Scholar 

  111. Schreiber S, Nikolaus S, Malchow H, Kruis W, Lochs H, Raedler A, Hahn EG, Krummenerl T, Steinmann G. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology. 2001;120:1339–46.

    Article  CAS  PubMed  Google Scholar 

  112. van Deventer SJ, Tami JA, Wedel MK. A randomised, controlled, double blind, escalating dose study of alicaforsen enema in active ulcerative colitis. Gut. 2004;53:1646–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Miner Jr PB, Geary RS, Matson J, Chuang E, Xia S, Baker BF, Wedel MK. Bioavailability and therapeutic activity of alicaforsen (ISIS 2302) administered as a rectal retention enema to subjects with active ulcerative colitis. Aliment Pharmacol Ther. 2006;23:1427–34.

    Article  CAS  PubMed  Google Scholar 

  114. Miner P, Wedel M, Bane B, Bradley J. An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremitting pouchitis. Aliment Pharmacol Ther. 2004;19:281–6.

    Article  CAS  PubMed  Google Scholar 

  115. Pan WJ, et al. Clinical pharmacology of AMG 181, a gut-specific human anti-α4β7 monoclonal antibody, for treating inflammatory bowel diseases. Br J Clin Pharmacol. 2014;78(6):1315–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Prat A, Stuve O. Firategrast: natalizumab in a pill? Lancet Neurol. 2012;11(2):120–1.

    Article  PubMed  Google Scholar 

  117. A randomized, double-blind, placebo-controlled, parallel-group study to investigate the efficacy and safety of nine-weeks administration of three doses of SB-683699 in subjects with moderately to severely active Crohn’s disease. Clinicaltrials.gov. NCT00101946.

  118. Digital Oral Presentation, ECCO 2015.

    Google Scholar 

  119. Koga Y, Kainoh M. PP-065-15 effect of an orally active small molecule alpha4beta1/alpha4beta7 integrin antagonist, TRK-170, on experimental colitis in mice. International Immunology Meeting Abstracts. Kobe. 2010.

    Google Scholar 

  120. Nelson DR, Tu Z, Soldevila-Pico C, Abdelmalek M, Zhu H, Xu YL, Cabrera R, Liu C, Davis GL. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology. 2003;38:859–68.

    Article  CAS  PubMed  Google Scholar 

  121. McInnes IB, Illei GG, Danning CL, Yarboro CH, Crane M, Kuroiwa T, Schlimgen R, Lee E, Foster B, Flemming D, Prussin C, Fleisher TA, Boumpas DT. IL-10 improves skin disease and modulates endothelial activation and leukocyte effector function in patients with psoriatic arthritis. J Immunol. 2001;167:4075–82.

    Article  CAS  PubMed  Google Scholar 

  122. Maini R, Paulus HE, Breedveld FC. rHuIL-10 in subjects with active rheumatoid arthritis (RA): a phase I and cytokine response study. Arthritis Rheum. 1997;1997:S224.

    Google Scholar 

  123. Smeets TJ, Kraan MC, Versendaal J, Breedveld FC, Tak PP. Analysis of serial synovial biopsies in patients with rheumatoid arthritis: description of a control group without clinical improvement after treatment with interleukin 10 or placebo. J Rheumatol. 1999;26:2089–93.

    CAS  PubMed  Google Scholar 

  124. van Deventer SJ, Elson CO, Fedorak RN. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn’s disease. Crohn’s disease Study Group. Gastroenterology. 1997;113:383–9.

    Article  PubMed  Google Scholar 

  125. Fedorak RN, Gangl A, Elson CO, Rutgeerts P, Schreiber S, Wild G, Hanauer SB, Kilian A, Cohard M, LeBeaut A, Feagan B. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology. 2000;119:1473–82.

    Article  CAS  PubMed  Google Scholar 

  126. Schreiber S, Fedorak RN, Nielsen OH, Wild G, Williams CN, Nikolaus S, Jacyna M, Lashner BA, Gangl A, Rutgeerts P, Isaacs K, van Deventer SJ, Koningsberger JC, Cohard M, LeBeaut A, Hanauer SB. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s disease IL-10 Cooperative Study Group. Gastroenterology. 2000;119:1461–72.

    Article  CAS  PubMed  Google Scholar 

  127. Fedorak R, Nielsen O, Williams N, Malchow H, Forbes A, Stein B, Wild G, Lashner B, Renner E, Buchman A, Hardi R, The Interleukin-10 Study Group. Human recombinant interleukin-10 is safe and well tolerated but does not induce remission in steroid dependent Crohn’s disease. Gastroenterology. 2001;120:A-127.

    Article  Google Scholar 

  128. Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJ, Schreiber S, Gregor M, Ludwiczek O, Rutgeerts P, Gasche C, Koningsberger JC, Abreu L, Kuhn I, Cohard M, LeBeaut A, Grint P, Weiss G. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. [see comment]. Gut. 2002;50:191–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Colombel JF, Rutgeerts P, Malchow H, Jacyna M, Nielsen OH, Rask-Madsen J, Van Deventer S, Ferguson A, Desreumaux P, Forbes A, Geboes K, Melani L, Cohard M. Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut. 2001;49:42–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. Treatment of murine colitis by Lactococcus lactis secreting interleukin- 10. Science. 2000;289:1352–5.

    Article  CAS  PubMed  Google Scholar 

  131. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21:785–9.

    Article  CAS  PubMed  Google Scholar 

  132. Huyghebaert N, Vermeire A, Neirynck S, Steidler L, Remaut E, Remon JP. Evaluation of extrusion/spheronisation, layering and compaction for the preparation of an oral, multi-particulate formulation of viable, hIL-10 producing Lactococcus lactis. Eur J Pharm Biopharm. 2005;59:9–15.

    Article  CAS  PubMed  Google Scholar 

  133. Huyghebaert N, Vermeire A, Neirynck S, Steidler L, Remaut E, Remon JP. Development of an enteric-coated formulation containing freeze-dried, viable recombinant Lactococcus lactis for the ileal mucosal delivery of human interleukin-10. Eur J Pharm Biopharm. 2005;60:349–59.

    Article  CAS  PubMed  Google Scholar 

  134. Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP, Steidler L. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4:754–9.

    Article  CAS  PubMed  Google Scholar 

  135. Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med. 2012;366:1000–9.

    Article  CAS  PubMed  Google Scholar 

  136. D’Haens G, Sandborn WJ, Colombel JF, Rutgeerts P, Brown K, Barkay H, Sakov A, Haviv A, Feagan BG. A phase II study of laquinimod in Crohn’s disease. Gut. 2015;64(8):1227–35. doi:10.1136/gutjnl-2014-307118. Epub 2014 Oct 3.

    Article  PubMed  CAS  Google Scholar 

  137. Creed TJ, Lee RW, Newcomb PV, di Mambro AJ, Raju M, Dayan CM. The effects of cytokines on suppression of lymphocyte proliferation by dexamethasone. J Immunol. 2009;183:164–71.

    Article  CAS  PubMed  Google Scholar 

  138. Musch E, et al. Topical treatment with the toll-like receptor agonist DIMS0150 has potential for lasting relief of symptoms in patients with chronic active ulcerative colitis by restoring glucocorticoid sensitivity. Inflamm Bowel Dis. 2013;19:283–92.

    Article  PubMed  Google Scholar 

  139. Lofberg R, Neurath M, Ost A, Pettersson S. Topical NFκB p65 antisense oligonucleotide in patients with active distal colonic IBD: a randomized, controlled, pilot trial. Gastroenterology. 2001;122(Suppl 41):503A.

    Google Scholar 

  140. Kuznetsov NV, et al. Biomarkers can predict potential clinical responders to DIMS0150 a toll-like receptor 9 agonist in ulcerative colitis patients. BMC Gastroenterol. 2014;14:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Gonzalez-Cabrera PJ. S1P signaling: new therapies and opportunities. F1000Prime Rep. 2014;6:109.

    PubMed  PubMed Central  Google Scholar 

  142. Masopust D, Choo D, Vezys V, et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J Exp Med. 2010;207:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Safety and efficacy of APD334 in patients with ulcerative colitis (clinical trials.gov NCT02447302).

  144. Sandborn W. New targets for small molecules in inflammatory bowel disease. Gastroenterol Hepatol. 2015;11(5):338–40.

    Google Scholar 

  145. Sandborn W, Feagan BG, Wolf DC, et al. 445 the TOUCHSTONE study: a randomized, double-blind, placebo-controlled induction trial of an oral S1P receptor modulator (RPC1063) in moderate to severe ulcerative colitis. Gastroenterology. 2015;148:S-93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzana Rashid MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rashid, F., Lichtenstein, G.R. (2017). New Non-anti-TNF-α Biological Therapies for the Treatment of Inflammatory Bowel Disease. In: Mamula, P., Grossman, A., Baldassano, R., Kelsen, J., Markowitz, J. (eds) Pediatric Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-49215-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49215-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49213-1

  • Online ISBN: 978-3-319-49215-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics